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ALGEBRAIC NUMBERS, A CONSTRUCTIVE
DEVELOPMENT

W. JULIAN, R. MINES AND F. RICHMAN

The theory of algebraic numbers is developed in the
context of abstract fields with equality and inequality. Of
classical interest is that any commutative local ring without
nilpotent elements may be considered a field in this context.
Procedures are given for deciding whether two complex
algebraic numbers are equal or not, for factoring polyno-
mials over algebraic number fields and for deciding whether
a given algebraic number is in a given algebraic number
field.

The purpose of this paper is to provide a constructive development
of algebraic numbers, that is, complex roots of nonzero polynomials
with rational coefficients. The constructive theory of complex numbers
that we need is provided by Bishop [1]. For simplicity and power
we use an axiomatic definition of a field with equality and inequality
modeled on Bishop's complex numbers. By using conventional notation
we make the subject appear similar to the classical development,
while retaining the constructive finitistic interpretation.

A side effect of this axiomatic approach is that our fields can be
interpreted classically as commutative local rings without nilpotent
elements, with the maximal ideals consisting of those elements that
are not different from zero. This gives some classical insight into
the constructivist's notion of numbers that are not known to be zero
or to be different from zero, and clarifies the problems that the
constructivist faces in proving theorems about fields. Heyting [3]
and others have given intuitionistic axioms for fields before but
their axioms are more restrictive and their development emphasizes
logical subtleties.

The real, complex, and p-adic numbers, as developed by Bishop,
are examples of fields with elements x and y for which one can
neither assert x = y nor assert x Φ y. A field having the property
that for each pair of elements x and y either x = y or x Φ y is called
a discrete field. One might think that classical field theory would
go through in toto for discrete fields, but this is not the case. For
example, the characteristic of a discrete field need not be oo or a
finite prime number, and it is not always possible to factor a poly-
nomial into a product of irreducible polynomials.

Some peculiarly constructive questions about algebraic numbers
which we shall consider are:
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(1) Given two algebraic numbers, can one tell whether they
are equal?

( 2) Given an algebraic number field k and a polynomial / 6 k[X]
can one factor / into irreducible factors?

( 3 ) Given an algebraic number field k and an algebraic number
a, can one tell whether aekl

The complex numbers are not a discrete field, as was pointed
out above. However, if a and β are complex numbers, in the sense
of Bishop, and / and g are polynomial with rational coefficients such
that f(a) = 0 = g(β), then Theorem 3.6 gives an effective procedure
for determining whether a = β or a Φ β. Question 1 has not been
considered in this form before.

Theorem 3.6 will also be used in a subsequent paper, with the
p-adic numbers replacing the complex numbers, to allow us to extend
valuations from the field of rational numbers to algebraic number
fields. Moreover there is a classical interpretation of Theorem 3.6,
namely:

Let E be a commutative local ring without nonzero nilpotent
elements, and k a subfield of E. If a, β e E are algebraic over k,
then either a = β oτ a — /Sisa unit.

Question 2 was answered affirmatively by Kronecker [4], in the
setting of abstract extensions of the rationale rather than subfields
of the complex numbers, no doubt because of the lack of a constructive
theory of complex numbers at the time. Van der Waerden [6] extended
Kronecker's argument to prove that if a is separable algebraic over
k, and if one can factor polynomials over k, then one can factor
polynomials over k(a). Kronecker used a splitting field in his argu-
ment, paying no attention to the difficulties involved in the construction
of such fields. It is very likely impossible to construct splitting
fields in the general situation; we do it here for countable fields
(Corollary 3.9). This construction may be used to obtain another
proof of van der Waerden's theorem for arbitrary discrete fields,
which we shall present in another paper. The countable case is
presented here (Theorem 4.2). It is interesting to note that we must
prove the primitive element theorem (Theorem 4.1) in order to factor
polynomials over algebraic number fields (Theorem 4.2), whereas
classically one proves the primitive element theorem by factoring
polynomials over algebraic number fields. The affirmative answer to
question 3 follows from the affirmative answer to question 2.

For our counterexamples we shall employ Brouwer's notion of a
fugitive sequence. A fugitive sequence is a sequence of O's and Fs
containing at most one 1, for which we have no idea whether a 1
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ever appears, or in what positions it might appear if it does.
An example of such a sequence is:

0 if am = 1 for some m < n or if there is no sequence

of 100 consecutive 6's in the first n places of the

decimal expansion of π

1 otherwise .

1* Fields* Examining the real numbers as developed by Bishop
we are led to equip every set with an equality relation and an
inequality relation satisfying:

1. x = x
2. x = y=>y = x
3. x = y and y = z=*x = z
4. x Φ y=*y Φ x
5. x — y and y Φ z =* x Φ z
6. x = y and a? Φ y is impossible.

Inequality is to be thought of as a positive notion of distinctness
rather than the denial of equality. A set is discrete if for any pair
x and y either x — y or x Φ y. The real numbers constitute an
example of a set that cannot be asserted to be discrete, for if {an}
is a fugitive sequence, then comparing the real number Σ aJn with
0 would resolve the question of whether an = 1 for some n or not.

A function f from one set to another must respect both equality
and inequality in the sense that:

1. x = y => f{x) - f(y)
2. f{x) Φ fiy) =>χφy.

It is easy to check that the composition of functions is a function.
For functions of two or more variables it is natural to introduce
the Cartesian product X x Y of the sets X and Y. Equality and
inequality are defined on X x Y by:

(&i> Vi) = (^2, y2)
<ί==> ffi = ^2 and y1 = y 2

(a? ! , ΐ / i ) =£ ( α 2 > 2/2) * = * &i =£ £ 2 o r y , Φ y 2 .

The "or" in the last equivalence is to be understood in the positive
sense that we can determine which of the alternatives holds. These
definitions make 1 x 7 into the product of X and Y in the category
of sets and functions as specified above.

The complex numbers, as developed by Bishop, motivates the
following definition of an abstract field. A field is a set k, with
distinguished elements 0 and 1, and two functions + and from
k x k to k which satisfy:

1. α + 6 = 6 + α and ab = 6α
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2. (a + δ) + c = a + (6 + c) and (ab)c = α(δc)
3. α(δ + c) = αδ + ac
4. α + 0 = a and αl = a
5. For each a, a + δ = 0 for some 6;

For each a Φ 0, αδ = 1 for some 6.
6. For each integer n > 0, a* = 0 implies a = 0
7. 0 =* 1.
Note that since + is a function, iί a + b-Φ 0 = 0 + 0, then either

a Φ 0 or δ =£ 0. Note also that a commutative local ring with no
nilpotent elements is a field if a Φ b is interpreted to mean a — δ is
a unit. Thus theorems about fields, in this sense, may be interpreted
as theorems about such rings. A discrete field is a field in the classical
sense.

Heyting has given axioms for fields which are similar to ours
[3, pp. 51, 52]. Many of his axioms may be derived from the as-
sumption (which he does not make) that addition and multiplication
are binary functions that respect inequality. The only substantive
difference between the two sets of axioms is Heyting's axiom that
if a Φ b is impossible, then a = δ. This corresponds to Bishop's
Lemma 5 for real numbers [1, p. 24]. Generally speaking, the fewer
appeals one makes to this axiom, the cleaner and more straightforward
one's arguments will be. Bishop repeatedly avoids invoking Lemma
5 in [1] Our sixth axiom, which is a consequence of Heyting's axiom,
must be stated explicitly when Heyting's axiom is dropped.

A prime field is a field with no proper subfields, that is, every
element can be written as (w l)/(m l) where n and m are integers
and m l Φ 0. The ring of integers localized at 2 is an example of
a prime field that is not discrete. Every field has a unique prime
subfield.

If k is a field with a discrete prime subfield then the characteristic
of k is defined to be

inf {n: w l = 0}

where the infimum is taken in the one point compactification of the
positive integers. Thus the field of rational numbers has characteristic
C O .

The characteristic of a discrete field need not be an integer or
co. For example let {an} be a fugitive sequence, and define {pn} by

(0 if an = 0
Pn — \

I the wth prime of the form 4m + 1 if an = 1 .

Let P be the subgroup of the integers Z generated by {pn}. Define
R = Z where a= b if α - δ e P , and aΦb if a -b£P. Then R
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under multiplication and addition is a discrete integral domain. Its
quotient field k is a prime field. The characteristic of k is an element
of the one point compactification of the positive integers, but we
do not know if it is oo or not. Notice also that we can not tell if
x2 + 1 is irreducible over k.

For a discrete field k, the Euclidean algorithm will produce the
GCD of any two nonzero elements of k[x]. However, it is not always
possible to factor into irreducible polynomials, as in the above example.
Hence classical arguments that rely on such factorizations must often
be replaced by arguments that rely on the Euclidean algorithm instead.

Van der Waerden [7] observed that the polynomial x2 + 1 cannot
be factored into irreducible polynomials over a subfield of the complex
numbers that might or might not contain i. The following is a
slight variation on van der Waerden's field. Let {an} be a fugitive
sequence, and W be the subfield of the complex numbers generated
by the rational numbers and the numbers ian. We shall often use
this field for counterexamples. Note that W is a discrete subfield of
the Gaussian numbers.

Following Hermann [2] we call a discrete field k factorial if every
polynomial in k[x] can be written as a product of irreducible poly-
nomials. The following theorem is due to Kronecker [4].

THEOREM 1.1 (Kronecker). The rational numbers Q form a fac-
torial field.

Proof. Let / 6 Q[x] be degree n > 1. We shall either exhibit a
proper factor of / , or show that any factorization of / is trivial. We
may assume that / has integer coefficients and, by Gauss's lemma,
it suffices to consider factors with integer coefficients. Consider
/(0),/(I), •••,/(>). If f(j) = 0 then / admits the proper factor
x — j . Otherwise, if g is a factor of / , then g(j) divides f(j) for
each j , so there are only finitely many possibilities for g(j). Since
deg g 5g n we can use Lagrange's interpolation formula to exhibit
a finite number of polynomials g among which are all factors of /
with integer coefficients. We then test those that have integer
coefficients to see if they indeed divide / .

2* Vector spaces* From a constructive point of view, a finitely
generated vector space over a discrete field need not be finite dimen-
sional—we may possess a finite set of generators yet not be able to
construct a finite basis. For example consider the vector space Q(i)
over the van der Waerden field W. Then {1, i) generates Q(i) over
W but the cardinality of a finite basis for Q(i) over W would answer
the question of whether an — 1 for some n or not.
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The problem in the above example is that we cannot tell whether
i is in the subspace generated by 1 or not. Following Brouwer we
say that a subset A of a set S is detachable if the question "is x in
AV can be answered for any x in S. Subspaces of discrete vector
spaces may fail to be detachable, even if they are finitely generated.
The subspace generated by 1 in the above example is not detachable.
However, summands of discrete vector spaces are detachable since
to tell if x is in the summand, we simply check to see if the pro-
jection of x onto the summand is equal to x. Thus the following
theorem implies that certain subspaces of finite dimensional spaces
are detachable.

THEOREM 2.1. Let V and W be finite dimensional vector spaces
over a discrete field k. If T:V—>W is a linear transformation,
then ker T and im T are finite dimensional summands of V and W
respectively.

Proof. Let A be the matrix of T with respect to bases for V
and W. By elementary row and column operations we can diagonalize
A. But this amounts to constructing new bases for V and W for
which the matrix of T is diagonal, in which case ker T and im T
are clearly finite dimensional summands.

COROLLARY 2.2. A finitely generated subspace of a finite dimen-
sional vector space over a discrete field is a finite dimensional
summand.

Proof. Any such subspace is the image of a linear transformation
between two finite dimensional spaces.

COROLLARY 2.3. If k Q E £ F are discrete fields such that Ejk
is finite dimensional and F/k is finite dimensional, then F/E is
finite dimensional.

Proof. Choose v19 , vs in a basis for Fjk such that vt £ V^x =
Evγ + + Evt-u and Vs = F. This can be done because V ^ is
detachable, being a finitely generated subspace of F/k and hence a
summand of F/k. Then vl9 •••,!>. is a basis for F/E.

COROLLARY 2.4. Let V be a finite dimensional vector space over
a discrete field k. Then the intersection of any two finitely generated
subspaces of V is finitely generated.

Proof. Let A and B be finitely generated subspaces of V. Let
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C be a complementary summand of B in V. Then projection on C,
restricted to A, is a linear transformation from A to C whose kernel
is A n B . Hence A 0 B is finitely generated.

3* Algebraic extensions* Let E be a field and JS a subring of
JE. An element aeE is said to be integral over R it a satisfies a
monic polynomial in R[x\. We have the usual characterization [8;
p. 254].

THEOREM 3.1. Let E be a field, R a subring of E, and aeE.
The the following are equivalent:

(1) a is integral over R.
(2) R[a] is finitely generated as an R-module.
(3) E has a finitely generated faithful R-submodule M such

that aM £ M.

Proof The only problem is (3)=>(1). Let mlf •• , m , be a set
of generators of M. Then am* = Σ riJmJ where riS e R. Let Δ =
det (r€i — aSo )

 BY Cramer's rule have we 4m, = 0 for 1 <; i g s.
Since Λf is faithful, this implies that Δ = 0. This gives the desired
monic polynomial.

COROLLARY 3.2. The elements in E that are integral over R
form a subring.

Proof Suppose a and β are integral over R. Then R[a] is a
finitely generated i2-module, and R[a, β] is a finitely generated R[a]~
module. Hence R[a, β] is a (faithful) finitely generated ϋί-module,
so every element of R[a, β] is integral over R.

If R is a field and a is integral over R, then we say that a is
algebraic over R. If in addition i2 is discrete, then R[a] is a field,
for if 0 Φ βeR[a], then we can find a monic polynomial / in R[x]
such that /(/3) = 0 and /(0) ^ 0. Then /(0) = /(0) - /(£) = λ/S for
some λ in i?[/3], so λ//(0) = β~ι e R[β].

If R is not discrete, then R[a] need not be a field. To see this
let E be the 2-adic integers with "a Φ V defined as "a — & is a unit."
Let R Q E be the rational 2-adic integers. Then R and E are fields,
but R is not discrete. Let a be the root of x2 + x + 2 in 2? that is
a unit. Then ar 1 is a root of 2#2 + x + 1 so <x is not integral over
R, and hence ar 1 is not in R[a}.

LEMMA 3.3. Let E be a field, k a discrete subfield, and aeE.
If ft 9 £ k[%] and (/, flO = 1 and f(a)g(a) = 0, £ftew /(α) = 0 or #(α) = 0.
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Proof By the Euclidean algorithm s{a)f(a) + t(a)g(a) — 1 ^ 0
so s{a)f(a) Φ 0 or t(a)g(a) Φ 0. Hence g(a) = 0 or f(a) = 0, respec-
tively.

LEMMA 3.4. Let k be discrete field and S a finite set of monic
polynomials in k[x]. Then we can construct a finite set P of monic
polynomials in k[x] such that every polynomials in S is a product
of polynomials in P, and if pt and p3- are in P then either pt ~ p3-
or (pif ps) = 1.

Proof Simply choose P from among the finite set of monic
polynomials obtained by closing the set S under the taking of GCD's.

LEMMA 3.5. Let k be a discrete field and g a nonconstant poly-
nomial in k[x]. Then we can factor g into relatively prime poly-
nomials of the form fm(xq) where m is a positive integer, q is either
1 or a power of the finite characteristic of k, and f e k[x] is relatively
prime to its derivative /'.

Proof We may assume that g is monic. If deg g = 1 the con-
clusion is clear. If deg g > 1 and gf Φ 0, compute (g, g'). If (g, g') — 1
we are done. Otherwise {g, gr) is a proper factor of g} so by Lemma
3.4 we can write g as a product of polynomials hi of degrees smaller
than deg g such that, for all i and j , either ht = hά or (hif h3-) = 1.
Since deg/^ < deg# we can write hi in the desired form, by induction,
and this expresses g as desired.

If g' = 0, then char k = p < °o and g(x) — h(xp) for some h in
k[x]. By induction h can be written as desired; hence so can g.

THEOREM 3.6. Let E be a field and k a discrete sub field of E.
If a, βeE are algebraic over k, then a — β or a Φ β.

Proof Choosing a monic polynomial which is satisfied by a and
one which is satisfied by β and letting g be their product, we obtain
a monic polynomial g 6 k[x] such that g(a) — g (β) = 0. Applying
Lemma 3.5, we may write

where

( / W ) , fΓKxgi)) - 1 , if %Φ0 and
(Λ,/0 = l for ί = l, . . . , r

applying Lemma 3.3 gives integers i and j so that
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If i Φ j , then there exist s(x), t(x) e k[x] so that

s(x)f^{xqi) + t(x)fp(xqj) = 1

Replacing a for x in the above we see that f^(aqή Φ 0, so a Φ β.
If i = j , then we have / i(α ? ί)m ί = 0 = (fi(βqί))mi. By part 6 of the
definition of fields we have /,(«**) = 0 = /,(£«*). Noting g = pn for
some prime p, dropping the subscript i, and writing F(x) = f(xq)
we have: F(a) = 0 = F(/5) and (/, /') = 1. Using Taylor series,

0 = (α» - /S0[/'(/39) + (α? - βq)K(aq)] .

Since (/, /') = 1 and f(βq) = F(/3) = 0, we have

0 φ f\β*) = [/'(/S9) + (aq - i8ff)X"(αff)] + [~{ccq - βQ)K(aq)].

So either

(aq - βq)K(aq) Φ 0 , or / '(^ ? ) + (αg - /39)UL(α?) ̂  0 .

Thus either 0 Φ (aq - /39) = (a - /3)9 giving d ^ f t or a* - βq = 0 so
(α — /S)9 = 0, and by part 6 of the definition of a a field, a — β = 0
so α: = /3.

THEOREM 3.7. Lei E be a field, k a discrete subfteld, andaeE
algebraic over k. The k[a] is a finite dimensional vector space over
k if and only if cc satisfies an irreducible polynomial over k.

Proof. If a satisfies an irreducible polynomial of degree n over
k, then 1, a, a2, , α91"1 form a basis for k[a] over k. If k[a] has
a basis vlf -- ,vn over k, then write

and α satisfies the polynomial:

f(x) = det (α€i - δtix)

which has degree n. If / has a proper factor then, by Lemmas 3.3
and 3.4, there is a nonzero polynomial of degree less than n satisfied
by a. Then k[a] would be generated by 1, a, , ar where r < n — 1,
which contradicts the existence of a basis vlf •••, vn.

In classical field theory the problem of adjoining a root of a
polynomial is easily solved by taking the prime ideal P in k[x]
generated by an irreducible factor of the given polynomial, and then
forming the field k[x]/P. From the constructive viewpoint, this is
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not always possible unless k is factorial. If k is countable, we can
overcome the fact that factorization of polynomials is not always
possible, by using the Euclidean algorithm to construct a prime ideal
containing the given polynomial.

THEOREM 3.8. Let k be a countable discrete field and q a non-
constant polynomial in k[x]. Then there is a countable discrete field
E containing k, and aeE, such that q(cc) = 0.

Proof. We construct a sequence of nonconstant polynomials p5 e
k[x] such that:

(1) Po^Q

(2) pj+1 divides pά

(3 ) / e k[x] => for some j either pj+1 divides / or (pi+1, /) = 1.

Let flf f2, be an enumeration of k[x]. Let p0 = q. To construct
pj+1 consider (pj9 fά) = d. If d = 1 let pj+1 = pjf otherwise let pj+1 =
d. Then pj+1 divides p3- and either (p i+1, fά) = 1 or p i + 1 divides /}.
Let E = k[x] with equality defined by / = g if py divides f — g for
some i, and inequality defined by / Φ g if (p, , / — #) = 1 for some
j . It is easy to see that E is a discrete extension field of k and
that x is a root of q in i?.

COROLLARY 3.9. Let f(x) be a monic polynomial of degree n^l
over a countable discrete field k. Then there exists a countable
discrete field E containing k and elements aί9 , ccneE such that

fix) = ix - O O - α j .

Proof Repeated application of Theorem 3.8.

As usual the field generated by a19 , an over k is called a
splitting field for /. Classically, the splitting field is unique. However,
this is not the case from the constructive viewpoint. Consider the
van der Waerden field W. Both the Gaussian numbers W{i) and the
field Wipί) constructed by Theorem 3.8 for the polynomial x2 + 1 over
the field W, are splitting fields for x2 + 1 over W. If i e W, then
depending upon the ordering of the polynomials of W[x] we have a
equal to i or — i. As there is no prior way of deciding which of
these occurs, we are unable to decide in advance where to send a
by a TF-isomorphism of W(a) to W(i). Thus we can not construct an
isomorphism between Wia) and W(i) over W.

We can construct an algebraic closure of a countable field k by
counting the polynomials in kix)9 building a tower of splitting fields,
and then taking the union of this tower.
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4* Separability* If λ is a discrete field, and / e k[x], then / is
separable if we can write / as a product of polynomials g such that
(g, g') = 1. An element a in an extension field of k is separable over
h if it satisfies a separable polynomial in Jc[x]. By Lemmas 3.3 and
3.4 the element a satisfies a polynomial h such that (h, h') — 1, since
the property (g, g') = 1 is inherited by factors of g. The following
parallels Pollard [5; Theorem 4.7].

THEOREM 4.1. Let E be a field and k a discrete sub field of E.
Suppose a, βeE are algebraic over k and a is separable. Then
there is a θ in E such that k[θ] — k[a, β].

Proof. Let / and g be nonzero elements of k[x] such that f{a) —
g(β) = 0 and (/, /') = 1. By replacing k by the subfield generated
by the coefficients of / and g we can assume that k is countable.
By systematically looking at polynomials in the various coefficients
of / and g over the prime field, we can, for each integer N, decide
whether |k | ^ N or \k\ > N. Moreover we may then take E to be
k[a, β] which is countable and, by Theorem 3.6, discrete. Hence,
by Corollary 3.9, we can construct a countable discrete field F^E
such that the polynomials / and g factor completely over F.

Let alf , an and βίf , βm be the distinct roots of / and g
in F, with at = a and βι = β. If |fc| <£ m(n — 1), then E is finite
and we can pick θ to be a generator of the multiplicative group of
E. If IkI > m(n — 1), then we can choose cek such that

for 1 <; j <; m and 2 <; i <k n We show that θ = ca + β works.
Now g(θ — ca) = g(β) = 0 s o α satisfies both f(x) and g{θ — ex).

Moreover, by the choice of c, these polynomials have only one common
root in F. If h{x) = (f(x), g{θ - ex)) = s{x)f(x) + t{x)g{θ - ex) then
h has coefficients in k[θ], and ft(α) = 0. Since h is a factor of / it
is a product of distinct linear factors over F. Since h is also
a factor of #(# — ex), which has but one root in common with /,
we must have h(x) = x — a. But h has coefficients in &[#]. Hence
a e k[θ], so β — θ — cae k[θ] and we are done.

THEOREM 4.2. Let E be a field and k a countable discrete factorial
subfield. Let cceE be separable algebraic over k. Then k[a] is
factorial.

Proof. Let g(x) be a polynomial with coefficients in k[a], and
Er 3 k[a] be a countable discrete field containing a root β of
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Then k[<x, β] = k[θ] for some θ, by Theorem 4.1. As k is factorial,
[k[θ]:k] and [k[a]: k] are finite by Theorem 3.7. So [&[#]:&[<*]] is
finite by Corollary 2.3. Thus β satisfies an irreducible polynomial
over k[cc], by Theorem 3.7, which must be a factor of g(x). By
induction on the degree of g we are done.

THEOREM 4.3. Let k be an algebraic number field, that is, finitely
generated extension of the rationals contained in the complex numbers.
Then

(1) k is discrete.
(2) k — Q(cc) for some complex number a.
( 3 ) k is factorial.
(4) k is a finite dimensional vector space over Q.
(5) k is a detachable subfield of the algebraic numbers.

Proof. Since the rational numbers are a discrete subfield of the
complex numbers, the field k is discrete by Theorem 3.6. Every
element of k is separable over Q by Lemma 3.5. By repeated appli-
cation of Theorem 4.1, we can find a in k so that k = Q(a). The
rational numbers are a factorial field by Theorem 1.1. Hence k is
factorial by Theorem 4.2. By Lemma 3.3 an element algebraic over
a factorial field satisfies an irreducible polynomial over that field.
Hence k is a finite dimensional vector space over Q by Theorem 3.7.
Moreover, if β is an algebraic number then βek if and only if the
irreducible polynomial of β over k is linear, and so k is detachable.
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