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THE FINITE WEIL-PETERSSON DIAMETER OF

RIEMANN SPACE

SCOTT WOLPERT

Let Tg be the Teichmϋller space and Rg the Riemann space
of compact Riemann surfaces of genus g with g = 2. The space
Rg can be realized as the quotient of Tg by a properly discontinu-
ous group Mg, the modular group. Various metrics have been
defined for Tg which are compatible with the standard topology
for Tg and induce quotient metrics for Rg. Several authors have
considered the Weil-Petersson metric for Tg. A length estimate
derived in a previous paper is summarized; combining this with
the Ahlfors Schwarz lemma, an estimate of N. Halpern and L.
Keen, and an additional argument shows that the
Weil-Petersson quotient metric for Rg has finite diameter. A
corollary is an estimate relating the Poincare length of the
shortest closed geodesic of a compact Riemann surface to the
Poincare diameter of the surface.

For background material the reader is referred to the articles of L.
Ahlfors [1] and L. Bers [3] and to the article of L. Bers [5] for a survey of
related topics. T. C. Chu [7,8] and H. Masur [12] have obtained results
related to ours. The author would like to thank Professor G. Kiremidjian
for his assistance.

1. The case of an annulus. Let A = {z |1 < | z \ < p) be an
annulus in the plane. Let M(A) be the space of Beltrami differentials of
A endowed with the Lx metric; let Q(A) be the space of integrable
holomorphic quadratic differentials of A. An element of M(A) is a
tensor of type (— 1,1) with measurable coefficient.

DEFINITION 1.1. For ΦE O(A) set

\ 1/2

I > | 2 A -

where λΛ is the Poincare metric of A. For μ E M(A) set

\\μ\\A= sup
ΦEO(Λ)

where [μ,Φ] = μΦ.
JA
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The metric λΛ is known to be given by the following expression

(π/log ρ)csc(π log| z |/log ρ)\dz/z |.

We consider a particular deformation of the annulus
A. For t ^ 1 let A, = {zt | 1 < | zt \ < p f} then the map

(1.1) z»z\z\'-ι = zt(z)

is quasiconformal with Beltrami differential

By considering solutions ω(z) of the Beltrami differential equation
ωz- = μωz where μ is a Beltrami differential it is seen that the curve of
Riemann surfaces A, is represented by the curve

(t - lit + l)(z l\ z \fdzldz CM (A), t i= 1.

As described in our previous paper [16] (l/2f)(z,l\zt\fdz,/dzt is the
tangent to this curve at At expressed as an element of M(At), ί S 1. By
Definition 1.1

\\(l/2t)(zt/\zt\γΈjdzt\\At

(1-2)

= sup
Φ θ ( Λ

(l/2t)(zJ\zt\fdzt/dz(Φ

It is clear that the extremal Φ is given by (dzt/ztf. The value of the
quotient in (1.2) is now equal to

(1.3) (2π3/ί3logp)1/2.

Thus the length of the curve A,, t ^ 1 is given by the convergent integral

(1.4) (2π3/t3\ogp)υ2dt.

For a compact Riemann surface R of genus g, g ^ 2 one can identify
the cotangent space at the point R of Teichmuller space with the regular
quadratic differentials Q(R) of R and the tangent space at R with the
Beltrami differentials M(R) modulo those which are infinitesimally
trivial, [1]. In this instance the Weil-Petersson metric and cometric are
given by Definition 1.1 on replacing A by R, [15].
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2. Finite diameter of Riemann space. The Riemann
space Rg of genus g, g ̂  2 is the space of conformal equivalence classes
of similarly oriented compact Riemann surfaces of genus g, [14]. A
natural projection πg of Tg to Rg exists; this projection can be given by
the action of a properly discontinuous group Mg, the modular group,
[6]. S. Kravetz showed that every metric d(,) for Tg compatible with
the topology of Tg induces a quotient metric d ( , ) for Rg defined as

x, y)= inf d{x,y)
πg(x)=x

for x , y E T g and ί , y 6 Rg, [11].

DEFINITION 2.1. For ί, y G JRg let

x, y)= inf dw-p(x, y)
πg(x)=x

( ) 9

where dw-p(,) is the Weil-Petersson metric for Tg.
Let // = {z | Imz>0} denote the upper half plane and Δ =

d2/dx2+ d2/dy2 the Laplacian. The following definition and theorem
are due to L. Ahlfors, [2].

DEFINITION 2.2. A metric p | dz |, p ̂  0 is said to be ultrahyperbolic
in H if it has the following properties:

(i) p is upper semicontinuous;
(ii) at every z0E H with p(zo)>O there exists a p0 defined and of

class C2 in a neighborhood V of z0 such that Δlog p0 ̂  po and p ̂  p0 in V
while p0o) = PO(^O).

The Poincare metric of H is | dz \/y.

T H E O R E M 2.3. Lei ρ\dz\ be an ultrahyperbolic metric for H. Then

p\dz\^\dz\/y.

The following theorem is due to L. Bers, [4] and D. Mumford, [13].

THEOREM 2.4. For c > 0 , let KcCRg, g ^ 2 consist of those
Riemann surfaces R for which each closed Poincare geodesic has length at
least c. Then Kc is a compact set.

THEOREM 2.5. Rg has finite diameter for the ω ( , ) metric.

Proof C o n s i d e r t h e f o l l o w i n g r e g i o n s in H C(l,θQ) = {z\lmz>
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0,1< I z I < exp /, 0o < arg z < π - 0O} and 0, < θ2 C(/, 0 b 02) =
C(lyθι)-C(l,θ2). The Poincare area of C(/, 0O) (resp. C(/, 0 b 02)) is
2/cot θ0 (resp. 2/(cot θλ - cot 02)). The self map oi H z » z exp / iden-
tifies the boundaries of C(/, 0O) such that the quotient A(/, 0O) =
C(/, θQ)/{z *+ z exp /} is conformally an annulus. Let C(/, 0 b 02) denote
C(/, 0i, 02) with the boundaries C(/, 0 b 02) Π {z | arg z = 02} and
C(/, 0 b 02) Π {z I arg z = π - 02} identified by the map z *-* z exp i (π -
202); the quotient A (/, 0 b 02) = C(/, 0 b 02)/{z H» Z exp /} is conformally an
annulus. Let α(0) (resp. β(θ)) denote the projection to A (I, 0O) (resp.
A (/, 0 b 02)) of the curve z = r exp iθ, 1 ^ r ^ exp / provided 0O ̂  0 ^
7r - 0O (resp. 0! ^ 0 ^ 02). A quotient metric for A(/, 0O) (resp.
Λ(/, 0,, 02)) is obtained from the restriction to C(/, 0O) (resp. C(/, 0 b 02))
of the line element \dz\/y. The distance between the boundaries of
A (/, 0O) (resp. A (/, 0 b 02)) in the quotient metric will be referred to as the
width of Λ(/, 0O) (resp. A (I, θu 02)). Since each curve z = rexp/0 CH
0 < 0 < π is a Poincare geodesic it follows that the width of A (/, 0O) is

Γ π-θa

given by the integral rdθ/r sin 0 = 2 In (cot 0O + esc 0O). The in-
J θo

duced quotient metric for A (I, θu 02) is not differentiate on the curve
β(0 2); nevertheless, it is straightforward that the width of A(l, θu 02) is

21n(cot0+csc0) |^ . The curve jβ(02) has length j ? dr/rsin 02 =

/ esc 02.
The following lemmas of N. Halpern [9] and L. Keen [10] are

essential to our argument.

LEMMA 2.6. Let R be a compact Riemann surface. For every
Ci > 0 there exists a c2 > 0 such that for γ a simple closed Poincare geodesic
of length I at most cu the region A(/, 0/), θ} = cot~ι (c2/2l), can be
isometrically imbedded into R with a(π/2) realizing y.

Observe that 2/cot0, represents the area of A(/, 0f).

LEMMA 2.7. Let R be a compact Riemann surface of genus g,
g ^ 2. There exists a constant c3 > 0 such that there are at most 3g - 3
simple closed Poincare geodesies of length at most c3.

Proof of Lemma 2.7. By Lemma 2.6 one can choose c 3 < cλ such
that the width of A (/, 0i) for / g c3 is at least c3. The conclusion now
follows since there are at most 3g - 3 mutually disjoint, homotopically
nontrivial, simple closed curves on JR which are mutually not freely
homotopic.

Let Φ, = cot"1(c2/4/) and consider the domain A(/, θh Φ/). The
width of A (/, 0/, Φ/) is 2 In (cot 0 + esc 0)|$f which is bounded from below
for / S c3 provided there exists a constant c > 0 such that
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(cot ft + csc ft)/(cot Φ, + csc Φ/) ^ c for / ̂  c3.

For c3 sufficiently small cscΦ/ ^2cotΦ, thus

(2.1) (cot ft 4- csc ft)/(cot Φ, + csc Φ/) ^ cot ft/3 cot Φ, ^ 2/3.

The length of /3(Φ,) is

(2.2) / csc (cot"1 (c2/4/)) ̂  / cot (cot"1 (c2/4/)) = c2/4.

For an annulus A = {z 11 < | z \ < r) we make the following definition.

DEFINITION 2.8. The extremal length E(A) of A is given by
£(A) = 2ττ/logr.

Now the extremal length of A (/, ft, Φ/) is E(A(/, ft, Φ/)) =
//2(Φ, - ft)= //2(coΓ1(c2/4/)-coΓ1(c2/2Z)) where by ΓHopital's rule

(2.3) lim //2(coΓ1(c2/4/)-coΓ1(c2/2/))= c2/4.
l-*0

It is n o w c l e a r t h a t c ' , 0 < c ' < c 3 c a n b e c h o s e n such t h a t for l^c'

(2.4) 2 In (cot θ + csc 0 ) |$, ̂  c'

(2.5)

a n d

(2.6)

These inequalities will now be used to estimate the diameter of Rg. The
region KcCRg is compact and thus has finite ω diameter. Let a
Riemann surface R represent a point in Tg such that πg(R)£Kc, with
γ b , γn the geodesies of R of length less than c'. The object is to
"fatten" R in a neighborhood of each of γu , yn thereby obtaining a
surface in Kc. By Lemma 2.6 a region A(/, ft) can be considered as a
coordinate neighborhood of yx where / is the length of γi. A new surface
R* can be formed by removing the part of A(/, ft) corresponding to
A (/, Φ/) and identifying the boundaries by the map z »-> z exp /(π - 2Φ/).
Thus A(/, ft, Φ/) represents a coordinate patch in a neighborhood of the
gluing and the original coordinates are chosen otherwise. In a neighbor-
hood of the gluing λR | Λ , the Poincare metric of R restricted to /?*, is
defined in terms of the coordinate patch A(l, ft,Φz); for coordinate
patches disjoint from the gluing λ i?|/?* = λi?. Assuming that λR\R* is
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ultrahyperbolic Theorem 2.3 implies that λκ| R .Sλκ. where λR* is the
Poincare metric of R *. To show that λR \ R* is ultrahyperbolic it suffices to
consider the metric in a neighborhood of the gluing. Define the metric
λ(z)\dz\ on C(/, ft,Φ,) by setting λ{z)\dz \ = \dz\/lmz f o r l < | z | <
exp /, ft < arg z < Φ, and λ(z)\dz\ = \ dz\/Im(z exp i(2Φ, - π)) for 1 <
I z I < exp /, 7r - Φ/ < arg z < π - ft that A (z)| dz | satisfies (ii) of Defini-
tion 2.2 relative to the quotient metric of C(/, ft, Φ/) is clear. The
objective is to show that R * is "fat" in the free homotopy class of γi and
that no new (i.e., other than γ2, * * , yn) "pinched" free homotopy classes
were introduced. Let y t CR * be a simple closed λR* geodesic of length
less than c1. If γ* does not intersect the gluing then yt can also be
considered as a curve γ0 on R. Since λR \R* ̂  λR* the length of γ0 is also
less than c'. If γ0 is freely homotopic to yλ then y0 can be lifted to the
universal cover H of R with initial point z0 and end point zx such that
|z o | = 1 and \zx\ = exp/. By the assumption that γ* is disjoint from the
gluing the lift of γ0 is disjoint from the domain A(/, Φ,) and thus by
estimate (2.5) has length at least c', a contradiction. By Lemma 2.7 γ J
cannot intersect and yet be distinct from the geodesies γ2, * *', yn- Thus
γ0 must be freely homotopic to one of γ2, , yn CR or γ* intersects the
gluing. If γ * is contained in A (/, ft, Φ/) then it must be freely homotopic
to γi a case considered above; otherwise γ* intersects the gluing and the
boundaries of Λ(/, 0,, Φz) hence crosses the domain. By estimate (2.4)
γ* has length at least c' in terms of the AKI^^AJ?* metric, a
contradiction. Thus γ* is freely homotopic to one of γ2, , yn> The
deformation corresponding to the replacing of A (/, ft) by A (/, ft, Φ/) can
be realized in terms of quasiconformal maps. For A = A(/, ft, Φ/) =
{z 11 < I z I < p} the domain A (/, ft) corresponds to the deformation of A
given by the element (t - 1/t + l)(z/\z \fdz/dz E M(A(l, ft, Φ^) where
r = (ττ-2ft)/2(Φ/-ft). We consider (r - 1/τ + l)(z/|z \fdz\dz re-
stricted to A (/, ft, Φ/) C R * 1 ̂  T ̂  ί as a curve in M(R *). The estimate
for an annulus given by (1.4) can be now applied upon noting that
λR\A^λA and Q(R)\A CQ(A), [16]. The Weil-Petersson length of
this curve is seen to be bounded in terms of E(A(l, ft,Φ/))1/2. Estimate
(2.6) bounds the latter quantity by the constant c2

/2. Repeating this
"fattening" process n times a surface JR E KC is obtained. By Lemma
2.7 n ^ 3 g - 3 ; the above remarks now yield ω(R,R)^
(3g -3)c2

/ 2. The proof is complete.

3. The Poincare diameter and length of the shortest
closed geodesic. Let R be a compact Riemann surface of genus g,
g = 2. Let 1{R) denote the length of the shortest closed Poincare
geodesic and d(R) the Poincare diameter of R. The following lemma is a
consequence of the considerations of 2.
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LEMMA 3.1. There exist constants ~c[ and Έ~2 depending only on the
genus such that

Proof. Maintaining the constants cu c2, c3 and c' of §2 we consider
a surface JR E Kc. As Kc is compact l(R) and d(R) are bounded above
and below hence constants c1 c2 exist to yield

for surfaces in Kc. Now let JR£• Kc then clearly d(R) is bounded below
by one-half the width of A(/, Θ^CR where / = l(R). Thus

(3.1) ln(c2/2/) ^ In (cot 0, + esc 0,) ^ d(R).

Setting Έ2 = min{c2, c2} the lower bound is established. Assume that
i? g: Xc and has only one closed Poincare geodesic of length less than
c\ Forming the surface R* as in 2. by removing A (/,<!>,) from
A(/, θι)CR where / = l(R) we have that d(R) is bounded by the sum of
the width of A (/, 0,), 1/2 and d (Λ *). Specifically for two points x,y oίR*
we connect them with a λR* length minimizing curve yXiy. If this curve
intersects the gluing a new curve is formed as the union of the shortest
segment of γx>y from x to the gluing, a segment along the gluing and the
shortest segment of γ x y from the gluing to y. Now taking account of the
relation of R to R*d(R) is seen to be bounded by

where c2 has been appropriately modified. A constant ΊΓ2 can now be
chosen to bound this last quantity by 41n(c7//(l?)). In general let S be a
surface with exactly n closed Poincare geodesies of length less
than c'. We claim that d(S)^2(n + l)ln(c~2//(S)) for an appropriate
ΊΓ2. Proceeding by induction on n it remains only to consider the
induction step. Let R£KC have exactly n +1 closed Poincare
geodesies of length less than c'. Forming the surface R * and arguing as
above d(R) is bounded by the sum of the width of A (/, 0,) CJR, //2 and
d(R*) where / = l(R). Using the induction hypothesis this is bounded
by

2\n(c2/l(R)) + c' + 2(n + ί)\n(c2/l(R*))

which in turn is bounded by

(3.2) 2(n +2) In
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Observing that n is at most 3g - 3 the upper bound is now established.
In contrast to the present lemma the constructive estimate

(3.3) d(R)^(g-l)l(R)/sinh2(l(R)/2)

where

l(R)/sinh2(l(R)/2)~4/l(R)

for l(R) sufficiently small was given by L. Bers, [4].
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