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CLASSIFICATION OF CLOSED SETS OF
ATTAINABILITY IN THE PLANE

JAN M. GRONSKI

It is proved that under certain mild restrictions every
closed set of attainability of a planar control system with
piecewise constant controls is either the entire plane or
homeomorphic to one of the fol!owing: a closed half plane,
a closed disk or the complement of an open disk.

Let D = {X’} be a family of C* vector fields on R’. We say
that a continuous mapping 7:[a, b] — R? a < b, is an integral curve
of D if there exists a finite partition of the interval [a, bl:a = ¢, <
t, < -++ < t, = b such that 7 restricted to [¢;, ¢;,.] is an integral curve
of some vector field X’ e D. Let x, and x, be points of R®. We say
that «, is attainable from x, (by means of D) if there exists an integral
curve of D, 7:[a, b] — R* such that 7(a) = z, and 7(b) = x,. Notice
that we can always assume a = 0; Y(a) and 7(b) are called endpoints
of v and we set Im Y = 7([a, b]). Let A(x) denote the set consisting
of x and of all the points y € R* which are attainable from 2 by
means of D. Similarly we denote by Ay(x) the set consisting of
and of all the points y € R? attainable from « by means of D,, where
Dy ={Y: —YeD}.

The sets A(x), « € R* determined by a given family D of vector
fields on R? can be viewed as the sets of attainability of a control
system on R?, with discrete control space D and piecewise constant
controls taking values in D (see Lobry [5]). By using the standard ter-
minology from control theory, an integral curve ¥ of D (or the control
defining it) is said to steer z, to z, if x, is attainable from z, via 7.

Families of vector fields on manifolds and their sets of attainability
have recently been investigated by various authors Gerbier [2],
Gronski [3].

Let L denote the Lie subalgebra generated by the elements of
D in the algebra of all C~ vector fields on R* and L(x) be the space
determined by L in the tangent space at x € R®. We write the symbol
Cl A to denote the closure of a set A, Int A for its interior and 04
for its boundary.

We will use the following known result (see e.g., Krener [4] or
Lobry [5]).

THEOREM 1. If dim L(x) = 2, then x € Cl (Int A(x)).

We prove first several auxiliary results.
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DEFINITION 2. Let 7, 7, be nonconstant integral curves of D.
We say that v, and 7, are distinct if zeIm 7, N Im~, implies that
2 is an endpoint of 7, and 7,.

LEMMA 8. Let 7 be an integral curve of D steering x to 0A(x).
Then Im~Y < 0A(x). (See Roxin [6].)

Proof. Suppose that 7:[0, a] — R* is an integral curve corres-
ponding to some control , such that 7(0) =z and 7(a) € 0A(x). Assume
that there exists a ¢, 0 < ¢ < a with the property that v(t) € Int A(x).
Notice that the corresponding control | .; steers points near (t)
to points near 7(a) and that this mapping is a local diffeomorphism
at 7Y(¢). Thus Y([¢, a]) is contained in Int A(x), which is impossible.

An equivalent formulation of this lemma is that no point in
the Int A(x) can be steered to JA(x).

PROPOSITION 4. Let xc€ R*. There are at most two nonconstant
distinet integral curves of D steering x to 0A(x).

Proof. Let u;, % =1,2,3 be three controls and let 7,:J, — R?,
1 =1, 2,8, be the corresponding integral curves of D starting at x.
Suppose that each v, steers x to dA(x) and that the v, are pairwise
distinct.

The existence of two nonconstant distinet integral curves of D
steering x to A(x) implies that x € Cl (Int A(x)). This follows easily
from continuity properties of flows of vector fields.

Let I’y = Imv,. Choose an open ball B about z such that
B\(I', U I'; U I'y) has three connected components. Since x € Cl(Int A(z))
we can assume that one of these components, say C, intersects Int A(x)
and that xeCl(Int A(x) N C). It is clear that there exists ¢, say
v =1, such that I, N Cl C = {x}. It follows that the boundary of C
contains parts of [, and I',., Letyel',N B,y # xand y = 7,(t). Let
V be a neighborhood of y such that VNClIC = @. Then u,|y,,.; steers
a sufficiently small neighborhood of « into V without leaving B. As
we have already noticed in Lemma 2, this induces a local diffeomor-
phism at x. In particular, there are points in C N Int A(x) which are
steered to a point in another component of B\(I", U I', U I'y). But then
the corresponding integral curves of D intersect 0A(x) which contra-
dicts Lemma 2.

Note that this proof established also that sufficiently small ball
about « is separated by JA(x) into exactly two components.

The next result is obtained by obvious modifications of Prop-
osition 4.
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COROLLARY 5. Let dim L(z) = 2 and ye A@X)N0A(x). Then y is
an endpoint of at most two distinct integral curves of D contained
m 0A(x).

In other words 6A(x) has no “branch points.” The hypothesis
dim L(xz) = 2 could be replaced by a weaker assumption x € Cl (Int A(x)).
Simple examples show that without this assumption Corollary 5 is
not true.

Let us now summarize what has been established so far. We
know that there are at most two distinet integral curves steering
x to 0A(x) and neither of them “branches” while remaining in 0A(x).
If they meet the union of their images constitutes the boundary of
A(x). Let us show what happens if they do not meet.

LEMMA 6. If ycoAy(x), then A(y) N Int Ay(x) = @.

Proof. Suppose that there exists a point ze A(y) N Int A,(z).
Then y e Ay(z) € Int Ay(x) by the remark immediately following
Lemma 3. But ycodd(x).

LEMMA 7. Let a:[0,a] — R, be a homeomorphism onto Ime,
and let X' be an arbitrary C' vector field on R, with X'(a'(0)) + 0.
Let t, > 0 be such that X,(z) ¢Ima* for all zeIlma and all 0 < t < ¢,.
Then the mapping H:[0, a] x [0, ¢,] — R? defined by

H'(s, t) = X/(a'(s))

78 a homeomorphism onto its tmage.

The proof is straightforward and uses only existence, uniqueness
and continuous dependence on the change of initial points of integral
curves of X*.

Let a' be as above and let a*(s) = HYa'(s), t,). Assume that X*
is a C' vector field on R* with X*a*(0)) = 0. Let ¢, > 0 be such that

Xi(z) ¢ H([0, a] < [0, t,])

for all zeIma® and 0 <t <t,. Let H*:[0,a] x[0,¢ + t,]— R by
given by

o, 0 {Hl(s, t) t<t,
S, =
X(H' s,y 1)) t> 4.

Clearly H® is a homeomorphism onto its image. It is also clear that
given a collection X*, ---, X" of vector fields satisfying appropriate
conditions and a curve a' we could construct inductively a sequence
of homeomorphisms H* from some rectangle into R®.. More precisely,
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let ¢, , = >k t, and let a¥s) = H* Y a*'(s), ¢;,_,). Assume that the
collection X, ..., X" satisfies the following properties:

1. X' satisfies the hypothesis of Lemma 7.
(*)2. X¥a*0)) = 0.

3. Xiz) e H"'([0,a] x[0,c,,]) for all zeIma* and 0 <t < ¢,.
Then H*: [0, a] % [0, ¢,] = R* defined by

He(s, t) = H"(s, t) t= s
’ Xt o (HY (s, ¢,)) > ¢,y

is a homeomorphism for 1 £ %k < n.
Let « be an arbitrary point in R? and let ze€dA(x). Assume
that » is a control steering z to a point y € 0A(x). Moreover let

y=XrX''--- X (2),
where X?e D and are such that

XX o Xi(2) # 0

ti—1

for all + = 1. Finally let a: [0, a] — A(x) be a homeomorphism onto
Im « such that

a0) =z,
a(t) e Int A(x) 0<t=a.

LeMMA 8. If a s sufficiently small then a, X', ---, X" satisfy
conditions (*).

Proof. 1t follows immediately that Im Xi}(a(0)) N Im a = a(0) = z.
Since X' is C' and [0, ¢,] is compact, it follows from the continuous
dependence on the change of initial conditions that for sufficiently
small o, Xi(2)¢Ima for 0 <t <t¢, and ze¢Ima. Thus

H:[0, a] x [0, ¢t,] — A(x)

defined as before is a homeomorphism. Note that H restricted to
[0, a'] x [0, t,] where a' < @ is still a homeomorphism. One can now
show by induction, repeating the same argument as above, that the
lemma holds.

LEMMA 9. Let dim L(z) = 2 and let 7:[0, a] — R* be an integral
curve of D steering x to 0A(x). Then there is ¢ 0=t <a and a
vector field X e D such that

X,(7(t)) € Int A(x)
for s > 0.
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Proof. Suppose to the contrary that for any XeD and all 0 =
t<a,

X, (7(t)) e 0A() .

Without loss of generality we can assume that for some YeD and
0<e<a

V() = Yi(x)
for 0 <t <e. Then
[X, Y](7(®) = a®) Y(V(2))
for all 0 <t < e. Which implies that
dim L(7(t)) =1

for 0 <t < ¢ which contradicts the assumptions when ¢ = 0.

PROPOSITION 10. Let dim L(w) = 2 for all points w e dA(x) and
let 7:]0, a] — R? be an integral curve of D steering x to 0A(x). Let
Yy =7(,) with 0 <t,<a. Then there exists a meighborhood V of
Yy such that the set 0A(x) NV 4is homeomorphic to an interval.

Proof. By Lemma 9 there exist points z, z,€Im~ and vector
fields X'e D, X*e D, with the property that

2, = 7(tz’) t, <t <t,
Xi(z,) € Int A(x) 0<s=a,,
Xiz,)eInt Ay(7(a)) 0<s=Za,.

Define 7,: [0, a,] — R* by
s) = Xiz)
for 1 =1, 2 and let
L, =[0,a;]x[0,t —t].

Using Lemma 8 with ¢, = t, — ¢, and H;: L, — R? defined in an obvious
way we conclude that H,(L,) are homeomorphic to rectangles and
by Lemma 6 we can see that

HI(LI) N Hz(Lz) = {H1(0: t): 0=t t, — t1} = {HZ(O; t): 0=s=t= t, — tl} .
We conclude that the set
H\(L,) U Hy(Ly,)

is homeomorphic to a rectangle and that
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vy € Int (H,(L,) U Hy(Ly,))

Let V = Int(H,(L,) U H,(L,)). Since Int (H,(L,)) < Int A(x) and
Int Hy(L,) < Int Ay(7(a)),

0A(z) N (Int (Hy(Ly)) U Int (H(Ly))) = ©
it follows that if weodA(x) NV then
we{Hl(O’ t): 0 é t _S_ tz - tl}

which proves the proposition.

THEOREM 11. Let dim L(w) = 2 for all wedA(x) and let A(x)
be closed. If the set 0A(x) is not empty then it is homeomorphic to
a Jordan arc or a closed Jordan curve.

Proof. Assume that
0A(x) # © .

Let y€0A(x) be a point other than x and let ¥ be an integral curve
of D steering x to y. Moreover let us assume that ¥ is a homeo-
morphism from its domain onto its image. Let X, be the set of all
integral curves o: [0, a(0)] —» 0A(x) such that Imv & Imo and o is a
homeomorphism onto its image. Let
B =UImo.
oely

Clearly B, is connected. Let us introduce an ordering on B, as
follows. We will say that

T, < X,

if and only if there exists o€ 2, such that o steers x to x, with
x,€Imo and x, # 2,. Clearly x is the only minimal element of B,.
We claim that if there exists a maximal element then it is unique
and B, is a homeomorphic image of a closed interval.

" Suppose that 2z, © = 1, 2 are maximal elements of B,. Let
0. [0, a(o,)] — 0A(x) be integral curves of D steering = to z,. Note
that Im o, are homeomorphic images of closed intervals, thus they
are closed and Im o, N Im ¢, must contain its maximal element, say
2, Then 2z, would be a “branching” point contradicting Corollary 5.
Thus there is a unique maximal point in B, and the integral curve
steering x to this point is a homeomorphism that we were looking for.

Assume that there is no maximal point in B, and that there
exists an increasing sequence of points {x,};_, in B,, such that the
limit point ¥ of {x,}7., exists, is an element of B, and is such that
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y < x, for some k = 1. We claim that in this case ¥ = 2 and that
B, = 0A(x) and is homeomorphic to a circle. Indeed if z,_, <y <
%, (X, = ), then we would contradict Proposition 10. Thus if y < x,
for some &k then ¥y = x. We can assume without loss of generality
that * = y = lim«,. Let 7,.:[0,a] —» 0A(x) be an integral curve of
D steering x to «,. Since x, < x, there exists an integral curve
7. [0, a;] — 0A(x) steering x, to x,. We can construct now an integral
curve of D, 7,:[0, a, + ai] = [0, a] — 0A(x) steering x to x,, with
Im 7 = 72([0; a’l])’ bY

v,(t) 0<t=<a,

V() = 1

Tt —a) e, St=a,.
By induction we can define entire sequence of integral curves of
D, v,:10, a,] — 0A(x) steering z to z, with Im v,,_, = 7,([0, a,_,]). Note
that a,_, < a,. Let

¢ =lima, .

n—00

If a < =, let h:[0, a] — S* such that
h0) = h(a) = p'

and % is a continuous map which is a homeomorphism onto its image
if restricted to [0, @). Define H: S'— 6A(x) by

H(p) = 7.(h7(p))
if a,_, < h¥(p) £ a, and
H(p") = = .

Clearly H is a homeomorphism. If a = o, let k= S'— [0, ) be a
continuous 1 — 1 mapping defined in such a way that

kz) =0
for z = (1, 0)
3 0y —
i ) = 0
and

lim k(e'?) = o .
00—

Again define H: S'— 0A(x) by
H(p) = v.(k(p))
if a,_, < k(p) £ a, and
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H(z)=x.

Clearly H is a homeomorphism. Thus if there is an increasing sequence
{x,} in B, converging to a point ¥ in B, with ¥y < z;, for some & then
y = 2 and B, is homeomorphic to S,. An argument exactly parallel
to one in Proposition 4 will show that there are no integral curves of
D steering « to 0A(x) which are not contained in B,. Thus B, = 0A(x).

Assume now that there is no increasing sequence {x,};, in B,
such that its limit point % is smaller than z, for any £k =1,2, ---.
We claim that B, is homeomorphic to [0, 1).

Since R? is a second countable space it follows that cl B\{«x} is
a second countable space, hence it is Lindelof space. It follows from
Proposition 10 that for any y > = set

B(y) ={zeB;:x <z <y}
is open in the relative topology of the cl B,. Moreover

cl B\{x} =y€};\l(z)31(’y) .

By the properties of Lindelof spaces (see Dugundji [1]) there exists
a sequence {¥,}.—, such that

cl B\{e} = U Bi(.) -
We can assume without loss of generality that

B\(y.) & B(Yns1)

for all n =1,2, ---. It is easy to see that the sequence {y,}r.. is

cofinal in B, i.e., for any element z of B, there exists an % such

that 2 <y,. Let =1y, and let 7.:[0, a,] — 0A(x) be an integral

curve of D steering ¥, to ¥,.,. Define 7,:][0,b,] —» 0A(x) where b, =
r s, by

7.(t) = 72<t — g“")

for S ca, <t < i a,. It is clear that v, is an integral curve of
D steering « to b,. Let b =lim,..b,. Define H:[0, b) — 0A(x) by

H(t) = 7.(t)

for t <b,. It is clear that H is well defined, one-to-one, onto and
continuous. We will show that H™ is also a continuous map. Let
{#z.}7-1 be a sequence in B, such that lim, ..z, = 2,€ B,. Since {y,}7,
is cofinal there exists an N such that, except for finitely many,
2, € B.(yy). Note that v,:[0, by] - 0A(x) is a homeomorphism onto
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its image and that
B(yy) S Imvy .
Thus

lim H'(z,) = lim v3'(z,) = 75'(%,) = H '(z,) .
This proves that H is a homeomorphism.

We have thus shown that B, is homeomorphic to one of the
following objects: closed interval, half closed interval or a circle.
In case of a circle we have shown that B, = 04(x).

Assume that B, # @@. If there is an integral curve of D steering
x to A(x)\B,, then we can construct B, in the same manner as we
constructed B,. Following the proof for B, we establish that B,
must be homeomorphic to a closed or a half closed interval. It could
not be homeomorphic to circle for then B, =0A(x) and B, = @.
Clearly

Bl U Bg = aA(w) .

Thus in general the following three cases may occur
(1) BlzaA(w), B,= o
(2) Bi,# @; B, + @

(a) {#} = clB,NeclB,
(b) {x} =clB,NeclB,.

We have already investigated case (1). If case 2(a) occurs it is clear
that 0A(x) is homeomorphic to a Jordan arc. For case 2(b) we will
show that 0A(x) is homeomorphic to S' by showing that at least one
of B, and B, is closed, say B, = 7[0, 1] with v(0) = %, and that there
is at most one point distinet from « in el B, N cl B, namely (1).

Suppose y,, y.€clB,NeclB, and y;, # 2. Note that both %, and
Y, are elements of B, U B, = 0A(x) as A(x) is closed. Assume that
9, ¥, € B,. Since B, is a Jordan arc there is an induced order on B, and
one of them, say ¥,, is a point in between = and %,. This contradicts
Proposition 10. Suppose that y, € B, and y,€ B,. By Proposition 10
none of the two can be an internal point of B,. B,*= @,+t=1, 2, and
none is homeomorphic to a circle, thus B, is homeomorphic to a
half-open interval or a closed interval, but in the former case the
only point which is not internal point of B; is . Hence B,, v+ =1, 2
is homeomorphic to a closed interval.

Since A(x) is closed and dA(x) = B, U B, it follows that ¥, = ¥..

THEOREM 12. Let dim L(w) = 2 for all wedA(x). Then set A(x)
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t8 homeomophic to one of the following objects
(i) closed half plane
(ii) closed disk
(iii) complement of an open disk
(iv) R

Proof. Suppose that 0A(x) is homeomorphic to an open interval.
Let v:(0, 1) > 0A(x) be the homeomorphism. Consider

II: 8 — R?

the stereographic projection. Assume that point » in S?is such that
II; restricted to S*\{p} is a homeomorphism. It is clear that /73 is
a homeomorphism and that

p = lim IIz"v(t) = im IIz'v(¢) .
t—1— t—ot

Thus I73'v(0, 1) U {p} is homeomorphic to S' which separates S* into
two components each of which is homeomorphic to an open two
dimensional disk. Since S*\{p} is homeomorphic to R? via II one of
these components must be [7;'(R*\A(x)) and the other I7z'(Int A(x)).
Thus I13'(A(x)) U {p} is homeomorphic to a closed disk, and I7Tz'(A(x))
is homeomorphic to a closed half plane.

Suppose that dA(x) is homeomorphic to S!. Then by Jordan curve
theorem R*\0A(x) has two components, one of which must be Int A(z).
If this is the bounded one then A(x) is homeomorphic to a closed
disk, otherwise R A(x) is homeomorphic to an open disk. If 0A(x)
is an empty set then A(x) = R’. Indeed the only subsets of R* with
empty boundary are empty set and R*. Set A(x) is nonempty thus
A(x) = R

THEOREM 13. Let 0A(x) # @. Let dim L(w) = 2 for all w € 0A(x).
Let B(x) denote the set of points z€dA(x) such that there exists an
integral curve of D, v:[0, a] — dA(x) and a t, in (0, a), with 2 = Y(t,).
Then B(x) ts an tmbedded C-submanifold of R* with at most two
connected components.

Proof. Set B(x) is contained in 0A(x) N A(x). Proposition 10
shows that B(x) is an imbedded C°-manifold. Let z € B(x) and < be as
above, determined by piecewise constant control u:[0,a]— D. We
have only to consider the case when ¢, is a point of discontinuity of
u. Let X! X‘eD be two distinct values of u near ¢, and assume
that the integral curves of X* and X’ are transversal at z. Then
one of the integral curves steers either an interior point of A(x) to
its boundary or a point of dA(x) N A(x) to the exterior of A(x), which
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is impossible. It follows from our previous discussion that if
dim L(w) = 2 for all wedA(x) then 0A(x)\B(x) contains at most two
points.

From the topological point of view the boundary of a closed set
of attainability has been completely described, however from the
control theoretic point of view it seems necessary to subdivide the
three cases described in Theorem 11 into the following:

I. The boundary of A(x) is homeomorphic to an open interval.

II. The boundary of A(x) is homeomorphic to a circle.

(1) There are no two distinet integral curves of D steering
to 0A(x).

(a) There exists a nonconstant integral curve of D, 7:[0, a] —
0A(x) steering « to x with v(a) = 2.

(b) There is no integral curve having the above properties.

(2) There are two distinct nonconstant integral curves of D
steering x to dA(x).

(a) There exists y e 0A(x) and two distinet nonconstant curves
v, and v, of D steering x to ¥.

(b) There is no point y in dA(x) having the above properties.

III. The boundary of A(x) is empty.

Let us note that in case I we must have two distinet nonconstant
integral curves of D steering z to 0A(x).

All the possible cases listed above actually occur. We illustrate
all of them in the examples below, omitting some of the lengthy
computations. In each figure the shaded area represents the set of
attainability from the point indicated by its coordinates.

ExampLE 14. 1. Let D = {X,, X,, 0} with

X(,, @) = (—2ax,, x, + 22,) for (x,x,)c R?,
Xz, o) = (—20,, ¢, + 22, + e — 1) for (x,2,)ecR?.

Then the set A(x, 0) is equal to R* if 0 = x, < 1, is of type Illa if
2, =1,isof type I12a if 1 <2, <1 + ¢ " and is of type Iif 2, = 1+ ¢~
(See Fig. 1.)

2. Let D ={X,, X,, 0} where

Xl(xli .’.Uz) = (_xu _xz) for (xu .’/Uz) eR’ ’
Xo(x,, ;) = (200, —a, + 22, — 1) for (@, x,) e R .

Then the set A(—e* — 1, 0) is of type 1I12b. (See Fig. 2.)
3. Let D= {X, X,, 0} with

Xi(@y, ) = (—x, —,) for (x, ®,)eR*,
Xz, 2,) = (—2¢, — 20, — 2,2, + 1) for (x, x)eR*.
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FiGURrE 1

FIGURE 2

(0,0)

FIGURE 3

Then the set A(0, 0) is of type IIb. (See Fig. 38.)
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