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THE ESSENTIAL UNIQUENESS OF
BOUNDED NONOSCILLATORY SOLUTIONS OF

CERTAIN EVEN ORDER DIFFERENTIAL EQUATIONS

G. J. ETGEN AND W. E. TAYLOR, JR.

Let n be a positive integer, let p be a positive continuous
function on [0, <»), and consider the 2nth order linear differential
equation

(1) u(2n)-p(x)u = 0.

It is well known that this equation has a solution w = vv(jc)
satisfying

(2) ( - l )kw ( k ) ( j t )>0, k = 0 , l , , 2 n - l ,

on [0, oo), and it is clear that w is positive and bounded. The
purpose of this paper is to investigate the essential uniqueness of
the solution w, where the statement "w is essentially unique"
means that if y is any other solution of (1) which satisfies (2),
then y = kw for some nonzero constant k.

In addition to having solutions which satisfy (2), it is easy to show
that equation (1) has solutions z — z{x) satisfying

(3) z(k\x)>0, k = 0 , l , , 2 n - l ,

on [a, °°) for some a ^ 0. For some recent results concerning the
behavior of solutions of (1) satisfying either (2) or (3), the reader is
referred to the work of D. L. Lovelady [6], and T. T. Read [7].

A solution of (1) which satisfies (2) is said to be strongly decreasing,
and a solution satisfying (3) is said to be strongly increasing. If y is a
nontrivial solution of (1), then y is oscillatory if it has infinitely many
zeros on [0, oo). Equivalently, y is oscillatory if the set of zeros of y is
not bounded above. The differential equation (1) is oscillatory if it has
at least one nontrivial oscillatory solution. Hereafter, the term "solu-
tion of (1)" shall be interpreted to mean "nontrivial solution." A
solution of (1) which is not oscillatory is called nonoscillatory. Clearly,
any solution satisfying either (2) or (3) is nonoscillatory. We shall say
that equation (1) has property (H) if every nonoscillatory, eventually
positive solution satisfies either (2) or (3).

S. Ahmad [1] has studied (1) in the case n = 2, and he has shown that
(1) is oscillatory if and only if it has property (H). While this result is
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not known in general, Lovelady [6, Theorem 2] has shown that property
(H) implies the oscillation of (1). Read [7] and G. W. Johnson [4] have
obtained some results on the asymptotic properties of solutions of
(1). In particular, they have obtained criteria which imply that any
solution w satisfying (2) has the property \imx^xw(x) = 0. Finally, we
refer to the work of G. D. Jones and S. M. Rankin [5] where the problem
of the essential uniqueness of a solution w satisfying (2) was considered
for the case n = 2.

2. Preliminary results. Let if denote the 2M-dimensional
vector space of solutions of equation (1). Our first result is essential in
the work which follows. Since the proof is straightforward, using well
known techniques, it will be omitted.

LEMMA 2.1. If y G ifand y(fc)(α) = 0, k = 0,1, ,2ri - 1, for some
a ^ 0, with at least one inequality being strict, then yik)(x)>0, k =
0,1, , 2n - 1, on (a, °o) and

lim y(k\x) = ™, fc = 0,1, , 2 n - 2 .

Ifz G if and ( - \)kz{k\b) ^ 0, k = 0,1, , In - 1, for some b > 0, with at
least one inequality being strict, then ( - l)kz{k\x)>0 on [0,6).

Let / be the function defined on if x ίf by

(4) J(u,v)(x) = 2Σ (~ l)kv(k)(x)u(2n~k~l)(x)
kQ
k=Q

For any pair of functions w, υ G ίf, it is easy to verify by differentiating
jΓ(w, ι;)that J'{u, v)(x) = Ofor all x G [0,o°). Thus J(u, v) = c, a constant
on [0,oo). The case where /(w, v) = 0 shall be denoted by u JL u. Fix
y G Sf. Following the ideas introduced by J. M. Dolan in [2], we define
the subset $f{y) of if by

Let «i, M2, , M2Λ-I be 2n - 1 solutions of equation (1), and let
W(uχ, u2, - -, u2n-\) denote their Wronskian. It is well known that W is
a solution of (1), and that W is nontrivial if and only if the solutions are
linearly independent. Let y G ίf and let T[y, uu u2, , u2n ι] denote
the Wronskian of the 2/t solutions. Then, by expanding T along its first
column, we get the following relationship between Γ, W and the
function J

(5) T[y, Wi, M2, , uln-λ} = J[y, W(uu u2,' , u2n-ι)]
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THEOREM 2.2. Let y G ^ . Then the following hold.
(i) &{y) is a (2n - 1)-dimensional subspace of ίf and y E 5^(y).
(ii) If z E 5^(y), and y and z are linearly independent, then there

exists a solution u E 5^(y) such that J(u, z)^ 0.
(iii) // {uu w2, , u2n-ι\ is a basis for 5^(y), then

W(uu u2, , uln-\) = fcy /or some nonzero constant k.
(iv) IfvESf, then ^(y)n 9>{υ) has dimension In - 1 if and only if

y and v are linearly dependent; otherwise 5^(y)ΓΊ5^(υ) has dimension
In-2.

Proof. Part (i) is easy to verify using (4) and the definition of S^(y).
(ii) Let z E Sf(y) be independent of y. Suppose z has a zero of

multiplicity k, l ^ f e ^ 2 n - l , at some point c ^ 0. Since S^(y) has
dimension 2n — 1 we can construct a solution w E 5^(y) such that

II (c) = u\c) = = w(2"-fc-2)(c) = 0 = w(2"-k+1)(c) = = M ( 2 n l )(c) = 0,

where γ is some constant. Then, from (4), J(u,z)=z(k)(c)^0. If
z ^ O on [0,o°), then choose a point c such that y ( c ) ^ 0 , and choose
m ^ 0 such that y ( c ) - mz(c) = 0. Let ϋ = y - mz. Then υ E ίf(y)
and uf^O since y and z are independent. Now, we can repeat the
argument above to determine a solution M G % ) such that
J{u,υ)j£ 0. Since/(w,ι;) = /(w,y - mz) = - mJ(w,z),we conclude that

(iii) Let {ui, M2, -, M2n-i} be a basis for 5^(y). Since
y = Σ2"!1 CjMi and thus

0 = Γ[y, Mi, W2, , M2n-l] = /[y, W(Wl, W2, , M2n-l)]

Hence the solution W(uu w2, , W2n-i) is an element of 5^(y). The same
reasoning shows that

J[z, W(uu u2,' , u2n-i)] = 0

for all z £ % ) , and we can conclude, from (ii), that
W(uuu2, , u2n-\)= ky.

Part (iv) is an immediate consequence of either (ii) or (iii). This
completes the proof of the theorem.

We now consider the properties of the subspace Sf{w) in the case
where w satisfies (2).

THEOREM 2.3. Assume that equation (1) has property (//), and
suppose w E if satisfies (2). Then:
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(i) If y E if(w), then either y satisfies (2), or y is oscillatory
(ii) IfyE if{w) andy(k)(a) = 0 for some a^O and some nonnega-

tive integer fc, 0 ^ f c ^ 2 n - l , then y is oscillatory
(iii) If z E if and z £ S^(w), then z is unbounded.

Proof, (i) Let y E if(w) and assume that y is nonoscillatory with
y > 0 on [α, °°), a ^ 0. Suppose y does not satisfy (2). Then y satisfies
(3) and there is a number ft ^ a such that y(k)(x) > 0, fc = 0,1, , 2n - 1,
on [ft,oo). By evaluating /(w, y) at any JC ^ ft, we have that /(w, y)/^ 0,
contradicting the fact that y E 5^(w).

Part (ii) follows immediately from (i).
(iii) Let z E if and suppose z g: if(w). Fix any point α ^

0. Since 5^(w) has dimension In - 1 we can construct a basis for if(w)
consisting of w and 2n - 2 solutions uu u2, , w2π_2 such that uk has a
zero of multiplicity fc at x = α, fc = 1,2, , In - 2. By (ii) every linear
combination of the solutions uu w2, , w2n_2 is oscillatory. Let y be the
solution of (1) determined by the initial conditions y(a) = y'(α) = =
y ( 2 n 2 ) (α) = 0, y ( 2 n " 1 ) ( α ) = l . Then y satisfies (3) on [ft,oo) for every
ft ^ α. Thus y g: 5^(w) and the set {y, w, wl5 w2, , w2n_2} is a basis for
if. Now

2n-2

z = cy + dw + ^ CfMi,

where c ^ 0 . Since w is bounded, and Σ^CjM, is oscillatory, we can
conclude that z is unbounded.

Our next result has appeared in [5, Lemma 4] for the case n -
2. The proof is straightforward and, consequently, it will be omitted.

LEMMA 2.4. Let {uu u2, - , u2n} be a basis for if. Then there exists
a basis {zu z2, , z2n} for if and In nonzero constants ku fc2, , fc2n, such
that

Ui =kiW(zuz2y- ,Zi-uzι+u ,z 2 n ) , i = 1,2, ,2n.

3 . M a i n results . It is easy to see that equation (1) has no
oscillatory solutions when n — 1. Also, it is easy to show that the
nonoscillatory solution w satisfying (2) is essentially unique in this
case. Our first result shows that this situation holds in general.

THEOREM 3.1. If equation (1) has no oscillatory solutions, then the
nonoscillatory solution w satisfying (2) is essentially unique.

Proof Suppose that (1) has two linearly independent solutions w
and v satisfying (2). Fix any a ^ 0 and choose fc such that
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w(a)- kυ(a) = 0. Let y be the solution given by y(x) =
vv(jc)- kv(x). Since y is nonoscillatory, we shall assume that y > 0 , and
that Πfj,1 y(fc) ^ 0 on [6, oo)5 6 > a. Then y(2n) = py > 0. Since each of w
and v is bounded on [0, °°), y is bounded and we can conclude that no two
consecutive derivatives y (k\ y(k+1\ 1 ̂  k ^ 2n — 2, can have the same sign
on [/>, °°). But this implies

sgny = sgny" = = sgny(2n) ^ sgny' = sgny'" = = sgny{2n'ι)

on [b,00) and, with Lemma 2.1, contradicts the fact that y(a) = 0.
We now consider the case where equation (1) is oscillatory. The

next result gives a connection between the essential uniqueness of the
solution w satisfying (2) and the maximum number of linearly indepen-
dent oscillatory solutions in Sf.

THEOREM 3.2. Assume that equation (1) has property (H). The
following two statements are equivalent:

(a) The soiution w of (1) satisfying (2) is essentially unique.
(b) Equation (1) has at most In - 1 linearly independent oscillatory

solutions.

Proof. To show that (a) implies (b) we use a simple extension of the
proof of the corresponding result for the case n = 2 in [5, Theorem
4]. In particular, assume that w is essentially unique, and suppose if
has a basis consisiting of In oscillatory solutions uuu2,- -,u2n. Using
Lemma 2.4, let {zuz2, — -,z2n] be a basis for if such that for each ί,
l ^ i ^ 2 t t ,

W(zu , z(_b zI+1, , z2 n) = kM.

Consider the solution ux — k]W(z2, z3, , z2n). Since uλ is oscillatory,
there is an increasing sequence {x, }Γ=i such that l i m ^ x , = °° and ux{xx) =
0 for all /. Therefore, for each positive integer / there are In - 1
constants c2nc3ι, ,c2w>1 such that Σfl2cl= 1 and the solution ι;1(,

ϋi, = Σ c / ^
/ = 2

has a zero of order 2M — 1 at JC = JC,. Because the sequences {cyί},
/ = 2,3, ,2n, are bounded, we can assume, without loss of generality,
that l i m ^ cμ = cp j = 2,3, , 2n, and Σy% c2 = 1. By using an argument
similar to the one used in [1, Theorem 1],

lim υu = vλ = c2z2 + c 3 z 3 + * + c2nz2n
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is a bounded nonoscillatory solution of (1) satisfying (2). Repeating this
process In - 1 more times with the solutions u2, w3, , w2n, we obtain the
bounded nonoscillatory solutions

v2 = d2λzλ + d23z3 + + d2,2nz2n, X d2

2j = 1,
In

X 2 =
In

v3 = d31zλ + d 3 2 z 2 + ^4^4 + + dX2nz2n, Σ d 3 ; = 1,

2 π - l

7 = 1

The solution t^ must be independent of at least one of the other ty's,
because, if not, then it is easy to show that c2 = c3 = = c2n = 0 which
contradicts Σ;

2=2c^ = 1. Thus 5̂  cannot have more than 2rc - 1 linearly
independent oscillatory solutions.

Now assume that if contains at most 2n - 1 linearly independent
oscillatory solutions. Let w E if satisfy (2). As seen in the proof of
Theorem 2.3 (iii), we can construct a solution basis for ίf{w) consisting of
w and 2n — 2 oscillatory solutions uu u2, - , w2n-2 such that uk has a zero
of multiplicity k at x = α, k = 1,2, , 2n - 2, α ^ 0 fixed. Choose a
point Z) > α such that w^ft^O and let m be chosen such that ux(b)-
mw(b) - 0. Then y = uί- mw E 5^(w), y is oscillatory, and
y, uu w2, , w2n_2 are linearly independent. Suppose there exists a solu-
tion υ satisfying (2) such that w and v are linearly independent. Then,
from Theorem 2.2 (iv) 5^(w) ^ 5^(^) and there exists a solution z E 5^(ϋ)
such that z g: 5^(w). Since z E 5^(f) and u satisfies (2), z cannot satisfy
(3). Since z^5^(w), z must be unbounded. Therefore z is an un-
bounded oscillatory solution and it, together with the 2n - 1 independent
oscillatory solutions in 5^(w) found above, constitute a solution basis for
if. This contradicts the hypothesis that &ί has at most 2n - 1 linearly
independent oscillatory solutions, and completes the proof of the
theorem.

COROLLARY 3.3. Assume that equation (1) has property (H). If all
the oscillatory solutions of (1) are bounded, then the solution w of (1)
satisfying (2) is essentially unique.

Proof As seen in the proof of the theorem, if w is not essentially
unique, then there exists an unbounded oscillatory solution z£if(w).

Our final result requires the concept introduced by Dolan and
Klaasen in [3]. In particular, if $t and <S are subsets of if, then 01 is said
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to dominate S, denoted 01 > Ά, if for each y E 01 and z EQ,y + λz E01
for all real numbers λ.

Let °U denote the unbounded nonoscillatory solutions of equation
(1), 0} the set of bounded nonoscillatory solutions, and 0 the set of
oscillatory solutions. When equation (1) has property (Jf), the sets °U
and 0i are easy to describe since z E°U implies either z or - z is
strongly increasing and w E 55 implies either w or - w is strongly
decreasing.

THEOREM 3.4. Assume that equation (1) has property (H). The
following statements are equivalent

(a) °U > 0
(b) ϋ>»
(c) The solution w of (1) satisfying (2) is essentially unique.

Proof. Suppose (a) holds and suppose there is a number k / 0 such
that y 4- kw is nonoscillatory where y Eΰ and w E S3, i.e., w satisfies
(2). It is clear that the solution v = y + kw does not satisfy (3), and so,
by property (//), v satisfies (2). Obviously w and v are linearly
independent. Fix any a ^ 0. Let uu w2, , u2n_2 be the 2n - 2 linearly
independent oscillatory solutions in ίf{w) such that ufc has a zero of
multiplicity fc, fc = 1,2, ,2n - 2, at * = <2. Let z E 5^(υ) such that
z £ y(w). We may assume that z(α) = 0 (which implies z oscillates),
for if z{a)j£ 0, then choose ra ^ 0 such that zx- z - mw has a zero at
a. Clearly zxEif{v) and zλ£if{w). Let y be the solution of (1)
determined by the initial conditions y(α) = y \a) = = y(2n~2)(a) = 0,
y{2n~λ\a) = 1. From Lemma 2.1, y E f The set {M1? M2, , w2n_2, y}
forms a basis for the set of solutions of (1) having a zero at a. Therefore

2n-2

z = Σ c u, 4- cy = M 4- cy.

Since «(α) = 0 and u E Sf(w\ u is oscillatory. Also, since z g- 5^(w),
c^O. Thus z = (l/c)z = y +( l/c)u is oscillatory and contradicts the
fact that °U>0.

Suppose (b) holds and w is not essentially unique. Then there
exists a solution v of (1) satisfying (2) which is independent of w. Let
Mi, w2, , M2n_2 be the In - 2 linearly independent oscillatory solutions in
y(w) such that uk has a zero of multiplicity fc, fc = 1,2, ,2n - 2 , at
x = α, α ^ 0 fixed. Then {w, Mi, w2, , w2n_2} is a basis for 5^(w), and
every linear combination of uu M2, , w2n_2 is oscillatory. Since v is
bounded, we must have v E S (̂vv) by Theorem 2.3 (iii). Thus
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where not all the c, 's are zero, that is, v = u + cw is nonoscillatory where
u E ϋ and w E 39. This contradicts (b).

Finally, assume that (c) holds and suppose that °\l does not dominate
€. Then there exists z E % y E (P and a nonzero number fc such that
z + ky is oscillatory. It follows from Theorem 3.2 that Sf contains at
most In - 1 linearly independent oscillatory solutions. Since 5^(w) has
a basis consisting of In - 1 oscillatory solutions (see the proof of
Theorem 3.2), we can conclude that both y and z + ky are in
5̂ (n>). But this implies z E ίf(w) which is impossible since either z or
- z is strongly increasing. This completes the proof of the theorem.
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