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EXTENDED WEAK-*DIRICHLET ALGEBRAS

TAKAHIKO NAKAZI

Let (X9J^9m) be a probability measure space and A a

subalgebra of L°°(m), containing the constant functions.

Srinivasan and Wang defined A to be a weak-*Dirichlet al-

gebra if A + A (the complex conjugate) is weak-*dense in

L°°(m) and the integral is multiplicative on A, \fgdm =

\fdm \gβm for /, ge A. In this paper the notion of extended

weak-*Dirichlet algebra is introduced; A is an extended
weak-*Dirichlet algebra if A + A is weak-*dense in L'im)
and if the conditional expectation E^ to some sub σ-alge-
bra & is multiplicative on A. Then most of important
theorems proved for weak-*Dirichlet algebras are generalized
in the context of extended weak-*Dirichlet algebras, for in-
stance, Szegδ's theorem and Beuring's theorem. Besides, our
approach will yield several theorems which were not known
even for weak-*Dirichlet algebras.

l Introduction. This paper presents a generalization of a por-
tion of the theory of analytic functions in the unit disc. The theory
to be extended consists of some .basic theorems related to the Hardy
class Hp (1 <̂  p ^ oo). For example, (i) the theorem of Szegδ, on
mean-square approximation of 1 by polynomials which vanish at the
origin, (ii) Beurling's theorem on invariant subspaces of H2, (iii) the
factorization of H* functions into products of "inner" and "outer"
functions, (vi) Jensen inequality. The paper was inspired by the
work of Srinivasan and Wang [13]. They introduced weak-*Dirichlet
algebras for a generalized analytic function theory. Suppose A is
an extended weak-*Dirichlet algebra of L°° = L°°(m)9 defined in the
abstract. The abstract Hardy spaces Hp = Hp(m)9 1 ^ p <^ oo, as-
sociated with A are defined as follows. For 1 <: p < oo, Hp is the
Lp = Lp(m)-elosure of A, while H°° is defined to be the weak-*closure
of A in L°°. In operator algebras, A is called a subdiagonal algebra
by Arveson [1]. Independently by the author [12], A is called an
algebra on which m is quasi-multiplicative, in the study of invariant
subspaces of weak-*Dirichlet algebras [12].

Let B be the algebra of continuous, complex-valued functions on
the torus T2 = {(z9 w) e C2: \ z | = | w \ = 1} which are uniform limits
of polynomials in znwm where (n, m) e {(n9 m) e Z2; m > 0} I) {(n, 0) 6 Z2:
n ^ 0}. Denote by m the normalized Haar measure on T2

9 then B
is a weak-*Dirichlet algebra of L°°. Set A = U =̂o znB9 then A is not
a weak-*Dirichlet algebra of L°°, but it is an extended one. When
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is the σ-algebra of all Borel sets on T2, let & be the sub σ~
algebra of Jzf consisting of all Borel sets of the form Ex T where
E is a Borel set on T. Let E** denote the conditional expectation
for &. We show, if feB, then

( log |/1 dm ^ ( log I E"(f) \ dm ^ log ( fdm
)τ2 }τ2 Jr 2

LetThere exists f in B such ( log | E*(f) dm > log \ fdm

S JT2 JT2

logwdm = — oof if EΛ(logw) > — oo a.e.,
T2

then there exists / in H\B) with w = | / | 2 where E^(log w) is defined
by lim E^{\og (w + ε)}. Set I = n*=o ^B, then

o<ε-->o

inf \ I 1 — g |2 wdm — \ exp E^(log w)dm .
gel JT2 JT2

2. Extended weak-*Birίclilet algebras* We define an extended
weak-*Dirichlet algebras formally.

DEFINITION 1. Let (X, j ^ 9 m) be a probability measure space.
Let E ' denote the conditional expectation for the sub σ-algebra &
of Ĵ C An extended weak-*Dirichlet algebra is an algebra of IT —
L°°(m) such that (i) the constant functions lie in A; (ii) A + A is
weak-*dense in L°°; (iii) for all / and g in A, E*(fg) = E^(f)E^(g);
(iv) E*(A) £ A Π A.

When JE^(A) = {1}, the space spanned by 1, then E*(f) = ί /dm
for/ in A, and hence A is a weak-*Dirichlet algebra. For 1 <Ξ p ^
oo, let i* - {/G i?2". £/^(/) - 0} and let I = {fe A: E"(f) = 0}. Sup-
pose 1 g p ^ oo. For any subset MaLp, denote by [M]p the Lp-
closure of M (weak-*closure for p = ©o). For any measurable subset
E of X, the function 1E is the characteristic function of E. If
feLp (1 £ p £ c>o), write 2?(/) for the support set of /. The following
lemma is well known [10] and the proof is easy.

LEMMA 1. For 1 <; p ^ oo,

f |/|pdm / e L p .

?' f in L°°, || E**(f) IU <; II/IU, where \\ W^ is an essential sup-norm
in L°°. Moreover E^ is a weak-*continuous linear operator from L°°
into LΓo

LEMMA 2. For I <, p <, oo, E*(HP) = [E*(A)]P and I* = [I]p.
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The proof is clear by Lemma 1.

PROPOSITION 1. Suppose 1 ̂  p <; ©o.
(1) / is an ideal of A and P is a closed (for p = oo weak-*closed)

invariant subspace of Lp.
(2) I is a maximum ideal with the property that if J is an

ideal of A which contains I, then J — E^(J) + I and E^(J) is an
ideal of E*(A).

(3) P is a maximum invariant subspace with the property that
if Jp is a closed invariant subspace of Hp with Ip QJPQ Hp, then
Jp = XBE"{H*) © 1* = XBH* 0 (1 - χE)P where XE belongs to [^(A)]^
and 0 denotes algebraic direct sum.

(4) I (or I°°) is a maximum ideal of A (or U°°) which is con-

tained in Ao = j / e A: ί fdm = θ\(or H% = | / e H°°: [ fdm = θ | \

Proof. Since JE (̂/flr) = E"(J)E"{g) for all / and g in A, (1) is
clear.

(2) It is clear that if J is an ideal of A which contains I, then
J = ̂ ( J ) + J and JS^(J) is an ideal of E*(A). Suppose Γ is an
ideal with the above property, then kerE^\IfQl. E*(Γ) + J 2 Γ
and E*(Γ) + I is an ideal of A. By the assumption on Γ, EW(Γ) + I=
E*(Γ) + Γ and hence £^(Γ) + / = Γ. Thus J ' 2 L

(3) can be shown as in the proof of (2), using Lemma 2. For
E^(A) E^(JP) £ ^ ( J * ) £ [E^(A)]P = LP(X, ^ m) and so JK^(J^) =
XE[E^(A)]P for some Z^ in [^(A)]^ = L°°(X, ̂ , m).

(4) Set J = \feA: \ fgdm = 0 for all g in A } , then J is a

maximum ideal of A which is contained in Ao. We shall show J = I.

Since J 2 1 , by (2), / = E"(J) + I. lffeE"(J), then fe A and hence

( I /I* dm - 0. Thus JE7%7) = {0} and I = J. The proof for Γ is

similar to the above.

LEMMA _3. E"(A) ^ A n A and for p^ 2, ί^(H») = Hp f) Hp and
hence [A n A]p = iί31 ΓΊ J?p.

Proof. By Lemma 2, E^(HP) QHP Γ) Hp. We shall show that
HpΠHpQ E^(HP). lίfeHpf] Hp, then both/ - #*(/) *nάf-E"(f)
lie in I p . Since p ^ 2,

( 1/ - E*(f) \*dm=\ E*{(f - £?-(/)(/ - E*(f)}dm

E*(f - E"(f))E*(f - E*(f))dm = 0

and so / = E*(f) a.e.. The proof for E*(A) = A Π A is similar to
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the above.
Let £f™ be a commutative von Neumann algebra of operators

on L2 which is contained in L°° and let & be the σ-algebra of
measurable subsets E of X for which the characteristic functions
χE lie in £f°°. Then & is a sub σ-algebra of J ^ and
L°°(X, ̂  m). We say JSP* is the conditional expectation for
(or

PROPOSITION 2. Lei A be a weak-* closed algebra of L°° such that
(i) the constant functions lie in A; (ii) A + A is weak-*dense in L°°.
Let E^ be the conditional expectation for A f] A and let K = L2Q H2

where '&' denotes the orthogonal complement of H2 in ZΛ Then E^
is multiplicative on A if and only if H2 Π H2 = [A Π A]2 and KczH2.

Proof. Suppose E^ is multiplicative on A. Then Lemma 3
implies H2 f] H2 = [An A]2. Since H2 = H2(λH2®I2 and A + A
is weak~*dense in L°°, L2 = i ί 2 0 / 2 and so K = I 2 .

Suppose H2ΠH2 = [An A]2 and ^ c H 2 . Then H2 = H2n32®
K. Since if2niϊ_2 = [An A]2 and E"(A) = AnAf Em{R2) - [E^(A)]2=
[A n A]2 =• H2 Π H 2 and hence ker E^ \Hi = if. By the definition of
iΓ, K Π I/00 and so (ker E^ |Ht) Π L°° is an ideal of J? = H2 Π L°°.
Since ker £r^ | 5 = (keτE^ \H2) Π I/°°, ker £?^ | s is an ideal and hence E^
is multiplicative on A.

Later in § 5 we shall use this proposition to show that an algebra,
consists of analytic functions defined by a flow, is an (extended)
weak-*Dirichlet algebra.

DEFINITION 2. By Jensen's inequality, we mean the following
statement:

for every/ in A, where E^(log |/ | ) is defined by Iim0<δ^0j&^{log(|/| +e)}
If E*{A) = {1}, then E*(w) = ( wdm and hence ί log |/ |dm ^

ιr Jx Jx

log \ fdm . Then it is known [15, Corollary 2.4.6.] that m is a
Jensen measure.

LEMMA 4. Lei J5 be {1} + J, £/&e% B is a subalgebra of A and
for all f and g in B,

[ fgdmΐ=.( fdm\
JX Jx Ji

The proof is clear.
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PROPOSITION 3. E*(A) = A Π A and for p ^ 1, E^(HP) = Hp n
H* and hence [A Π A]p = Hp Π Hp.

Proof. If feB = {1} + 1, then £^(/) = j^/dm. By Theorem 2

in § 3, Jensen's inequality is valid for A. By the definition of Jensen's
inequality, it follows that for all / in B,

[ log I/I dm ^ log I [ fdm

If g in [B\ is a real-valued function, then it must be a constant [5,
p. 140]. Hence if feHp Π Hp, then both f -E^{f) and / -JP(f)
lie in /'(SlBL) and so / = E"(f) a.e.. Thus E^(HP)^HPΠHP and
by Lemma 2 J E ^ ( I P ) = I P n Hp.

PROPOSITION 4. Suppose 1 < p ^ oo. τ%ew

ίί^ φ J^ = Hp Π 5 P 0 Ip φ I p = Lp.

Proof. Since A+A is weak-*dense in L°°, by Lemma 3, E^(A) +
I + J is weak-*dense in L°°. By Lemma 1, [E*(A)]P 0 [1+ I],, = ZΛ
By Theorem 2 in § 3, m is a Jensen measure for 5 = {1} + /. Hence
by [9] and Lemma 4, [I + Ϊ]P = P 0 ΪΛ

[̂ • (̂A)]̂  is a commutative von Neumann algebra as operators on
IΛ

LEMMA 5. Lei E^ he an conditional expectation for [
then E^ = E^. Hence &= {X, }̂ if and only if E*(A) = {1}.

Proo/. For all fin A E"(f) = E*(E"(f)) = E"(f). For E"{f) e
Since A + A is weak-*dense in L°°, it follows that

Now we shall show the main lemma which is used later and is
trivial for weak-*Dirichlet algebras, i.e., E^(A) = {1}. We do not use
Jensen's inequality to show it.

LEMMA 6. Suppose 1 <: p <* oo α^d v e Lp. // /or αZZ / and g

in J, \v(f + (7)<Zm = 0, ίfce^ v lies in E^(HP) = [E*(A)]P.

Proof. Since A + A is weak-*dense in L°° and so E*(A) + I + I
is weak-*dense in L°°, by Lemma 1, it follows that [E^(A)]P®[I+I]P =
Lp. Let E^ be a conditional expectation for [E^iA)]^ then J?9" =E^
by Lemma 5. Hence E*(L*) = E^(HP) and so ker £?^|z2, = [/+ J ] p .
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If veLp annihilates 1 + 7 , i.e., I v(g + f)dm = 0 for all / and g in

/, then

\ {v - E"(v))(g + f)dm = - ( E"(v)(g + f)dm
JX JX

= - \ Ew(v)E*(g + f)dm = 0 ,
JX

i.e., v — Em{v) annihilates 1 + 7 too. Since v — E^(v) lies in [I + ΐ]p,
it follows that v = E*(v) a.e.. For if keLq with 1/p + 1/q = 1,
since v — E^iy) annihilates J + 7 and it lies in [/ + ϊ]p,

k{v - E^{v))dm = ί E"(k)(v - E^(v))dm - 0 .
}χ

Thus for any k in Lq, \ k{v — E^(v))dm = 0 and so v = E^(v) a.e.
JX

3* Invariant subspaces and Jensen^s inequality* Let A be an
extended weak-*Dirichlet algebra of L°° with respect to E^. For
1 ^ P ^ °°, a closed subspace Λf of Lp is called invariant if feMand
βr e A, then /gr e M.

DEFINITION 3. Let M be a closed invariant subspace of Lp for
1 <; p ^ oo. (i) Λf is called type I if

for every nonzero XE e [E*(£)]„ so that XΈMφ {0}. (ii) M is called
type II if M1 is type I where M1 = j/eZ^Z,8: ί /^dm = 0 for all

} l Jx

and F is a support set of M and 1/p + 1/s = 1, and if Λf
contains no nontrivial invariant subspace of type I. (iii) Λf is called
type III if Λf = [IM]P and Λf1 = [IML\ where 1/p + 1/s - 1.

If ^ = {X, φ} or -EP(A) = {1}, then an invariant subspace of type
I is a simply invariant subspace [15], for then [E^iA)]^ is the com-
plex field.

PROPOSITION 5. Suppose 1 ^ p <; oo and M is an invariant sub-
space of Lp. Then

where χEl, XE2, and χE3 belongs to [E^(A)]^ χEι + XE2 + χEz = 1. XE]M
is type I, Z^Λf is type II and χEzM is type III. This decomposition
is unique.

The proof is parallel to [12, Theorem 1] and we omit it.
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THEOREM 1. Let M be an invariant subspace of ZΛ
(1) M is type I if and only if

where XE belongs to [E^ζA)]^ and q is unimodular. IfM= XEq'Hz

with another unimodular qf', then χEqf = χEFq where F is a uni-
modular function in [E^iA)]^.

( 2 ) If M is type II, then

where XE belongs to [E^^)]^ and q is unimodular.

The proof is almost parallel to [12, Theorem 2] if we use Lemma
6. The proof of the part of 'only if is only nontrivial by that
p = L* θ H2. We shall give a sketch of the proof.

Let M be type I and let R = MQ[IM]2. Observe that for any
/ in R,

\ g\f\2dm = 0 (gel) .
J X

Then by Lemma 6, it follows that | / | 2 lies in E^{Hι). By Lemma
2 and Lemma 5, E^(Hι) = Z/(X, ̂  m). Hence | / | lies in E^{Hι) and
XE{f) e [£7^(A)]TO. Let JEΓ be the support set of R, then there exists /0

in R with #(/0) = E. Define

then lEq lies in M. By the assumption on M and that Hzζ&I2 = L2,
it follows that M = XEqH\

COROLLARY 1. [15, Theorem 2.2.1]. Suppose &— {X, φ}9 M is
a simply invariant subspace in L2 if and only if M — qH2, where
q is unimodular and the q is unique up to multiplication by a
constant of absolute value 1.

In the proofs of Propositions 3 and 4, we used Jensen's inequality
for A. We now prove it. Let weL1, w ^ 0 and ε is any positive
number. Define JS^(logw) by lim^0 E^{log (w + ε)}.

THEOREM 2. Jensen's inequality is valid for H°°.

Proof. Let / be an invertible element in H°°, then log|/ | eL°°.
Let E^ be an conditional expectation for [E^(A)]^, then by Lemma
5 E* = E^. Since L°° = E^L00) ® [I + /L, £P(log |/ |) e E^(L°°) and
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log I/1 - E*Qog I/1) e [I + I]„. Hence log | /1 - £P(log |/1) lies in
the uniqueness subspace of [£]„ = [{1} + /]„ by Lemma 4 and [5, p.
103]. By [5, p. 103], there exists /2 in [B]m such that log | / | -
ΈPQog I/I) = log |/ 2 1. Set/, = exp E*Q.og | / | ) , then/x 6 E°{H"). Since
both f± and /2 are invertible in ίΓ°, /L/2 is in if" too and

log I/I -log I/I =

Hence / = qfj2 for some unimodular q in Eco(Hm), log IΛ | = log |
and E"(J) = g / ^ ( Λ ) . Since ^ ( l o g |/, |) = 0,

log I /> I ώm = log f2dm = 0

and so /2 = c + /,,„ for a constant c of absolute value 1 and for
/ 2 i 0 e[J] ω . Thus for any invertible / in W°,

= log I eg/

= log I E\f)

For all / in H°° and for any ε > 0, ίP{log (|/| + e)} ^ log | E'(J) |.
For log (I/| + ε) e Lro and so there exists an invertible g in H°° with
log (I/I + ε) = log I fir I, using Theorem 1 as in the proof of [15, Lemma
2.4.3]. Now we can use the method of Hoffman [6, Theorem 4.1].
L e t h =fg-\ t h e n \h\ = \f\f\g\ = \f\K\f\ + ε) ^ 1. By L e m m a 1,

E"(h) I ^ 1 and so I E*(f) | | E"(g) I"1 ^ 1,

Since g is invertible in H™, by the first half of this proof, log
171) = ^{log(|/ | + ε)}. Thus

(I/I + e)} = log I E*(g) | ^ log | ^

COROLLARY 2. For every f in A,

(1) ί log |/1 dm ^ \ log \E*(J)\ dm
JX JX

(2) ( e x p jS"(log \f\)dm ^ ( | E"(f) \ dm
}χ JX

(1) of this corollary is known [1, Corollary 4.4.6]. Our proof
is different.

COROLLARY 3. For every f in H\

E^(\og I/I) ;> log I E*(f)

and so
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( log I/I dm S: \ log | £?*(/) | dm
JX JX

\ exp £P(log I/I) dm ^ f | #*(/) | dm .
JX JX

Proof. Using Fatou's lemma for the conditionol expectation
(easily shown), as in the proof of [3, p. 122], we can show this
corollary.

4* Szegό's theorem and factorization theorems* Let A be an
extended weak-*Dirichlet algebra of IT with respect to E^. In this
section we shall show Szegδ's theorem which is different from that
in Arveson [1, p. 611].

DEFINITION 4. A function h in H1 is called outer if [hA\ = PL1.

If h is outer, then | h | > 0 a.e. and | E^(h) | > 0 a.e.; in particular,
χEh <t [hl\ for every nonzero 1E in [E^(A)]^. If h, h1 are outer and
\h\ = \h'\, then h = qhf for some unimodular q in [JE

LEMMA 7. If feL2 and lEfί [f II for every 1E in [E^{A)}^ with
χEf φ 0, then f — y*E{f)<lh where h is outer and q is unimodular.

Proof. Our assumption implies that [fA\ is an invariant sub-
space of type I, and hence by Theorem 1, [fA]2 = XE{f)qH2 for some
unimodular q. Now this lemma is clear.

As we noted in the proof of Theorem 2, H°° is a logmodular
algebra on the maximal ideal space of L°° by Lemma 7. In general,
m is not multiplicative on H00. However E^ is multiplicative on
H°°. Moreover if we use the method of Srinivasan and Wang [15,
pp. 230-231], it is easy to show the following.

(a) Hι = ifeL1: \fgdm = 0 for all g in /}.

(b) f r = £ P n L ~ *
If D is a subalgebra such that D 2 H°° and it is an extended weak-
*Dirichlet algebra with respect to E*, then D = H00. For I00 £ ker E* \D

and by Proposition 4 [ker E" \D\ Q P. So [ker E^ \D\ = P and
[Z>]2 = H2 by Proposition 4. By (b), it follows that D = ίί0 0.

THEOREM 3. Lei weL\ w ^ 0.

inf \ 11 — # |2 wdm = \ exp £Pχiog
ge/ JX JX
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where E^(logw) is defined by limβ^0 E^{log (w + ε)}.

Proof. We shall use the method of Srinivasan and Wang [15,
Theorem 2.5.5]. We can show the inequality of arithmetic and
geometric means for conditional expectation. So if v is a real func-
tion in L1 and expveL1, then exp£^O) ^ E^iexpv). Fix weL1,
w ^ 0. Hence for any g in I and any ε > 0,

11 — g ]2 (w + ε)dm ^ \ exp E^{log 11 — g |2 (w + ε)}dm
Jx

= I exp iP(log 11 — g |2) exp E^ίlog (w + ε)}dm .

Jx

By Corollary 3,

[ 11 - g |2 (w + ε)dm ;> ( exp £/! {̂log (w + ε)}dm .

As ε->0

S I 1 — g |2 wώm ;> \ exp lim JS^ {log (w + ε)}ώm
X JX S->0

= \ exp E^(log w)dm
Jx

for all g in /, which is one half of theorem.
Fix any ε > 0.

inf [ 11 - g |2 (w + ε)dm > 0
gel )E

for all nonzero 1E in [E^{A)\^. For by the first half of theorem,

inf [ |1 - g\2XE(w + ε)dm
gel JX

^ [ exp E^{\og lE{w + ε)}ώm ^ 0 .
JX

For let E^ be a conditional expectation for XzlE^iA)]*, and let
be a conditional expectation for (1 — %E)[E*(A)]X. Then

s)}

= lim (XEE^[log{XE(w + s) + 8}] + (1 - %£)^[log {XE(w + s)

= lim [E^{log (w + s) + δ) + E^(log 8)]

= XEE^{\og (w + δ)} + lim (1 - XE) log δ & - oo.

So Z^(^ + ε)1/2 0 [(w + ε)1/2/]2 for all nonzero XE in [E^(A)]^ and hence
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by Lemma 6, there exists an outer function hε in H2 with | hε |
2 =

w + e. Hence if w e L1, by Corollary 3,

inf ί 11 - g |2 wdm
gel Jx

^ inf \ 11 — g |2 (w + ε)dm
gel Jx

= inf ( 11 - g |2 {w + ε)dm = [ \ E^(hε) |2 dm
gel JX JX

^ ( exp E^Qog I hε \
2)dm = ί exp E^{log (w + ε)}dm .

This completes the proof as ε —> 0.

REMARK. We shall state Szegδ's theorem in Arveson [1, pp.
611-615], Let weL\ w^O. Then

inf jl \u — g\2wdm;geI,ueE^(A) and Llog | u \ dm ^ θ|

= exp \ log wdm .

COROLLARY 4. [15, Theorem 2.5.5.] Suppose &={X,φ}. Let
weL1, w^O. Then

inf 1 11 — g |2 wdm = exp \ log wώm .
gel JX JX

Proof. Since [25^(4)]w is the complex field, \ exip E6W(log w)dm~

S JX
log wdm and so Theorem 3 implies this corollary. This

X

corollary can be shown by Szego's theorem in Arveson, too.

COROLLARY 5. heH1 is outer if and only if \E**(h)\>lQ
and

l exp E^Cίog I h \)dm = \ I E^Qί) I dm .
Jx Jx

In particular, if^— {X, φ}, then heH1 is outer if and only if

exp \ log I h \dm = I hdm > 0 .
Jx Jx

Proof. If heH1 is outer, then there exists h^ in H2, which is
outer, such that h = h\. Then by Theorem 3,
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\ \E*(h)\dm=[
JX JX

1 - Kl2dm\ ( 1 ) \ [ \ g
X gel )x

- ί exp j^(log I h, \2)dm - ( exp £P (log | h \)dm .
Jx Jx

To prove the 'if part, if | E*(h) \ > 0, a.e. then h = qh\ by Lemma
7 for /&! G H2 is outer and g e H°° is uni- modular. Then our con-
dition gives

exp h \)dm = ΐ) \ dm

Thus

I E^(hl) I dm = f exp J (
x Jx

- E*(q) a.e.. Since |« | = 1 a.e.,

E"(\ q - ^ ( 9 ) |2) - 0 ,

and hence q = E3\q). This shows that fe is outer.
If /e i ϊ 0 0 , by (2) in Corollary 2

ί exp E*(\og \f\)dm ^ exp [ log ]/| dm
Jx Jx

^ e x p ( log I E*(f) I dm
JX

and

( exp E*Qog \f\)dm ^ ί | E*{f) \ dm
JX JX

^ expί log\E*(f)\dm .
JX

If / is invertible in H°°, then

( exp^(log|/ |)dm= ( \E*(f)\dm
JX JX

^ exp 1 log I/I dm = exp \ log | £/"(/) | dm .
JX JX

Moreover if \E^(f)\ — constant a.e., then

ί expj&^(log|/|)dm=( | E*{f) \ dm = exp
Jx Jx

= exp( log
Jx

dm .

In general,

\ exp £7"(log \f\)dm > exp \ log |/ | dm
JX Jx
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and

[ I E*{f) I dm £ exp ( log | W{f) \ dm .
JX JX

THEOREM 4.

( 1 ) Every f in H1 with [ exp JS^(log \f\)dm > 0, for any XE e
JE

[E^ίA)]^ so that XEf Φ 0, is a product of two H2 functions.

(2) A function f in H1 is a product XE{f)qF of an inner func-

tion q (i.e., q e H°° with | q \ = 1 a.e.) and an outer function F if and

only if [ exp E^(\og \f\)dm>0 for any XEe[E^(A)]co so that XEf^0.
JE

( 3) A nonnegative function w in L1 is of the form XE{w) \ h \ for

some outer h in H1 if and only if I exp E^(log w)dm > 0 for any

XE e [E^iA)]^ so that XEf ^ 0 .
Proof. (1) By Theorem 3, for every nonzero XE e [E^iA)]^ so

that XEf Φ 0,

inf \ ] l - ^ | 2 X ^ | / | d m = ( exp ^(log%^ \f\)dm
gel JX JX

= ( exp E^(log \f\)dm > 0 .
JE

Hence if Mw = [wA]2 and w = i/ |/ | , then Mw is an invariant sub-
space of type I. By Theorem 1, Mw = Xmw)qH2 and so | / | = w2 =
%Eσ)Q2h2 where |g| = 1 a.e. and foeiP. This implies (1). (2) and (3)
follows as in the proof of [15, Theorem 2.5.9] and (1).

We can write Theorem 4 in another form.

THEOREM 4'.

(1) Every f in H1 with XE{f)E^(log \f\)> -oo a.e. on E(f), is
a product of two H2 functions.

( 2) A function f in H1 is a product XEι/)Qf °f a n inner function
q and an outer function F if and only if XE{f)E^(log \f\) > — oo a.e.
on E(f).

(3 ) A nonnegative function w in L1 is of the form \ h \ for some
outer h in H1 if and only if XEiw)E^(log w) > — oo a.e. on E(w).

lί^= {X, φ}, then Theorems 4 and 4' implies [15, Theorem 2.5.9].

5* Some theorems concerning Lp. We wish to extend some of
our theorems in §§3, 4 from L2 to Lp to general p, i.e., Theorems
1, 3, and 4. However if we use the method of Srinivasan and Wang
[15, pp. 242-247], they follow easily. So we omit the proofs. But



506 TAKAHIKO NAKAZI

we shall give two important invariant subspace theorems, known
when έ% — {X, φ) [12, Lemma 1].

THEOREM 5. Suppose 1 ^ p < q ^ °o. There is a one-to-one cor-
respondence between invariant subspaces Mp of Lp and {weak-*closed
for q = oo) invariant subspaces Mq of Lq, such that Mq — Mp Π Lq,
and Mp is the closure in Lp of Mq.

Proof. If w eL\ w ^ 0 and log w e L\ then w = \ g |2 with outer
g in H*. For then £7^(log w ) > - ^ a.e. and so we can apply
Theorem 4\ We shall show that Mp Π L°° is dense in Mp. Let / be
in Mp. We shall use the well known method [6, p. 12]. For each
n let kn = min (1, w I/I"1), then 0 <̂  A?» ̂  1, &% ̂  few+1 ^ •••->! a.e.,
and l o g ^ e L 1 . For each kn, there exists an outer gn in iί 0 0 with
Jcn = \gn\. Moreover we can assume that E^(gJ>0 a.e.. For \E^(gJ\>0
a.e., let qn = sgn E^(gn), then E^(qngn) = qnE^(gn) > 0 a.e.. Again ^
is outer with kn = qngn. Write qngn as gn again. We shall show
that gn tends to the constant function in norm, and on a subsequence
almost everywhere. Fix n, then for any ε > 0, there exists a h in
I such that

ί E"(gn)dm + e = in f ί 11 - 0 | 2 1 gn \ dm + ε > [ \l-h\2\gn\dm
JX gel JX JX

^ exp I log 11 — h |2 dm x exp I log | gn \ dm .
JX JX

By Theorem 2 and as ε —> 0, for each n,

\ E^(gn)dm ^ exp \ log | gn \ dm .
Jx Jx

r

By Fatou's lemma, it follows that exp \ log | gn \ dm —> 1 and hence

\ gndm = [ E*(gn)dm -» 1. Therefore
Jx Jx

\ I gn - 112 dm = ί | ̂  |2 dm + 1 - 2 Re (
Jx Jx Jx

^ 2 - 2 ίflrndm > 0 .

There exists a subsequence {(7WJ such that gnfc—>l a.e.. Since #ΛA./
6 Mp Π I/00, / is a limit of bounded functions in Mp. Since Λfp Π I/00

is dense in Mp, it is clear that Mp Π Lq is dense in ilf̂ . By the first
half of theorem, as in the proof of [6, p. 12], we can show that
[Mq]p Π L ? = Mq.

PROPOSITION 6. // M is an invariant subspace of Lp(m) (1 <; p
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^ oo), then XmM)qeM for some unimodular q and the support set
E(M) of M. Moreover

I M\ = XEQ-XE{M) I Hp(m) I + (1 - XE)XmM) \ Lp(m) | ,

where XEQM is the largest subspace that contains no nontrivial reducing
subspace of L°° and XEQMQM and \M\ = {|/|;/e AT}.

Proof. By Theorem 4, if u is a real-valued function in L°°, then
there is h e H°° such that eu = | h | and h~x e H°°. Hence by [14,
Theorem] and Theorem 5, the former half of this proposition follows.
The latter half can be shown as in the proof of [14, Corollary 5].

6* Weak-*Dirichlet algebras* Let A be a weak-*Dirichlet
algebra of L°°, i.e., it is an extended weak-*Diriehlet algebra with
respect to E^ which is a conditional expectation for & with έ@ —
{X, φ). Then m is multiplicative on A. Suppose JB°° is any weak-
*closed subalgebra of L°° which contains A. The measure m was

called in [12] quasi-multiplicative on j?°° if \ f2dm = 0 for every /

in B°° such that 1 fdm = 0 for all XE in J5°°. It is a consequence of
)E

the definition of a weak-*Dirichlet algebra that if / is in H°° and

\ fdm = 0 for all XE in H°°, then \ f2dm = 0. Let
JE JX

and let IS be a maximum weak-*closed ideal of B°° in J?J° [12, Lemma

2]. Ig is given by {/6JB°°: ( fgdm = 0 for all g in J5°°i. Let Sf°°B
\ JX )

be a self-adjoint part of B°°. Suppose E* is a conditional expectation

PROPOSITION 7. Suppose B°° is any weak-*closed subalgebra of
LΓ which contains A. Then the following are equivalent.

(1) m is quasi-multiplicative on B°°.
( 2 ) [B00 n JB°°]2 - [ # Ί 2 n [5°°],.
(3) E^ is multiplicative on JB°°.
(4) JS°° ΐs α^ extended weak-*Dirichlet algebra with respect to

Proof. (1) *=* (2) is known in [12, Theorem 4] Since B°° + B°°
is weak-*dense in L°°, (3) <=* (4) is clear.

(2) « (3). Let K = L2Q [B°°]2, then [/J], = # by [12, Lemma 2]
and so Kd[B°°]2. Proposition 2 implies this equivalence.
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By Proposition 7, [12, Theorem 2] is a corollary of Theorem 1.
For w in L1 with w ^ 0, log weL1 if and only if w = | 01 for some
outer function g in H1 [15, Theorem 2.5.9]. Since g is outer,

exp \ \og\g\dm= \ gdm
JX Jx

i k*

>0. We want to know when
JX Jx

Suppose B°° is any weak-*closed subalgebra of L°° which contains H°°
properly and on which E* is multiplicative. Even if log w ί L1, it
can happen that E^(\ogw)> — °o a.e.. Then by Theorem 4', w =
I g I for some 0 in [.BL with [ 0 1 ^ - [I?], c iϊ 1. If g e IT1,

If0 = 1 gdm
I J

f f
= exp I log | 0 | dm = exp I J^^(log | 0

Jx }x
< j ^ e x p ^ ( l o g I 0 |)<Zm - j χ l ̂ ( f f ) I dm ,

and [0A]X g JET1. In general, [0A]X = tf[-B°°]i for some unimodular g in
iί0 0 or iϊ0 0 = {h 6 L00: ^[0^], S [gA\] and [0^.], is type III for i T .

Set Ao = \feA: \fdm = 0L then Szego's theorem implies

( 1 )

inf \ 11 — 012 wdm = inf I \1 — g
gεA0 J x aeH™ *x

wdm

= exp \ log wdm .
Jx

When B00 5 Jϊ00 and E^ is multiplicative on JB°°, iJ0°° S I S By Theorem 3

(2) inf ί 11 - 0 I2 wdm = ί exp £^(log w)ίm .

If fe^fβ Π IT0 and 06/J, then by Theorem 2,

( log | / + 0 I dm ̂  ( log I/I dm ̂  log I ί /dm .
Jx Jx IJx

Now we shall show other versions of Szego's theorem.

(3) inf ί 11 - u |2 wdm = exp ί log | E^{w) | dm .

For since H°° = H°° n =^S + IS [12], it follows that ί T n =^S
is a weak-*Dirichlet algebra of &"%. Thus

inf — u I2 wdm

= inf ( Ew{\ l - u \ 2 w)dm = in f
Jar Jx

= exp I log E^(w)dm .
Jx
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Fix v e £f°°B with v1 in £?*%.

S c
I v — g |2 w d m = I e x p E3(\og w)\v\2dm .

y**B x

For the L2(| v \2 wdm)-closure of v~ιI% contains 1% and so by (2)

inf ( 11 - vιg \2\v\2 wdm

= inf ( 11 - g |21 v |2 wdm = [ exp £^(log | v |2 ̂ )dm

= [ e x p i7^( log w)\v\2dm .
JX

The following is Szego's theorem by Arveson [1, pp. 611-615].
We shall give another proof to connect (4) with (2) and (2);.

inf |\ I v - g |2 wdm; gel%, ve ^f^ and

( log I v I dm ^ 01
JX )

( 4 ) = inf 11 exp £^(log w) \ v \2 dm; v e £?°£ and

ί log I v I dm ^ 01

= exp i log'
JX

For

exp \

— inf 11 euwdm; ueL% and \udm = θ | .

By Lemma 7 and Theorem 2, there exists / in (iί 0 0)" 1 such that

JS7*(log I/I) - p-'E^u) = log I £P(/) | and so ( log | E*(f) \dm = 0. So
)χ

exp \ log
JX

- i n f | ^ I/I2 ̂  d m ; / 6 (if00)"1 and J^log | E*(f)\ dm =

^ inf |\ I v - g|2 wdm; gels, ve £f% and \ log | v \ dm ^ 0

= inf {[ exp ̂ ^(log | v - g \2) exp £/^(log w)dm; g e IS,

t; 6 =5^2 and \ log | v \ dm ^ 0
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inf | ϊ exp E^(\og w) | v |2 dm; v e £f% and

\ log I v I dm ;> Oj

^ inf jexp I log wdm exp \ log | v |2 dm; v e £?% and

\ log I v I dm ^ Ol
JX

^ exp \ log wdm .
}χ

7. Applications*
( I ) Let G be a compact abelian group dual to a discrete group

Γ. The Haar measure m on G is finite, and normalized so that
m(G) — 1. Suppose a semigroup P is given in /"* such that Γ —
P U ( - P ) , i.e., P orderes Γ. Let A be the set of all trigonometric
polynomials f on G the form / = Σaλlλ (λeP). Let .2P00 be the
weak-*elosed linear span of ΣaλXλ ( λ e P n ( — P)) and let iίP be the con-
ditional expectation for Jzf™. Then A is an extended weak-*Dirichlet
algebra with respect to Έ^.

In particular, when P Π ( - P ) = {0}, it is called that P orders Γ
totally. Then A is a weak-*Dirichlet algebra. Let Pa be a semi-
group of Γ which contains P properly. Let Ha be the weak-*closed
linear span of all trigonometric polynomials / on G of the form / =
ΣaλXλ (λ 6 Pa). Define JS^00 = £έ>~ and E^ = £P ( α ) as the above. Then
iία is not a weak-*Dirichlet algebras, but it is an extended one with
respect to E^. Let Ia be the weak-*closed linear span of all tri-
gonometric polynomials / on G of the form / = ΣaλXλ (λ g — Pα). Then

α

(II) Let (X, Ssf, m) be a probability measure space and {Tt;teR}
be a flow. Suppose m is invariant under Tt. The action of R on
X induces a weak-*continuous, one-parameter group {Tt}teR of auto-
morphism of L°° = L°°(m). They are defined by

Ttf(x)g(x)dm(x) = \ f(T_tx)g(x)dm(x)

for / in L°° and βr in ZΛ For each element / in L°° and a function
φ in L\R), we define the convolution / * # in M by

/ * ^ = J Φ(t)Ttfdm

The above integral exists in the sense that
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f*ψgdm = (f*Φ, g) = \ φ(t)(\TJgdmjdt
J —oo \ J /

= Γ Φ(t)(Ttf, g)dt
J-oo

for g in L1 [2, Proposition 1.6]. Define the ideals of L\R) J(f) by

The hull of the ideal J(f) is said to be the spectrum of / and is
denoted by sp/. A is defined to be the set of all / in L°° with
sp/E[0, oo).

Let dv = dt/π(l + ί2) and L°°(R x X) = L°°(v x m), where v x m
is a completion of the product measure of v and m. Set F(t, x) =
TJ{x) for / in L°°, then F(t, x) e L°°(R x X). Set q = (1 - «)(1 + iί)"1,
then qeH°°(R) and there exists Y,tNfζqn such that

iV 2

0 ,
-N

where fζ e L°°(m) and H°°(R) is the class of all functions <ρ in L°°(R)
such that sp^£[0, c«)β If sp/£[0, oo), then it is easy to show that

\ Ttfgdm G H°°{R) for every g in L1 and hence it follows that

F(t, x) -
N

dvdm > 0 .

Thus TJ(x) = jP(ί, x) 6 iϊ^CR) a.e. »(m). If TJ{x) = JP(ί, α;) e i2"°°(i2)

a.e. ίc(m), then it is clear that i TJgdme H°°(R) for every g in L1

and hence sp/G[0, oo). This implies that A is a weak-*closed sub-
algebra of L°° which contains the constants. Let ^fp = {feLp:
TJ = /} for 1 <; p ^ co and JEr* be a conditional expectation for

THEOREM 6. [11] [8]. A is an extended weak-*Dirichlet algebra
with respect to E^. If the flow is ergodic, then A is a weak-*Dirichlet
algebra.

We shall give the proof in which spectral condition (cf. [2] [8])
is not used but Proposition 2 is used.

LEMMA 8 [11]. Suppose 1 ^ p ^ oo. Then

{fe L*: sp/£ {0}} = {fe L*: TJ = f a.e.} .

Proof. If TJ = f, since </* φ, g) = </, g)φ(0) for every g in L\

then sp/£{0}. If sp/S{0}, set F(t) = ( TJgdm. Then we can
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show as in the proof of [4, p. 50] that s p F S — sp/. Hence F is a
constant a.e. on R and Ttf = / a.e..

LEMMA 9 [4, Proposition 2]. Suppose 1 <; p ^ oo. Tfeβw iffeLp

\ fgdm — 0 /or αίί # in A,

ίfe<m sp/£[0, oo).

Proof. For any fe in L°° and any 0 in L\R), (f*φ, h} = </, fe*0>
where 0(ί) = φ( — t). Hence if φ(s) = 1 for s < 0 with supp φ £
(-oo, 0), it follows that f*φ = 0. This implies sp/£[O, oo).

The proof of Theorem 6. If feL\ [ f(k + h)dm - 0 for all fe, fc

in A, then sp/£{0} by Lemma 9. By Lemma 8, Ttf = fe .Sf1 and
/ annihilates A Π A = =5̂ °°. Since 2̂̂ °° is dense in Jϊf1, / — 0 a.e..
Thus A + A is weak-*dense in L°°. In order to prove that E^ is
multiplicative, by Proposition 2, it is sufficient to show that K =
L2QH2a H2 and [A n A\ = H2 n H2. Set ^T 2 = {/e L2: s p / £ [0, oo)},
then <^ 2 2 iϊ 2. Since ^f2 Π ̂ 2 = =Ŝ 2 and A Π A = Sf™, it is clear
that [A Π A]2 - H2 n 5 2 . By Lemma 9, if c ^T 2 . So if i ί 2 = ^T2,
the proof is complete. If fe^2QH2, then sp/£{0} and hence
/ 6 ^ 2 , While J2^2 C iJ2, this implies / = 0 a.e..

(Ill) Let C(Xj) be the set of all continuous complex-valued func-
tions on a compact Hausdorff space Xι and let A2 be a function
algebra on a compact Hausdorff space X2O Moreover let A2 be a
Dirichlet algebra of C(X2), i.e., A2 + A2 is uniformly dense in C(X2).
Suppose A is the set of all functions of the form; for u, veC(X^)
and feA2, u + vf. Then A is an subalgebra of C(X1 x X2).

Let mL be any probability measure on Xι and m2 be a nontrivial
representing measure of any complex homomorphism of A2. Let J ^
be the σ-algebra of all Borel sets of Xt x X2 and m be the comple-
tion of mi x m2c Let . ^ be the o -subalgebra of S*f consisting of
all Borel sets of the form Et x X2 where E1 is a Borel set of Xιm

Let E^' denote the conditional expectation for &. Then A is an
extended weak-*Dirichlet algebra of L°°(m) with respect to E^« For
it is clear that (i) the constant functions lie in A; (ii) A + A is
weak-*dense in L°°; (iv) F ( i ) £ i f l l . For u9u'9v9 vf e C{XX) and
g, g' 6 A2,

βrώm2 + uv' \ g'dm2 + OT' I gcίm2 x

; + v'g)
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This implies that (iii) for all / and g in A, E*(fg) = E

Then I = {fe A: E"(f) = 0} = ju + v^: ( <?dm2 - 0 and v e

4 •
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