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ON A THEOREM OF DELAUNAY
AND SOME RELATED RESULTS

B. GORDON AND S. P. MOHANTY

Dedicated to the memory of Professor T. S. Motzkin

Delaunay has proved that if € = ap¢” + bpd + ¢ is a unit in
the ring Z[6], where 8°— P6°+ Q6 — R = 0, p is an odd prime,
¢ =p'6,t=0and p t a, then no power €™ (m positive) can be
a binorm, i.e. €™ = u + vf is impossible for m a positive integer.
Hemer has pointed out that in the above situation, €™ = u + vf
is also impossible for m a negative integer.

In this paper the above result is extended as follows.

THEOREM 1. If € = a@’+ b6 + ¢ is a unit in Z[8], where
0'=do’+e0+fand p*|la, p®|b, p being a prime, then €" =
u + v is impossible for n# 0 in the following cases:

(i) When =« = andp is odd,

(il) When 2=a =8 andp =2,

(ili) When B = a <28 and p is odd,

(iv) When B=a <2B8-1 and p =2.

As an application of this and some other similar theorems,
all integer solutions of the equation y°= x’+ 113 are de-
termined.

First we prove two simple lemmas.

Lemma 2. If p| <p't’> then p*| (?) where the prime p satisfies

pi<i<p and po' a (p:l”) Furthermore if p|n and p t i then

atl n>
p I(,. :

Proof. Let i=p?+r. Then 0<r<p?'—p? Hence
()=o) () ot
. . , - —.
v [Ter+5)
-
Since II;-, (p? +j)/r! is an integer not divisible by p and p“| <pnq ), we
have p*| (7)
If p|n and p ¥ i then p ¥ r for i =p?+r. Then
(") (5) ()
r r r—1
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is divisible by p. Hence p*'| (n)

Again from

(o) = () () s (5
p‘Hl pq q+1 I_[ a1 ‘ pq+1 ’

where s =p?'—p?—1, we see that p*~ ’[( qH), and the lemma is
proved. P

LEMMA 3. Let € = a6’+ b0 +c be a unit in Z[0], where 6°=
d6*+eb +f,ande ' =a'0*>+b'60 +c'. Ifp*|a, p?| b, wherepis a prime
and aB #0, then p®|a’ and p*®| b’ in the following cases:

(i) a=p<la

G) B=a<2B
For a = 3 we have p®|a’ and p*|b’.

Proof. Since (a8*+ b0 +c¢)(a’0’+ b'6 + c’)=1, we have,

1) aa'd*+ab'd +a'bd + aa'e + ac’+ ca’ + bb' = 0,
2) aa'f+ aa'de + ab'e + a'be + bc'+b'c =0,
and

3) aa'df + ab'f+ a'bf + cc' = 1.

From (3) it follows that p  ¢’.

Case (i). From (1) we have ca’=0 (modp®) as @ = . Since
p 4 c wegeta =0 (modp®). From (2) we obtain b'c =0 (mod p*) for
a =B, whence b'=0 (modp*). If B <2a, then (2) gives b'c =0
(modp?),or b'=0 (modp®). If p**'|a’, then from (1) we have ac'=
(modp=*"). Since p £ ¢'we get a =0(modp**'), a contradiction. Hence
pe|la’. Similarly if p#*'|b’, then from (2) we get bc’=0 (modp**')
when B <2a. Again we arrive at a contradiction since p 4 ¢’ and
p?||b. Hence p°| b’

Case (ii). Since B = e, (2) yields b'c =0(modp”). Then we have
b’'=0(modp®) for p ¥ c Using a<2B, we get a'(bd+c)
0 (modp®) from (1). Then a'=0(modp®) as p & (bd +c). If b’
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0 (mod p#*'), then from (2) we see that bc'=0 (modp?''), a
contradiction. Hence p?|b’. If a’=0 (modp**') we have from (1)
ac'+ bb'=0 (modp**'). We get a contradiction for a« <2B. Hence

p*la’.

Proof of Theorem 1. Letn>0. Case(i)and(ii). Letls=a=8.

Since € is a unit, p tc. Moreover € =ab’+bf+c=
pe(r6>+s@)+c where p £ r. Let (r8°+s0) = a6’ + b0 + ¢, with a;, b,
and ¢; rational integers. Then

n

e = (a6 + b0+ c) = [c + p*(r0°+ 0" = "+ (]

> c"'pe(r6*+ s6)

+ <g> c"?p*(a,0°+ b0 +c))+ - - -+ p™(a,0°+ b0 +c,)=u+ v0.

Comparing the coefficients of °, we have

4) nc" 'per+ (;) c"?p*a,+ -+ -+ p™a, = 0.

If p is an odd prime, we see using Lemma 2 that the first term of (4) is
divisible by a lower power of p than the others. If p =2 and @ = 2 the
same conclusion holds. Hence (4) can never be satisfied. So €" can
never be of the form u + v in these cases.

Cases (iii) and (iv). Now € = p?(r8°+ s6)+ ¢, where p=~#|r.
Then the coefficient of 6% in € = [c + p?(r6*>+ s6)]" is

5) nc"'pfr + (;) c"?’p*a,+---+pa,,

where (r0°+ s6) = a,0°+ b0 + ¢, with a, b, and ¢, rational integers.
Again using Lemma 2 and the fact that « <23, we see that the first
term of (5) is divisible by a lower power of p than the others if p is an odd
prime. ‘

In case p =2 and a <2 — 1 the same conclusion holds. Hence (5)
can never be zero, i.e. €"=u + vf is impossible. This proves the
theorem for n > 0.

We next consider €” = u + v for n <0.

Let n=—-m and e€'=a'6’+b’'6 +c'. Then we have €"=
(e =(a'6’+b'6 + )" where m >0. From Lemma 3, we see that
p*lla’, p*|b’ for « =B, and p®|a’, p?||b' for B=a <2B-1,a=B<
2a and B=a <2B. Hence (a’'60’+b'60+c')” =u+ v is impossible
for m >0. Combining these results we see that €” = u + v6 is impossi-
ble for n# 0, and the theorem is proved.
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We note that if the conditions of Theorem 1 are not fulfilled, then
€" = u + vl is possible for n > 3; examples are given in [2, page 417].
Very often the following theorem is useful.

THEOREM 4. Let € = a,0>+ b,0 + ¢, be a unit in Z[0], where 0°—
P60 —q,=0. If p,=0 (mod3), then

(6) €"=u+ vl

is impossible for n# 0 provided a, #0 (mod 3), b7+ 2a,c, # 0 (mod 3), and
bic,+ a;ci+ aibiq, #0 (mod3).

Proof. Let €"=a,0°+ b,0 + ¢, Then we have

An = a,(ap+ )+ bb, + ca,
b,..=a.(a\q,+ bip)+b.(c,+ap)+cb,

and

Ch+1 = anb1Q1 + bnalql + caCh.

Hence we get a, = aip,+ bi+2a,c,, b, = aiq, +2b,c,+2a,b,p,, and ¢, =
ci+2a,bq,. Then a;= aipi+3a,bip,+3aic,p, +3bic, +3a.ci+
3aibq;, bs=2aip.q,+3a,biq,+3aic,q,+3aib,pi+bip +6a,bicip,+
3b,c3i, and ¢;=3aibp.,q,+ biq, + 6a,b,c,q, + aiqi+ ci. Suppose p, =0
(mod3). Then a;=0 (mod3), b;=0 (mod3), and ¢;=b,q,+ aiqi+c;
(mod 3).

Since €’ is a unit, ¢;#0 (mod 3) as a;= b; =0 (mod 3).
Hence we have ¢;=1 or 2 (mod 3).

Suppose n =1 (mod3), and put n =1+3m in (6). We get

€ (e)" =u+0b,
or
(a,0°+ b6 +c)(£1)" =u + v0 (mod3).
This congruence is impossible unless a,=0 (mod3). Hence if a,#0

(mod3), then n#1 (mod3). Suppose n=2 (mod3), and let n =
2+3m. Then (6) gives

(a,0°+ b0 + ¢,))(=1)" =u + v (mod3).

This is impossible unless a,=0 (mod3), ie. bi+2a,c,=0
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(mod3). Hence if bi+2a,c;,#0 (mod3), then n=2 (mod3) is
impossible. Finally suppose n =3m in (6). Then we get

(7) (a;0°+ bs6 + c3)™ = u + vh.

Now a;=b;=0 (mod3), and a;=3bic,+3a;ci+3ailb,q, (mod9). If

bic,+aci+aib,q;#0 (mod3), then a;#0 (mod9) and hence by

Theorem 1, (7) is impossible for m an integer, positive or negative.
Therefore n =0 is the only solution to (6).

LemMma 5 (Delaunay [2, page 385]). If b0 + c, where b#0,%1, is
a positive unit of Z[0] where 6° — P>+ Q0 — R = 0, then no power >1 of
b6 + ¢ can be a binomial unit. (In other words all the positive powers of
the positive unit bd + ¢ are of the form L8>+ M6 + N, where L #0).

We prove two theorems which are useful when b = *1.

THEOREM 6. Let € = =0 + ¢ be a unit in Z[0], where 0°— P>+
Q6—-R =0. If °=0 (modp?), where p is a prime, then p ¥ ¢ and
€" = u + v0 is impossible for n > 1.

Proof. We have (e —c¢)*=0 (mod p?). If p|c then €’=0 (modp)
where p’|N(e’)= =1. Hence pfc. Let €"=u+v0, n>1. Then

(cxb)y=c"+ (T) c"(£0)+ (;) c"0* + <g> (0P + -

+(tg)n=u+v().

Let 8" =r,0*+ 5,06 +t,. Then
@®) (3)c"‘2+(;)c"‘3(tr3)+---+(ir,,)=0.

As 6°=0 (modp?), we have r,=0 (modp*”). Since p 1t c,
pl(’;) Suppose p*|| <;) If p=2 then 2| (;) If p#2 then
n\ (n\ ([ n Kot
P G) () () ena
each term of (8) except the first is divisible by at least p**'. Hence

p

k

l (;) Using Lemma 2, we see that

k+1

n ..
<2>, a contradiction.

THEOREM 7. Let € = 60+ ¢, be a unit of the ring Z[6], where
0°-3P9°+3Q0—R =0. If ¢;+P#0 (mod3) and ci+2c,P+ Q#0
(mod 3), then €" = u + v8 is impossible for n > 1.
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Proof. Let e =60+ c¢,. Then 6§ =€ —c,. So from
6°—3P0°+3Q6 — R =0,
we get
(6 - C‘1)3_ 3P(€ - 61)2+ 30(6 - Cl)— R = O,
or

€ =3(c;+ P)e*—3(c*+2¢,P+ Q)e +(¢ci+3ciP +3¢,0 + R).
Now N(e)=ci+3ciP+3c,Q+ R = *=1.

For convenience we write €’ = 3re’—3se +1. Now by hypothesis
3fr and 34s. Let €"=u+v6. Then €" =u+v(e—c,)= u, + vs€,
say. Suppose n =2 (mod3). Then e€*(€’)" =u,+v,e, where n=
2+3m. Ase’= =1 (mod3), we have * €*>= u,+ v,;e (mod 3), which is
impossible. Let n =0 (mod3) and n# 0. Putting n =3m, we get
) (Bre’—3se £1)" = u, + ve.

But this is impossible by Theorem 1, whether m is a positive or a negative

integer, for 3 ¥ r. Hence if n # 0, the only possibility is n = 1 (mod 3).
Let n =1+ 3m, where m >0. Then

€(3re’—3se £ 1)™ = u, + v€
or

(3re*—3se £ 1)" = v, = u,(e*— 3re + 3s).
Let (re*— se)' = re’+ se + t, where r, s, t, are rational integers. Then
(xD)" + (rln) (£1)""3(re® — se) + <r2n> (£1)"°3(r,€* + 5,6 + 1)
+- 4+ 3"(r. €+ 5,6 + 1,) = *u€’F 3ruse + (v, £ 3su,).

On equ: ing coefficients of € and €, we obtain

(10) (: 1)m—13mr +(i 1)m—232 <’2n> r+ (i‘ 1)m~333 (?) rs+---+ 3mrm

=i—u1’

and
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m

A1) = ()" Bms+(x1)"?3 <m> s+ (£1)"33° (3

2 >S3+"'+3"'Sm

= F 3’“1.

Multiplying both sides of (10) by 3r and then adding to (11), we obtain
(£1)"3mBri— s)+ (2 1y"23° (’2") Grr + 5)
+(x£1)"3 <';> @rar+s3)+---+3"@Br,r +5,)=0.

We see from this that 3|m@3r’—s). As 34s, we have
3/m. Suppose 3*||m. Using Lemma 2, we easily see that all the terms
except the first are divisible by 3**?, while the first is exactly divisible by
3**', which is impossible. Hence m =0, i.e. n = 1.

Soif n is a nonnegative integer and €” = u + v, thenn =0orn = 1.
The proof for e = — 6 + ¢, is completely analogous.

THEOREM 8. If € = b,0 + ¢, is a positive unit in Z[0], where 6°—
P6*+ Q0 — R =0 with D(0) negative and # —23, then €" = u+ v0
implies that n = 0.

To prove this theorem we need the following well-known result.

LemMA 9 (Nagell [8]). If n is a unit, D(n)<0, 0<% <1, then
n" = x + yn implies that n = 0, except in the case when n*+ n*—1=0. In
this case n>=1+n and D(n)= —23.

Proof of Theorem 8. Let e€=b,60+c, be a positive unit in
Z[60). Then 0<e <1. Since € is contained in Z[6], we get D(¢)=
8?-D(#). Hence D(e)<0 and # —23.

Let e"=u+ 6. Since € = b,0 + ¢, we have

(b16 + Cl)n = u + v6.
Then b,|v when n is a positive integer. In case n is negative, we put

n = —m where m is positive. Let e '=a’'6*’+b'80+c'. Then 6°=
P0*— Q6 + R and ee' =1 imply

(12) b,a'’P +b,b'+ ca’ =0,

(13) —b,a'Q+bIC'+Clb'=0,
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and

(14) bia’'R +c,c'=1.

Since (b, ¢;)=1, € = b,0 + ¢, being a unit, we conclude that b,|a’ and
b,|b’ from (12) and (13) respectively. Then from

(b,6+c)"=(a'6*+b'0+c')" =u+v8,

we see that b|v.
Since € = b6 + ¢,, we have 6 = (e — ¢,)/b,, and hence €” = u + v can be
written as

€ =u +2§5312= (u — vc,/b,) + ve/b, = x + ye,
1

where x and y are rational integers. Then by Lemma 9, n=0. For
binorms in fields of degree higher than three, one can see[9]. Recently
Bernstein [1] has shown that units of the form e =1+ xw + yw? x,y € Q
exist for infinitely many algebraic number fields Q (w) of degree n = 4.

Now we solve y*— 113 = x* to show the application of some of the
above theorems. The above equation is a special case of the well-known
Mordell Equation y*>— k = x°, which has interested mathematicians for
more than three centuries, and has played an important role in the
development of number theory. In the range 0 <k =100 it is known
that y>— k = x*, k = 17 has the maximum number of solutions. In the
range 100 < k =200 it is found [6] that y*>—k = x> k =113 has the
maximum number of solutions. The complete solution of this equation
is given below.

The fundamental unit of Q(V113) is n =776+ 73V113, and
h(Q\/113)=1 2 splits into two different prime ideals in the field
Q(\/113) Hence by Theorem 5 of Hemer [4], all the integral solutions
of y*—113 = x’ can be obtained from the following equations:

+ bV 113y 2 113b2
*y+ V11 =<a—2—>, x___ﬁ_4_’

a+bV113y3

+y+ V113 (776+73\/113)< 5 ) x = (113b% - a?)/4,

l("_‘y+\/m)=<

= (a’— 1132,

11+ V113> (a + bvm>s
2 b

2 2
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(ty+\/_ﬂ§)—<11+\/ﬁ_)

(776 + 73V'113) (a * bW)

b

NS

x = (113b* - a?)/2,

11+V113

(ty+\/11—3)—< 5 M)s,

)(776 73V113)< :
x = (1136 - a?)/2.

[NSRIE

On equating irrational parts we have respectively

(15) 3a%bh +113b° =38,

(16) 73(a’+3-113ab?) + 776(3a’b + 113b%) = 8,
17) (a*+3-113ab?)+ 11(3a’b + 113b%) = 8,
@18) 1579(a* + 3 - 113ab?) + 16 785(3a%b + 113b*) = 8,
(19) —27(a*+3-113ab?) + 287(3a’b + 113b%) = 8.

Clearly (15) has no solution in integers. From (16) it is easily seen that a
and b are both even. Putting a =2u,, b =2v, in (16), we obtain

(20) 73(ui+3-113u,0}) + 776(Buiv, + 113v3) = 1.
The substitution u; =21u —52v, v, = —2u + 5v in (20) yields
(21) F(u,v)=u’-33uv*+ 760> = 1.

This corresponds to the ring Z[6], where 6°—3360 —76=0. In this ring
the fundamental unit is € =46°— 166 —71. By Theorem 1,

(46166 —71)" = u + vé
is only possible for n =0. Thenu =1, v=0,and so a =42, b= —4,
Hence x =11, y = £38.
The substitution a = u;— 11v,, b = v, in (17) gives
(22) u%'— 24”11)% + 17601 = 8.

Hence u; =0 (mod2). Putting u; =2u, v, = v in (22), we get

(23) F(u,v)=u’—6uv*+22v’=1.
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This corresponds to the ring Z[#], where 6°—60 —22=0; Z[6] has
fundamental unit € =26 — 7.
Now we consider

(24) 20 =7)" = u + 6.

By Theorem 8, n =0 and by Lemma 5, n =1. Therefore (24) has
only the two solutions n =0, n =1. These solutions correspond to
x=2,y=*11 and x =422, y = +8669 respectively.

Substituting a = —21u, +53v,, b = 2u, — 5v, in (18), we get

(25) 8vi+ 12viu, — R2v,ui+27ui = 8.

We put u, =2v, v,=u — v in (25), since u, =0 (mod2). This gives

(26) F(u,v)= u’—24uv*+500v° = 1.

This corresponds to the ring Z[6#], where 6°—246 —50 =0, with the

fundamental unit € = —360°+ 106 + 41. We see that e =26+ 1 (mod )

and e’=1 (mod5) while e*= —~560°+560 +6 (mod25). Hence €’=

a,6°+ b,6 + ¢, implies that 5|a,, 5||b;. Hence, by Theorem 1, €" =

u + v is impossible for an even integer n# 0. When n is odd we have
20°+1=u+ v6 (mod5).

This is impossible. So we have n =0. Then u =1, v =0 and hence

x=8, y= x25.
The substitution a = 111y, + 10v,, b = 11u, + v, in (19) yields

27) vI-312v,u?—2128u3= 8.

Since (27) implies v, =0 (mod 2), we put v, = 12u + 10v, u; = — u — v and
get

(28) F(u,v)= v+ 120u*+ 14u’= 1.

The fundamental unit of the ring Z[6], where 6°+126 —14=0, is
€ = 0 — 1, satisfying €’+3€’+ 15¢ =1 =0.
Then by Theorems 8 and 6,
e"=(0-1)"=v+ub

has only two solutions, viz. n =0 and 1.
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Incidentally, we cannot reach this conclusion by using the standard
criterion of Hemer [4], which is as follows:

Let € = = 6 + ¢ be a unit in a cubic ring, and let the odd prime p be
a divisor of N(e’+ €”). Suppose further that €” = a,.€’+ b,€ + ¢, is the
least power of € with m >0 such that a, =b, =0 (modp). Then
€" = u + ve has no even solution except n = 0 if a,, #0 (mod p?*), and no
odd solution except n =1 if ¢,., #0 (mod p?).

Now N(€'+ €")= N(—3— €)= —46 has only the odd prime divisor
p =23. The least exponent m such that a,, = b,, =0 (mod 23)ism =22,
and a, #0 (mod23*). But unfortunately c¢,,=0 (mod 23?).

When n=0,u=0,v=1,a=—-11,b=—-1; x=—-4,y==x7.
When n=1,u=10v=-1;a=20,b=2; x =26, y = +133.

Hence the Diophantine equation y>— 113 = x* has exactly 6 solutions in
integers. They are (x,y)=(11,%=38), (8,x£25), (2,=11), (—4,%=7),
(422, £8669) and (26, +133).
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