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LOCAL AND GLOBAL BIFURCATION FROM
NORMAL EIGENVALUES II

JOHN A. MACBAIN

This paper studies the bifurcation of solutions of non-
linear eigenvalue problems of the form Lu — λu + H(λ, u),
where L is linear and H is o(\\u\\) uniformly on bounded λ
intervals. This paper shows that isolated eigenvalues of L
having odd multiplicity are bifurcation points if H merely
has a "degree" of compactness, but is not necessarily com-
pact (treated in [3], [5]). Moreover, a global alternative
theorem follows.

Introduction* In this paper we study the bifurcation of solu-
tions of nonlinear eigenvalue problems. The equations to be studied
are of the form

(0.1) Lu = Xu + H(u)

where all operators are defined in a real Banach space gg. L is
assumed to be linear, bounded or unbounded; I, the identity map,
and H, o(\\u\\) near u = 0. Clearly, (λ, 0) is a solution for each real
λ, and these are called the trivial solutions of (0.1). Of more in-
terest are the nontrivial solutions, pairs (λ, u) satisfying (0.1) with
u Φ 0. In particular, one is interested in how solutions of (0.1) are
related to solutions of the linear equation

(0.2) Lu = Xu .

The study of this led to the following definition.

DEFINITION. A point (λ0, 0) is a bifurcation point for (0.1) if
every neighborhood of (λ0, 0) in R x & contains a nontrivial solu-
tion of (0.1).

Under quite general conditions, it is easy to show that in order
for (λ0, 0) to be a bifurcation point of (0.1), it is necessary that λ0

be in the spectrum of L. [8].
The first general existence theorem for bifurcation points was

obtained by Krasnoseljskii [2]. He considered equations of the type

(0.3) u + XLu + H(u)

where L is linear and compact, and H compact. He proved that if
λ0 is a characteristic value of L having odd algebraic multiplicity,
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then (λ0, 0) is a bifurcation point.
More recently, Rabinowitz [6] studied the same problem as

Krasnoseljkii and proved a much stronger result. The bifurcation
from such points is a global property, with a continuous branch of
solutions joining (λ0, 0) to infinity in R x ^ , or if the branch is
bounded, containing (λx, 0) with \ Φ λ0.

The author ([3] and [5]) eliminated the compactness assumption
on L while maintaining the strength of the result. The main result
of this paper is that the compactness assumption on H can be re-
laxed. The proofs of the theorems mentioned involve the use of
degree theory.

1* Preliminaries* Let & be a real Banach space and let g"
denote R x & with the product topology. By a nonlinear eigenvalue
problem we mean an equation of the form

(1.1) Lu = Xu + H{u)

where L: & —• & is linear and H: & —> & is a nonlinear operator
satisfying hypothesis H — 1:
(H — 1) (i) H is continuous, and bounded on each ball centered at 0.

(ii) H is o(||tt||) for u near 0.
A nontrivial solution of (1.1) is a pair (λ, u) with u Φ 0 which satis-
fies (1.1), and the trivial solutions are the pairs (λ, 0).

In what follows, L: & —> & will be a densely defined linear
operator (bounded or unbounded) with domain dom(L). The re-
solvent set of L, p(L), will be all real values of λ for which there
exists a bounded linear operator C: έ% —> & such that

C(L — X)x = x , x 6 dom (L)

(L — X)Cx = x , x e range (L — λ) .

C will be denoted by (L - λ)"1.

DEFINITION 1.1. The (algebraic) multiplicity of an eigenvalue λ
of L is defined to be the dimension of the subspace UΓ=i ker (L — X)3'
where ker (L — λ)J* denotes the nullspace of (L — X)3\ UΓ=i ker (1/ — λ)y

will be referred to as the principal manifold of L associated with λ.

DEFINITION 1.2. An eigenvalue λ of L is defined to be normal if
(i) the multiplicity of L is finite.
(ii) & is the direct sum of subspaces &>λ 0 ^Ϋ\ where £fx =

JĴ Li ker (L — X)j, ^Yi is invariant under L, and (L — λ) is invertible
on Λi.

The projection of & onto ^ along ^Vx is denoted by Px.
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Hence P ^ = Sfi and (I - Pλ)& = ^Yl. Let Qλ = I - Pλ.
An eigenvalue λ of L is isolated if there exists ε > 0 such that

(λ — ε, λ + ε) contains no other members of sp L. The set of isolated
normal eigenvalues of L is called the discrete spectrum of L which
we denote by spd (L). The remaining part of the spectrum will be
called nondiscrete and is denoted by spwi (L).

REMARK. If L is self-adjoint, the nondiscrete spectrum is the
essential spectrum of L.

DEFINITION 1.3. (λ, 0) is a bifurcation point for (1.1) if every
neighborhood in g7 of (λ, 0) contains a nontrivial solution of (1.1).

DEFINITION 1.4. If T is a subset of g7, T, and TR are defined
to be Tx = {u I (λ, u) G T) and TR = {λ | (λ, u) e T for some u}. For
WdB, &, or g*, TF denotes the closure of W in the respective
space.

Some of the material that follows in this section was presented
in [8], and is repeated here without proof.

DEFINITION. The set measure of compactness of a bounded set
Ω, expressed by a(Ω), is defined to be the infimum of all δ > 0 such
that Ω can be covered by a finite number of balls having radius δ.

Some useful results in this area include:
( i ) a{Ω) = a(Ω) for all bounded sets Ω.
(ii) If Ω is bounded, Ω is relatively compact if and only if

a(Ω) = 0.

(iii) a{Ω, + Ω2) <, a{Ωt) + a(Ω2).

(iv) If l i m ^ xn = 0, then a({xn}n=1>2>...) = 0.

DEFINITION. An operator T: B^> B is called a k-set contraction
if it is continuous and a{T(β)) ^ ka(Ω) for all bounded sets Ω. Let
7(Γ) = inf {k\T is a λ -set contraction}. The following results con-
cerning Zs-set contractions hold.

( i ) T is compact if and only if T is a 0-set contraction.
(ii) If L is a bounded linear operator with operator norm | |L| | ,

then L is a ||L||-set contraction. (This need not be true if L is
nonlinear. (See § 4.))

(iii) If L is a bounded, linear, and self-adjoint operator, 7(L) =
ρe(L) where pe(L) is the radius of the essential spectrum of L. [8].

(iv) If F=GH with G linear, Ύ(F) ^ \\G\\Ύ(H). In general,
for all G and H, Ύ(F) ^ Ύ(G)Ύ(H).

A degree theory for nonlinear operators of the form I — T,
where T: B—> B is a &-set contraction with k < 1, was developed by



146 JOHN A. MACBAIN

Nussbaum in his thesis. The results of Nussbaum's to be used are
given below, together with a theorem of Stuart.

Let T: B —> B be a λ -set contraction (k < 1). Then an integer-
valued function, denoted by deg, can be defined so as to have the
following properties.

(1) deg (Ω, I — T, 0) is well defined for each open, bounded
subset Ω c B such that T has no fixed points on the boundary dΩ
of Ω.

(2) If deg (Ω, I — T, 0) Φ 0, then there is a point x e Ω such
that x = Tx.

(3) If Ωx and Ω2 are open subsets of Ω, itself a bounded, open
subset of such that T has no fixed points in [Ω\(ΩX U Ω2)] U {Ωί Π Ω2),
then deg (Ω, I - Γ, 0) = deg (Λx, J - T, 0) + deg (i22,1 - Γ, 0).

(4) If Γ is compact, then deg (Ω, / - Γ, 0) - d(Ω, I - T, 0),
where d denotes the Leray-Schauder degree, whenever the left-hand
side is defined. [8].

The arguments of this paper will closely follow those of [5].
Thus, a notation of index is helpful. Define

index (Γ, x0) = deg (B, I - T, 0)

where B is an open ball in B centered at x0 with a radius small
enough so that x0 is the only fixed point of T in B.

In [5], critical use was made of a theorem in Leray-Schauder
degree theory which has been extended to the Nussbaum degree
theory by Toland and Stuart [8].

THEOREM. Let T: X—> X be a k-set contraction (k < 1) and let
x0 be a fixed point of T. Suppose that T has Frechet derivative
T'(x0) at x0 and that unity is not an eigenvalue of T'(x0).

Then x0 is an isolated fixed point of T, and

where v is the sum of the multiplicities of the eigenvalues greater
than unity of T'(x0).

Proof. See [8].

2* Local bifurcation theorem* The first theorem shows that
bifurcation from an isolated eigenvalue λ0 of L having odd multi-
plicity is not dependent upon H being compact, but rather on how
"close" H is to being compact.

THEOREM 2.1. Let L be as above and let H satisfy H — 1. λ0
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is an isolated normal eigenvalue of L having odd multiplicity.
Assume that for |λ - λo| < ε', | |(L - λΓ'Q JI^Cff) ^ K < 1. Then,
(λ0, 0) is a bifurcation point for (1.1).

Proof. In order to prove this theorem, (1.1) will be rewritten
in the form u - G(X, u) = 0. Split (1.1) by

χ ) LPλou - xPhu + PλoH{\ u)

LQhu = xQXou + QkH(X, u).

A solution of (1.1) is equivalent to a simulation solution of the two
equations in (2.1). Select μoep(L). Instead of (2.1) we may write

(2.2) λ° X - μ Q X~ oμ

Qku = (L - λ Γ

where (L - λ)"1 is to be interpreted as (L - xy^Λl^ Thus, (2.2)
is valid for λ e {λ0} U {iθ(L)\{/̂ 0}}. Adding these equations we get

u = Cx(λ, %) + C2(λ,

(2.3) X- μQ

C2(λ, u) -

Note that Ĉ : g7 —> ^ is compact and linear in u for each fixed λ
C2: g

7 -> ̂  satisfies if - 1. Define

(2.4) Φ(λ, 0 = J - C A , )~C 2(λ, •).

Clearly, (2.3) or Φ(X, u) — 0 is equivalent to (1.1) for the specified
values of X when L is bounded. If L is unbounded, the question
arises as to wheter u is in dom (L) if (λ, u) is a zero of Φ. Noting
(2.2), which is obtained from (2.3) by projecting onto ^ 0 , ^ 0 re-
spectively, we see that Qχou is in dom (L). Since Pλou is in an
eigenspace of L, u = P ^ + Q;ow is in dom (L).

If the assertion of the theorem is not true we can find a neigh-
borhood έ? of (λ0, 0) such that the only solutions of (1.1) in έ? are
trivial solutions, p(L)\έ?RΦ0, and έ?R Π s p L = {λj. Select μo€
ρ(L)\έ?R such that (1.1) is equivalent to (2.3) for all <?R. Select
ε > 0, 0 < ε < ε', that [-ε + λ0, λ0 + ε] x {0} c &. Applying the
homotopy property of degree theory we obtain

(2.5) deg(Φ(λ, •), &\ 0) = constant, |λ - λo| < s .

Select X and λ such that λ0 — ε < X < λ0 < λ < λ0 + ε. Then
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(2 6)
deg (φ(λ, •), ̂ J , 0) = index (/ - Cx(λ, •), (λ, 0)) .

Thus, using (2.5) and (2.6),

index (I - Cx(λ, •), (λ, 0))

= index (I-<£(%, ),(λ,0)).

However, since the multiplicity of λ0 is odd,

index (I - (^(λ, •), (λ, 0))

- -index (7 - (^(λ, .), (λ, 0)) .

Since the indices in (2.7) and (2.8) are either + 1 or —1, we have a
contradiction. Thus, such a neighborhood can never be found. This
proves that (λ0, 0) is a bifurcation point.

REMARK 1. If λ0 Φ 0 is an eigenvalue of L having odd multi-
plicity, then the hypotheses of Theorem 1 are satisfied if L is com-
pact or if L is self-ad joint with λ0 isolated in spL.

REMARK 2. The condition on 7((L — xy'Qχfl) can be relaxed.
If one restricted the operators to a ball Bo centered at (λ0, 0) and
then extended them to all of RxB0 in a linear manner, one could
apply Theorem 1.1 if 7((L - λΓ'Q^EΓIJSo) = K < 1, for |λ - λ o | < e'.
This would handle the case that H is well behaved near u = 0 but
grows too large for u far from 0.
(£Γ - 2) H: gf -> &? satisfies:

(i) H is continuous, and bounded on each ball centered at 0.
(ii) H is o(||u||) uniformly on bounded λ intervals.

REMARK 3. The theorem remains true if H satisfies hypothesis
H — 2 rather than the more restricted H — 1. The proof is very
similar.

3* A global alternative theorem* In this section we will show
that the local bifurcation exhibited in Theorem 2.1 is a global prop-
erty with an alternative-type result.

For T c £T, a subcontinuum of T is a subset of T which is
closed and connected in if. £f will denote the closure of the set
of nontrivial solutions of (1.1) in if. Let ^ 0 denote the maximal
subcontinuum of Sf U (λ0, 0) containing (λ0, 0). B9 will denote the
open ball in & centered at 0 and having radius p. L and H will
be as in § 2.
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LEMMA 3.1. Suppose λ0 and \ are distinct normal eigenvalues

of L. Then & = «2 0̂ 0 £?χx φ ^Y\ a direct sum of subspaces, where

= c ^ 0 D ^Vx^i and P = P2Q + Pλχ projects onto JίfλQ φ Sfχx along

" [5].

LEMMA 3.2. Let K be a compact metric space and A and B
disjoint closed subsets of K. Then either there exists a subcon-
tinuum of K meeting both A and B, or K = KA U KB where KA and
KB are disjoint compact subsets of K containing A and B re-
spectively.

Proof. See [9].

For λ0 as before, define

= sup {λ I λ < λ0, λ 6 sp%d (L)}

A(λ0) - inf {λ I λ > λ0, λ G sp.d (L)}.

These values will be ±oo respectively if the vacuous case results.
For Bj > 0, consider I(εlf ε2) = [α^λo) + el9 βt(\) — ε2]. (Here assume
both are finite.) Let PεvH = Σ Pχ where the summation is over all
eigenvalues of L in I(e19

le2), and let Qβl,,8 = / — Pβ l f β 2 Select ε, > 0
and ε2 > 0 such that | | (L - X^Q^WΎiH) < 1 on I(ε19 ε2). Let
[α(λ0), /3(λ0)] = I(βl9 ε2). If ^(λo) or A(λ0) are infinite, select α(λ0) or
/S(λ0) to be any appropriate finite number.

LEMMA 3.3 Suppose λ0 is an isolated normal eigenvalue of L

having finite multiplicity. Assume ^λo is bounded, ( ^ 0 ) κ Π
{a(\)9 /S(λ0)} = φ, and ^ 0 Π {Λx{0}} = (λo, 0). Tfee^ 9% iβ compact
and there exists a bounded open set & such that ^ 0 c έ?9 dd7 Π
Sf ~ <Z>, (^R) Π sp^(L) = 0 , ίfee trivial solutions contained in έ?
are the points (λ, 0) where | λ — λ01 < ε for some ε < ε0 = dist (λ0,
sp!/\{λo}X and ||(λ, w) — (μ, 0)| | ̂  2εx /or some positive εx whenever
(λ, to 6 3 ^ α^d! ̂ ε sp L.

Proof. &λo is compact. Indeed, let {(λn, u Λ )} n β ^ be elements of
. Since ^ ; 0 is bounded, we may find a λ and a subsequence

0

such that Hindoo λΛ = λ. Let P be the projection for (^7) Λ and
Q = I — P. Consider {%»}»

+
K β ^ + {C2(λ.,
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(similarly) ^ a({(L - λ

£ a({(L - X

- λj-1 - (Z,

Thus α ί W n e ^ ) = 0 meaning the set is compact, meaning it has a
convergent subsequence. Thus, Cλo is compact.

The remainder of the proof follows from [5] and [8] using
Lemma 3.1.

The following theorem is modeled after one in [5] given for the
case when H is compact.

THEOREM 3.1. Suppose λ0 is an isolated eigenvalue of L of odd
multiplicity. L is as before and H satisfies H — 1. Furthermore,
let ||(L — X<ύ~ιQχQ\\Ί{H) < 1. Then (λ0, 0) is a bifurcation point of
(1.1) possessing a maximal continuous branch ^ 0 such that exactly
one of the following alternatives occurs.

( i ) ^ 0 is unbounded.
(ii) <ĝ 0 is bounded and (&Fϊ^R Π {#(λ0), /3(λ0)} Φ 0.
(iii) ΐf2o is compact, (<g%)Λ Π {α(λ0), /3(λ0)} = 0 cmd ifj0 n {# x {0}} =

{λ0, λw , λ%} x {0} where \, , Xn are normal eigenvalues of L
distinct from λ0, and the sum of the multiplicities of λ0, λx, , λΛ

is

Proof. With the use of Lemma 3.3, the proof is similar to Theo-
rem 2.1 and Theorem 2.2 [5].

REMARK 1. The hypotheses of this theorem are unnecessarily strin-
gent. The same results hold with iϊ(λ, u) if \\{L - ^)~ιQh\\Ί{HQ^r))<
1, where H satisfies H — 2. The preceding proofs, however, become
a little more complicated mainly due to notation.

REMARK 2. Suppose that Jϊ(λ, -), when restricted to a ball cen-
tered at u = 0, has ||(L — λO~xQ;J|7(jff(jιo,.)) < 1 (but this hypothesis
fails on the entire space). One can do the degree work on these
balls (by reworking all previous proofs) and obtain a theorem similar
to that in [4]. (It was necessary to make a change in that theorem
due to an error committed in [4] (see the next section).)

Assign F(e) = [a(\) + ε, /S(λ0) — ε]. Let Pε correspond to F(e),
and Qε = I — Pε. When restricted to a ball of radius r centered at
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0, let HUr) be a Ύr(H(X, ))-set contraction, and define Vr(H) to be
strictly monotone increasing.

THEOREM 3.2. Let Xo be an isolated eigenvalue of L having odd
algebraic multiplicity. L is as before and H satisfies if— 2. Then
(λ0, 0) is a bifurcation point of (1.1) and emanating from it is a
maximal continuous branch ^ 0 which obeys exactly one of the fol-
lowing alternatives for each suitably small ε > 0.

( i ) ^ 0 is unbounded.
(ii) <g*i0 is bounded and ^ 0 meets Sε — {(λ, u) \ X 6 F(ε) and

\\u\\ = r where Ύr(H(X, •)) = \\(L - λ Γ ^ IΓ} U {(a(\) + β) X 32} U
{(/9(λ0) - e) x &.

(iii) &XQ is compact, ^ 0 does not meet Sε, and ^ o Π { 0 x B} —
{λ0, λj, •••, λ j , eαcfc α distinct normal eigenvalue of L, and the sum
of their algebraic multiplicities is even.

REMARK 1. In the case where L is self-ad joint, | | (L — λy^QJI =
1/dist (λ, sp (L)/F(s)) where dist (•) is the standard distance function
in JR. This simplifies the statement of (ii).

REMARK 2. If (α(λ0), β(XQ)) Π sp (L) consists of a finite list of
eigenvalues, there is an ε0 > 0 such that whenever 0 < e^ < ε2 ^ ε0,
SH and S£2 are identical in F(ε2) x B. This is because \\{L — λ)~ιQ,||
is constant in ε for 0 < ε < ε0. This leads to an improvement in
(ii) and (iii).

(i i) ' ίf;0 is bounded and WΓ0 meets S = {(λ, w) | λ 6 (α(λ0), iδ(λ0))
and ||i6|| = 7 where 7r(jff(λ, .)) = II(i - ^QJI"1} U {α(λo) x B) U
{^(λ0) x B}.

(iii)' <ĝ 0 is compact, ^ 0 does not meet S, and ^ 0 Π {0 x B) =
{λ0, λ l f •••, λ j , each a distinct normal eigenvalue of L, and the sum
of their algebraic multiplicities is even.

4* Other results* The theorems I proposed in [4] are unfortu-
nately incorrect as stated and require modification as in § 3 of this
paper. The hypothesis of continuity on H had to be strengthened.
My error was in a proof that if one restricted H to a ball centered
at 0 in B and on that ball ||£Γ|| = k, then H was a A -set contrac-
tion on the ball. This is true for linear operators.

This error was found by Professor Norman Dancer, The Uni-
versity of New England, Armidale N.S.W., Australia. He con-
structed a counterexample to Theorem I of [4], which I present
here. There is an operator V:c0—>c0 such that if x = XV(x), then
x = 0 and λ = 0. Set B = c0 x R, L: B—> B is defined by L(w, t) =
(2w, t) and H: R x B->B is defined by H(X, (w, t) = (0, XfV{w)).
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X = 1 is an eigenvalue of L of multiplicity 1. If X is near 1 and
Lu = Xu + H{X, u) where u = (w, t), then t = Xt and 2w = Xw +
XtViw). w = λ£2F(w)/(2 — λ) which implies w = 0, and together
with λ being near 1 imply t — 0. Thus, for X near 1, the only solu-
tion is u = 0. Many thanks to Professor Dancer. The operator V
is due to Ana and Vasile Istratescu and appeared in the Proceeding
of the Amer. Math. Soc, Vol. 48, No. 1, page 197.
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