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S -SPACES IN COUNTABLY COMPACT SPACES
USING OSTASZEWSKΓS METHOD

JOHN GINSBURG

A method adapted from that used by A. J. Ostaszewski is
used to construct 5- spaces as subspaces of given
spaces. Assuming the set-theoretic principle O, it is shown that
every countably compact space containing no nontrivial con-
vergent sequences contains a perfect 5-space. As a corollary,
assuming O, if X is a countably compact F-space, then X
contains a hereditarily extremally disconnected, hereditarily
normal, perfect 5-space.

1. Introduction. The set-theoretic principle O, due to Jen-
sen [3], has found many interesting applications in topology, particularly
the construction of Souslin lines and various S-spaces. The basic
technique for constructing S-spaces from O is due to A. J. Ostaszewski
[6], and has been modified and applied in constructing other interesting
topological spaces, notably in [5] and [8]. Roughly speaking, the
method involves constructing a space having desired properties by
defining its topology inductively over more and more of the space (and in
some cases refining a given topology) using some principle of enumera-
tion.

Here we will show how the method can be used to construct
S-spaces as subspaces of given spaces. That is, rather than building up a
space by inductively defining its topology, the desired examples will be
obtained by working within a given topological space and extracting a
subspace.

Our principal topological references are [2], [7] and [10]. For
set-theoretic notions we refer to [4].

For the reader's convenience we now recall a few notions from
topology which we will employ.

A space X is an S-space if X is regular, hereditarily separable and
not Lindelόf.

X is countably compact if every countable covering of X by open
sets has a finite subcover.

For a completely regular space X, βX denotes the Stone-Cech
compactification of X.

A subset J\ of X is C*-embedded in X if every bounded, continuous
real-valued function on A admits a continuous extension to X. A
cozero-set in X is a set of the form {p G X: /(p)τ^ 0} where / is a
continuous real-valued function on X. X is an F-space if X is com-
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pletely regular and every cozero-set in X is C*-embedded in X. A
completely regular space X is extremally disconnected if the closure of
every open subset of X is open.

For the basic information on F-spaces and extremally disconnected
spaces, the reader is referred to [2] and [10]. We will make use of the
following two facts, established in 1.62 and 1.64 of [10].

1.1. If X is σ-compact and locally compact, then βX - X is.a
compact F-space.

1.2. If X is an F-space then every countable subspace of X is
C*-embedded in X.

For the consistency of O with the axioms of set theory the reader is
referred to [3]. We will not need a precise statement of O, rather we
will use the following consequence of O derived in [6].

1.3. Let limωj denote the set of limit ordinals less than ωx. Then
there is a family {SΎ: γ E limωi} of subsets of ωλ such that each Sγ is a
cofinal subset of γ arid such that for every uncountable subset S of ωx

there is a γ E limα>i with Sy C 5.
It is clear we may assume that each Sγ is a simple ω -sequence

increasing to y in 1.3. This is the form in which we will apply 1.3. (the
conclusion of 1.3 is often referred to as "club"; see [7])

2. S-subspaces of countably compact spaces. We now
assume the conclusion of 1.3. This assumption will enable us to
construct S-spaces in certain countably compact spaces. It is apparently
not yet known whether 1.3 is equivalent to O or whether it is strictly
weaker. It is known that O is equivalent to the conjunction of 1.3 and
the continuum hypothesis, and so this question amounts to whether or
not 1.3 implies the continuum hypothesis, (see [7])

All hypothesized spaces are assumed to be infinite.

2.1. THEOREM. If X is a regular, countably compact Hausdorff
space containing no nontriυial convergent sequences, then X contains a
perfect S-space.

Proof. Let {Sy: γElimωi} satisfy 1.3 where each Sy is an ω-
sequence increasing to γ. Let X satisfy the hypotheses of the
theorem. We inductively select points (xξ: ξ E ωλ) in X, and open sets
(Gξ: ξE ω2) in X so that

(i) for all ξ, xξ E Gξ

(ii) ξ<η-+Xil£Gξ

(iii) for all limit ordinals γ and all n E ω, xΎ+n Ec\{xξ: ξ E Sγ}.
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To get the desired sequences (xξ: ξ E ω^ and (Gξ:ξEωι) we
construct (xξ: ξ < γ ) and (Gξ: ξ < y) by induction on the limit ordinal
y. To start the construction, we choose a countable discrete subset
(xn: n E ω) of X, (X is assumed infinite), and a sequence of open sets
(Gn: n E ω) in X such that jcn E Gn and m^ n-^xm^ Gj

Now suppose σ E limω! and for every limit ordinal γ < σ we have
chosen the sequences (xξ: ξ < γ) and (Gξ: ξ < y) satisfying (i), (ii), and
(iii). If σ is a limit of limits, we simply gather together all the xξ 's and
Gξ's previously constructed to form (xξ: ξ < σ) and (Gξ: ξ < σ), clearly
satisfying (i), (ii), and (iii). So we need only consider the case where
σ = γ + ω for some limit ordinal γ. Thus, having the sequences (xξ: ξ <
y) and (Gξ: ξ < γ) we must define the points (xy+n: n E ω) and the open
sets (Gy+n: n E ω). Consider the infinite set Rγ = {xξ: ξ E Sγ}. Since
X is countably compact, every countable subset of X has a limit point in
X. But since X contains no nontrivial convergent sequences, every
countable set has infinitely many (in fact uncountably many) limit
points. Thus c\Ry - Ry is infinite, and so contains a countable discrete
subspace (x r+π: n E α>). Choose a sequence of open sets (Gγ+n: n E ω)
which witnesses this discreteness, that is, with xγ+n E Gγ+n and such that
m^n^>xy+m<£ GΎ+n.

We now check (i), (ii), and (iii) for (xξ: ξ < y + ω) and (Gξ: ξ < γ +
ω). (i) is clear, as is (iii), by virtue of the induction hypothesis and the
selection of the points xy+n in clRy. To verify (ii), because of the
induction hypothesis and the choice of (xy+n: n E ω) and (Gy+n: n E ω),
it is sufficient to check the following:

If ξ < y and n E ω, then jc γ + n£ Gξ. But Sγ is an ω-sequence
increasing to γ, and so there are at most finitely many ordinals in Sy

which are less than ξ. By property (ii) of the induction hypothesis, this
means there are at most finitely many xη with η E Sy which lie in
Gξ. But xy+n is a limit point of Ry, so every neighborhood of xy+n

contains infinitely many xη with η E SΎ. In particular, xy+n fέ Gξ.
This completes the inductive construction, and results in sequences

(xξ: ξ E ωi) and (Gξ: ξ E ωi) satisfying (i), (ii), and (iii).
We now claim that Y = {jĉ r ξ E ω j is a perfect 5-space. The

verification of this is essentially identical with the argument given in [6],
so we will be content to sketch that argument here. That Y is not
Lindelδf is immediate from (ii) and (i). Any countable subspace of Y is
separable, and if {xξ: ξ E S} is an uncountable subspace of Y, there is, by
1.3, a y E limω! such that Sy C S. Using (iii) we see that {xξ: ξES and
£ < γ } is a countable dense subset of {xξ: ξ E 5}. This proves Y is
hereditarily separable. Since γ < η -» xη E cl{Xf: £ E Sγ}, the same ar-

1 The fact that every infinite Hausdorff space contains a countably infinite discrete subspace is

well-known and easy to prove. A proof may be found in 0.13 of [2].
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gument shows that every closed subset of Y is either countable or
co-countable, from which it is immediate that every closed subset of Y is
a Gδ in Y, that is, Y is perfect.

2.2. COROLLARY. // X is a countably compact F-space then X
contains a hereditarily extremally disconnected, hereditarily normal, perfect
S-space.

Proof. Using 1.2 it is easy to see there are no nontrivial convergent
sequences in an F-space, so the hypotheses of 2.1 apply. We show that
the S-space Y obtained in 2.1 is hereditarily extremally disconnected and
hereditarily normal under the present assumptions on X. Now, as is
well-known, a space is extremally disconnected if and only if each of its
open subsets is C*-embedded (see 1H in [2]), and a space is normal if and
only if each of its closed subsets is C*-embedded (see 3D in [2]). So to
verify that Y is normal and extremally disconnected hereditarily, it is
sufficient to prove that every subspace of Y is C*-embedded in Y. So,
let Z C Y, and let / be a bounded, continuous real-valued function on
Z. Since Y is hereditarily separable, Z contains a countable dense
subset D. By 1.2, D is C*-embedded in X, and so the function f\D
admits a continuous extension F to all of X. Clearly F\ Y is the desired
extension of /.

REMARK. 2.3. There is a large number of spaces to which these
results can be applied. One class of such spaces is furnished by 1.1. So
assuming 1.3 we see for example that /3R-R and βN - N contain
interesting 5-spaces.

REMARK. 2.4. The fact that O implies the existence of 5-spaces
which are extremally disconnected was previously observed by M. Wage
[9]. Wage's construction, like Ostaszewski's original method, involves
inductively defining a topology to get the desired example.

One significant difference between the S-spaces obtained in 2.2 and
the original S-space described in [6] is countable compactness. The
S-space in [6] is, in addition, countably compact, while the S-spaces in
2.2 are never countably compact. If CH is true this follows from the
results in [11] which imply that, assuming CH, every countably compact,
separable normal F-space is compact, and therefore Lindelόf. If CH is
false, we argue as follows: A slight modification of the argument in [1]
shows that a countably compact space of cardinality < c is sequentially
compact. Since our 5-spaces have cardinality ωi and contain no con-
vergent sequences, they cannot be countably compact if CH fails
either. Thus our 5-spaces constructed using 1.3 are not countably
compact.
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