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A CHARACTERIZATION OF SOLENOIDS
CHARLES L. HAGOPIAN

Suppose M is a homogeneous continuum and every proper
subcontinuum of M is an arc. Using a theorem of E. G. Effros
involving topological transformation groups, we prove that M is
circle-like. This answers in the affirmative a question raised by
R. H. Bing. It follows from this result and a theorem of Bing
that M is a solenoid. Hence a continuum is a solenoid if and
only if it is homogeneous and all of its proper subcontinua are
arcs. The group G of homeomorphisms of M onto M with the
topology of uniform convergence has an unusual property. For
each point w of M, let G, be the isotropy subgroup of w in
G. Although G, is not a normal subgroup of G, it follows from
Effros’ theorem and Theorem 2 of this paper that the coset space
G/G, is a solenoid homeomorphic to M and, therefore, a
topological group.

1. Introduction. Let & be the class of all homogeneous
continua M such that every proper subcontinuum of M is an arc. It is
known that every solenoid belongs to &. It is also known that every
circle-like element of & is a solenoid. In fact, in 1960 R. H. Bing [4,
Theorem 9, p. 228] proved that each homogeneous circle-like continuum
that contains an arc is a solenoid. At that time Bing [4, p. 219] asked
whether every element of & is a solenoid. In this paper we answer
Bing’s question in the affirmative by proving that every element of & is
circle-like.

2. Definitions and related results. We call a nondegen-
erate compact connected metric space a continuum.

A chain is a finite sequence L, L,,---, L, of open sets such that
L NL#J if and only if |[i—j|=1. If L, also intersects L,, the
sequence is called a circular chain. Each L, is called a link. A chain
(circular chain) is called an e-chain (e-circular chain) if each of its links
has diameter less than e. A continuum is said to be arc-like (circle-like)
if for each € >0, it can be covered by an e-chain (e-circular chain).

A space is homogeneous if for each pair p, q of its points there exists
a homeomorphism of the space onto itself that takes p to q. Bing [2] [3]
proved that a continuum is a pseudo-arc if and only if it is homogeneous
and arc-like. L. Fearnley [9] and J. T. Rogers, Jr. [20] independently
showed that every homogeneous, hereditarily indecomposable, circle-like
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continuum is a pseudo-arc [11]. However, there are many topologically
different homogeneous circle-like continua that have decomposable
subcontinua [24] [25].

Let n,, n,, - - - be a sequence of positive integers. For each positive
integer i, let G, be the unit circle {z € R*:| z | = 1}, and let f, be the map
of G,., onto G, defined by f,(z)=z™ The inverse limit space of the
sequence {G, f,} is called a solenoid. Since each G, is a topological
group and each f, is a homomorphism, every solenoid is a topological
group [13, Theorem 6.14, p. 56] and therefore homogeneous. Each
solenoid is circle-like since it is an inverse limit of circles with surjective
bonding maps [17, Lemma 1, p. 147].

A solenoid can be described as the intersection of a sequence of solid
tori M,, M,, - - - such that M,,, runs smoothly around inside M, exactly n,
times longitudinally without folding back and M, has cross diameter of
less than i™'. The sequence n,, n,, - - - determines the topology of the
solenoid. Ifitis1, 1, -- - after some place, the solenoid is a simple closed
curve. Ifitis 2,2, ---, the solenoid is the dyadic solenoid defined by D.
van Dantzig [7] and L. Vietoris [23]. Other properties involving the
sequence n,, n,, --- are given in [4, p. 210]. From this description we
see that every proper subcontinuum of a solenoid is an arc.

Solenoids appear as invariant sets in the qualitative theory of
differential equations. In [21] E. S. Thomas proved that every compact
1-dimensional metric space that is minimal under some flow and contains
an almost periodic point is a solenoid.

Every homogeneous plane continuum that contains an arc is a simple
closed curve [4] [10] [15]. Hence each planar solenoid is a simple closed
curve.

Each of the three known examples of homogeneous plane continua
(a circle, a pseudo-arc [2] [18], and a circle of pseudo-arcs [5]) is
circle-like. If one could show that every homogeneous plane continuum
is circle-like, it would follow that there does not exist a fourth example [6]
[12] [14, p. 49] and a long outstanding problem would be solved.

A topological transformation group (G, M) is a topological group G
together with a topological space M and a continuous mapping
(g, w)—gw of G X M into M such that ew = w (e denotes the identity
of G) and (gh)w = g(hw) for all elements g, h of G and w of M.

For each point w of M, let G, be the isotropy subgroup of w in G
(that is, the set of all elements g of G such that gw = w). Let G/G, be
the left coset space with the quotient topology. The mapping ¢, of
G/G, onto Gw that sends gG, to gw is one-to-one and
continuous. The set Gw is called the orbit of w.

Assume M is a continuum and G is the topological group of
homeomorphisms of M onto M with the topology of uniform con-
vergence [16, p. 88]. E. G. Effros [8, Theorem 2.1] proved that each
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orbit is a set of the type G; in M if and only if for each point w of M, the
mapping ¢, is a homeomorphism.

Suppose M is a homogeneous continuum. Then the orbit of each
point of M is M, a G;-set. According to Effros’ theorem, for each point
w of M, the coset space G/G,, is homeomorphic to M. By Theorem 2 of
84, if M has the additional property that all of its proper subcontinua are
arcs, then G/G,, is a solenoid and, therefore, a topological group. Note
that G, is not a normal subgroup of G.

Throughout this paper R? is the Cartesian plane. For each real
number r, we shall denote the horizontal line y = r and the vertical line
x =r in R? by H(r) and V/(r) respectively.

Let P and Q be subsets of R>. The set P is said to project
horizontally into Q if every horizontal line in R? that meets P also meets
Q.

We shall denote the boundary and the closure of a given set Z by
Bd Z and ClZ respectively.

3. Preliminary results. In thissection M is a homogeneous
continuum (with metric p) having only arcs for proper subcontinua.

Let p and g be two points of the same arc component of M. The
union of all arcs in M that have p as an endpoint and contain g is called a
ray starting at p.

The following two lemmas are easy to verify.

LEmMMA 1. Each ray is dense in M.

LemMA 2. If an open subset Z of M is not dense in M, then each
component of Z is an arc segment with both endpoints in Bd Z.

Let € be a positive number. A homeomorphism h of M onto M is
called an e-homeomorphism if p(v,h(v))<e for each point v of M.

LeMMA 3. Suppose € is a given positive number and w is a point of
M. Then w belongs to an open subset W of M with the following
property. For each pair p, q of points of W, there exists an e-
homeomorphism h of M onto M such that h(p) = q.

Proof. Define G, G,, and ¢, as in §2. Since M is homogeneous,
the orbit of each point of M is M. Therefore ¢, is a homeomorphism of
G/G, onto M [8, Theorem 2.1}.

Let , be the natural open mapping of G onto G/G,, that sends g to
gG,. Define T, to be the mapping of G onto M that sends g to
g(w). Since T,=¢,m,, it follows that T, is an open mapping [22,
Theorem 3.1]. Note that the following diagram commutes.
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G/G,

Let U be the open subset of G consisting of all €/2-
homeomorphisms of M onto M. Define W to be the open set
T,JU]. Since the identity e belongs to U and T,(e)= w, the set W
contains w.

Assume p and g are points of W. Let f and g be elements of U
such that T,(f)=p and T.(g)=gq. Since f(w)=p and g(w)=gq, the
mapping h =gf ' of M onto M is an e-homeomorphism with the

property that h(p)=gq.

For each positive integer i, let A; be an arc with endpoints p; and
q. Thesequence A,, A,, ---issaid to be folded if it converges to an arc
A and the sequence p,, q,, P2, q», * - - converges to an endpoint of A.

LEmMmA 4. (Bing [4, Theorem 6, p. 220]). There does not exist a
folded sequence of arcs in M.

Lemma 4 follows from a simple argument (shorter than Bing’s)
involving Lemma 3 and the fact that M does not contain a triod.

A chain L, L,, ---, L, in M is said to be free if CIL, N CIL, =
and BAU{L,:1=i=n} is a subset of CI(L, U L,).

LemMMA 5. (Bing [4, Property 17, p. 219]). Let A be an arc in M with
endpoints p and q. For each positive number €, there exists a free e-chain
L,L, ---, L,in M covering A such that p and q belong to L, and L,
respectively.

A continuum is decomposable if it is the union of two proper
subcontinua; otherwise, it is indecomposable.

LEMMA 6. If M is decomposable, then M is a simple closed curve.

Proof. Since M is the union of two proper subcontinua (arcs), M is
locally connected. Since M is homogeneous, it does not have a separat-
ing point. Hence M contains a simple closed curve [19, Theorem 13, p.
91]. It follows that M is a simple closed curve.
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4. Principal results.

THEOREM 1. If M is a homogeneous continuum and every proper
subcontinuum of M is an arc, then M is circle-like.

Proof. According to Lemma 6, if M is decomposable, then M is a
simple closed curve and therefore circle-like. Hence we assume that M
is indecomposable.

By Lemmas 4 and 5, there exists a free chain L,, L,, -+, L, (@ >5)
in M such that N=ClU {L;:1=i = a} is a proper subset of M and
N-ClU{L,:3=i = a —2} contains every arc in N that has both of its
endpoints in CI1L, or CIL,. (This chain is formed from another free
chain by unioning links to make L, and L,.; sufficiently long and
narrow.) Let B be the union of all components of N that meet
CI(L, U L,;). By Lemma 2, each component of B is an arc with one
endpoint in Bd L, and the other endpoint in BdL,. Note that B is a
closed set. Since M is indecomposable, each component of B is a
continuum of condensation.

Since B contains no folded sequence of arcs, we can assume that B
is the intersection of M and the plane R? and that the following
conditions are satisfied:

I. A component C of B is {(x,y):0=x =6 and y =0}.

II. Each component of B — C is a horizontal interval above H(0)
(the x-axis) and below H(1) that crosses both V(1) and V(5).

III. The sets CI(L, UL,UL,,;UL,) and {(x,y):1=x =5} are
disjoint.
(Bing’s theorem [2, Theorem 11], involving sequences of refining covers
that induce a homeomorphism, can be used to define this embedding of B
in R’ Each cover of B consists of finitely many free chains that
correspond to disjoint straight horizontal chains with rectangular links in
R?) Note that B N {(x,y):1<x <5} is an open subset of M.

Let p be a metric on M whose restriction to B agrees with the
Euclidean metric on R? [1, Theorems 4 and 5].

There exists a positive number d less than 1 such that M N H(d) =
& and the following condition is satisfied:

Property 1. Every arc in M that has its endpoints in {(x,y):x =3
and 0=y < d} meetsboth {(x,y):x =1and0=y <d}and {(x,y):x =5
and 0=y <d}.

To see this we assume Property 1 does not hold for any positive
number d. For each positive integer i, let W; be an open set in
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M N {(x,y):1<x <5} that contains (3,0) such that for each pair p, q of
points of W, there exists an i '-homeomorphism of M onto M that takes
p to q (Lemma 3). For each i, there exists an arc A, in M with
endpoints p; and g, in W, N V(3) such that the horizontal interval I'; from
pi to V(1)isin A, if and only if the horizontal interval A, from g; to V(1)
is in A,

For each i, let h; be an i '-homeomorphism of M onto M such that
h.(p;) = q.. Since each h; maps I'; approximately onto A, for each i, there
exists a point a, of A; such that h;(a;) = a.

For each i, let B; be the arcin A, from p; to a.. Note that for each i,
the diameter of B; is greater than 1 and B; N h;[B,] consists of the point
a.

Let a be a limit point of the sequence {a;}. Assume without loss of
generality that {a,} is a convergent sequence in E={v E M:p(v,a)<
1/2}. '

For each i, let E; be an arc in B; N Cl E that goes from a point b; of
BdE to a. Assume without loss of generality that {b;} converges to a
point of Bd E and {E,} converges to an arc F in CI1 E. Since each h, is an
i~-homeomorphism, {E, U h,[E;]} is a folded sequence of arcs conver-
ging to F. This contradiction of Lemma 4 completes our argument for
Property 1.

For i =1 and 2, let

D;i=MN{xy)ri=x=6—i and 0=sy<d}.

Let € be a given positive number less than p(D,,M — D;). We
shall complete this proof by defining an e-circular chain that covers M.

By Lemma 1, there exists an arc A in M that is irreducible with
respect to the property that it contains {(5,0),(6,0)} and intersects
{(x,y):x =5 and 0<y <d}. According to Property 1, A intersects
{(x,y):x=4and 0<y <d}.

Let W be an open set in D, — A containing (4,0) such that for each
pair p, q of points of W, there exists an €/50-homeomorphism of M onto
M that takes p to g (Lemma 3).

Let ¢ be a number (0<c < €/50) such that M N H(c)= and
M N{(x,y):x=4and0=y <c}isin W. Since W and A are disjoint,
c is less than d.

For i =1 and 2, let

C=Mn{kxy)ri=sx=6—i and 0=y<c}
Let & be the minimum of € and p(C,, M — C,). Let U be an open

subset of C, containing (2,0) such that for each point q of U, there exists a
6-homeomorphism of M onto M that takes (2,0) to g (Lemma 3).
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Define S to be the ray in M that starts at (2,0) and contains A. Let
{s;} be the sequence consisting of all points of S N {(x,y):x =3 and
0 = y < d} and having the property that for each i, the points s; precedes
s,..; with respect to the linear order on S.

Define T, to be an arc containing A in S that starts at the point
t,=(2,0) and ends at a point t, of U N V(2). Let h be a §&-
homeomorphism of M onto M that takes ¢, to t.

We proceed inductively. Assume an arc T, is defined in § with
endpoints ¢, and .., in C,N V(2). Let y be the number such that
h(t,.,) belongs to H(y). Define T,,, to be the arc in S with endpoints
t., and t,.,=(2,y). Since h is a §-homeomorphism, ., belongs to
C,. Note that since each T, has diameter greater than 1, the ray S is the
union of {T,:n=1,2, ---}.

Define 8 to be the largest integer such that {s;:1 =i = B} is a subset
of T,.. The &-homeomorphism h maps each T, approximately onto
T.... Hence, for each n, the arc T, contains {s;:(n—1)B<i=
nB}. Furthermore, B has the following property:

Property 2. For each positive integer i, the point s; belongs to G, if
and only if s,.; belongs to C..

Define y to be the least positive integer that has Property 2. Note
that since s, does not belong to C,, the integer y is greater than 1.

Let K be {s:i=jy+1 and j=0,1,2,---}, and let L be
(SND,N VQA)—-K

Property 3. The sets CIK and CIL are disjoint.

To establish Property 3, we assume there is a point z in C1K N
CIL. Let Z be an open subset of M containing z such that for each pair
p, q of points of Z, there exists a §-homeomorphism of M onto M that
takes p to q (Lemma 3).

Let s; and s, be points of Z N K and Z N L, respectively, and let f
be a §-homeomorphism of M onto M such that f(s;)=s, Let 6 be the
smallest positive integer such that s,_, belongs to K. The existence of f
implies that 6 has Property 2. Since 6 is less than v, this is a
contradiction and Property 3 is established.

Note that since M = C1S (Lemma 1), CI(K U L)= D, N V(3).

Let I be the arc in S that goes from s, to s,.;. By an argument
similar to Bing’s [4, Property 17, p. 219], there exists a free €/50-chain
P, P, ---, P,in M covering I such that

(i) s, and s,., belong to P, and P, respectively,

(i) P, UP,isin G,
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(iii) each component of H = U {P,:1 =j = A} that meets Cl P, also
meets P, and V(5), and

(iv)- each component of H that meets Cl P, meets P, and V(1).
From Property 1 we get the following:

Property 4. Each component of H meets both P, and P,.

Let P, be an element of P, P, ---, P, that contains the point
(4,0). Since W intersects each component of C,, there exists a finite
sequence g, &, * * *, 8- of €/50-homeomorphisms of M onto M such that
CIK projects horizontally into U {g[P.]:1=i=0c}. Assume without
loss of generality that no proper subsequence of g, g», - - -, g has this
horizontal projection property.

Note that each g;[P,] is a subset of D,.

From Properties 1 and 4 we get the following:

Property 5. Foreach i (1=i=o0),if T is a component of g[H],
then T N g [Cl P,] is a nonempty set that projects horizontally to a point
of D, N V(3).

For each i (1=i=o0), let X, be the set consisting of all points in
g.[P.] that project horizontally into Cl K, and let Y; be the union of all
components of g [H] that meet X.

For each i (1=i = o), the set Y;is open in M. To see this assume
that for some i, a point u of Y,isin CI(M — Y)). According to Property
3, u does not belong to g;[P,]. By Property 5, there exists a sequence
{J.} of arcs in g,[H] that meet g[P,] such that the limit superior J of {J,}
is an arc in g[H] that contains u and for each n, the set J, N g[P,]
projects horizontally to a point of C1L. It follows that J N g[ClP,] is a
nonempty set that projects horizontally to a point of C1L. Since J is in
the u-component of Y, this is a contradiction of Property 5. Hence Yis
an open subset of M.

For eachi (1=si=o)andj (1=j=A), let Q,=Y . Ng[P]. It
follows from an argument similar to the one given in the preceding
paragraph that for each i, the set C1(Q,; U Q,,) contains Bd U {Q,;:1=
j = A}. Hence, for each i, the sequence Q,;, Q,,, - -, Q,, is a free chain
in M.

Property 6. For each i (1=i=o0), the set Q,; U Q,, projects
horizontally into Cl K.

Obviously, Q;, projects horizontally into C1 K. Therefore, to estab-
lish Property 6, we assume there is a point ¢ of Q,, that projects
horizontally into CI1 L. By Property 3, there exists a positive number 7
less than € such that Q ={v € M :p(v,t) < n} projects horizontally in
CIL.
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Let T denote the t-component of Y;, and let wbe a pointof T N Q,;
(Property 4). Since g; is an €/50-homeomorphism, T crosses D; N V(1)
exactly y times (Property 1). Since w belongs to Q,, it projects
horizontally into Cl K.

By Lemma 3, there exists an n-homeomorphism g of M onto M
such that g(w) belongs to Q,; and projects horizontally into K. Since
the g(w)-component of Y;is an arc segment in S that crosses D; N V(1)
exactly y times and is mapped approximately onto T by g, the point
g(t) of Q projects horizontally into K. This contradiction of the
definition of Q completes our argument for Property 6.

Let 7 be an integer (5< # < pu) such that P, contains the point
(3+€/10,0). Let w be an integer (u < w < A —4) such that P, contains
the point of V(3 — €/10) that projects horizontally to s,.;.

Property 7. For each n (1=n =o0), the set Q,, U Q,, does not
intersect U{Q,,:1=i=0c and 7 =j = w}.

To see this assume there exist integers i, j,and n suchthat 7 = j = w
and a point p belongs to Q;; N (Q,,U Q,,). According to Property 6,
{p}U Q,;U Q,, projects horizontally into CIK. By Property 3, there
exists a positive number x less than € such that {v E M :p(v,p)< x}
projects horizontally into CIK.

Let P be the p-component of Y. Let Y be an arc in P that goes
from a point q of Q,, to p. Since g; and g, are €/50-homeomorphisms
and 7 =] = o, the set Q;; U Q,, and the p-component of P N D, are
disjoint. Hence Y crosses D, N V(1) exactly ¢ times where ¢ is a
positive integer less than 7.

By Lemma 3, there exists a y-homeomorphism k of M onto M such
that k (q) belongs to Q,; and projects horizontally into K. The arc k[Y]
crosses D; N V(1) exactly ¢ times. Since k[Y]isin S and p(p, k(p)) <
X, the point k(p) projects horizontally into K. It follows from the
definition of K that ¢ is a multiple of 7y, and this is a
contradiction. Hence Property 7 holds.

Foreachi (1=si=oc)andj (1=j=A),let P;,=Q,;—ClU{Y,:1=
n <i}. By Property 7, for each i, the subchain of P, P,,, - - -, P,, that
has P,, and P,, as end links is free in M.

Foreachj(1=j=A),let U = U{P;:1=i=o0}. Thesubchain €
of U,, U,, - -+, U, that has U, and U, as end links is a free €/16-chain in
M.

Let D be the union of all components of C, N {(x,y):3—€/5<x <
3+ €/5} that meet C1 K. According to Property 3, D isopenin M. The
diameter of D is less than €/2. Each point of U, U U, is within €/S of
V(3). By Property 6, U, U U, projects horizontally into CIK. Hence
U,UU, isin D.

Let 7 be the largest integer less than u such that U, intersects
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D. Let ¢ be the smallest integer greater than u such that U, intersects
D. For each j (1=j<y¢—-7), let Z=U,. Note that
Z, 2y, Zy, is a free e-chain in M.

Define Z,_, to be the union of D and all elements of & ={U, : 7 =
jStory =j=w}. SinceClK projects horizontally into U, and € is a
free chain in M, each element of & intersects D. Thus Z,_, is an open
set in M of diameter less than €. Note that Z, . meets both Z, and
Zy-r-1-

Since €4 is free and U, U U, isin D, the boundary of U {Z;:1=j <
y—r}isin Z, . Since ClK projects horizontally into U, the set Z,
contains every boundary point of Z,_, that is to the right of V(3) in R?.

Furthermore, each point of Bd Z,_, that is to the left of V(3) is in
Z,_.,. To see this let s be such a.point. Let X be the arc in M that
intersects V(1) and is irreducible between s and ClU, (Lemma 1). By
Property 1, X does not meet U, U U,. Since U, is an interior link in
the free chain €, the arc X is covered by € and s belongs to Z,_,_,.

It follows that BdZ,, is in Z,UZ,,,. Therefore
Z,, 2, % Z, . is an e-circular chain that covers M. Hence M is
circle-like.

Since every homogeneous circle-like continuum that contains an arc
is a solenoid [4, Theorem 9, p. 228], Theorem 1 implies the following:

THEOREM 2. A continuum M is a solenoid if and only if M is
homogeneous and every proper subcontinuum of M is an arc.
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