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WALLMAN'S TYPE ORDER COMPACTIFICATION

T. H. CHOE AND Y. S. PARK

For a completely regular ordered space X, the Stone-
Cech order compactification &(X) has been constructed by
Nachbin. This compactification is a generalized concept of
the ordinary Stone-Cech compactification β(X) in the sense
that if X has the discrete order: x ^ y iff x = y, then βίX =
βX. In this paper, for a convex ordered space X with a
semi-closed order, the Wallman order compactification ωo(X)
is constructed by the use of the concept of maximal bifilters.
ωo(X) is a Tx-compact ordered topological space in which X
is densely embedded in both the topological and order sense.

Althought the order of α>0(X) is not semi-continuous, in general,
most of the corresponding properties of the ordinary Wallman com-
pactification can be generalized. For example, it can be shown that
for any compact ordered topological space Y (with a closed order),
a continuous increasing map from X into Y has a unique continuous
increasing extension on ωQ(X), and if α>0(X) has a closed order, then
X is a normally ordered space.

First, we fix some notations and terminologies: Let (X, ^ ) be
a partially ordered set. For a subset A £ X, we write d(A) =
{y eX: y <^x for some xeA} and i(A) = {y e X: x tί y for some x e A}.
In particular, if A is a singleton set, say {x}, then we write d(x)
and i(x) respectively. A subset A of X is decreasing (increasing,
respectively) if A = d(A) (A = i(A), respectively). We say that a
map / from X to a partially ordered space Y is increasing if x <: y
in X implies f(x) <: f(y) in X. For a (partially) ordered topological
space (X, ^ " ) in the order ^ , let

& = {Uε: U=

then <%/ and £f are evidently topologies for X, which are called the
upper, lower topologies respectively ([6], [1]). We say that an
ordered topological space X is convex if X has a subbase consisting
of the sets in ^ and ^f9 or equivalently, if every open set in X
can be written as the intersection of an open decreasing set ([5]).
Let X be an ordered topological space. The partial order is said to
be upper (lower) semi-closed if, for any x e X, i(x)(d(x), respectively)
is closed. The partial order of X is semi-closed if it is both upper
and lower semi-closed. It is said to be closed if, its graph, the set

339



340 T. H. CHOE AND Y. S. PARK

of the points (x, y) such that x <̂  y, is closed in the product space
XxX ([4], [5] and [9]).

We recall that a filter &~ in a topological space (X, ^~) is an
open (closed) filter if ^ has a filter base consisting of open (closed)
sets.

DEFINITION. Let (X, ^ <;) be an ordered topological space.
Let &~ be a closed filter in (X, fp) and © be a closed filter in
(X, £f). A pair (J^, ®) of closed filters ^ and © is called to be a
bi-filter on X if FΠ G Φ 0 for any F e ^ and any G e®.

For given two bi-filters (_̂ 7, ©J and (.^7, ©2), we define a relation
G Γ̂i ®i) C O^a ®β) if and only if &\ cz Jt\ and ©t £ ©2. We can
easily remark that by Zorn's lemma, every bi-filter is contained in
a maximal bi-filter. For an ordered topological space X, we write

Γ*X = {A £ X: A is closed decreasing set} ,

/VX = {AQ X: A is closed increasing set} .

The following two lemmas are analogous properties of maximal
filters. Thus, the-proofs are omitted.

LEMMA 1. Let 0^7©) be a maximal bi-filter, and AeΓ^X.
Then Ae^~ if and only if given Fe^, Ge®, we have Af]Ff]
G Φ 0 . Moreover, a dual statement holds for ©.

LEMMA 2. Let 0^7©) be a maximal bi-filter.
(1) Let Aλ and A2 be in Γ^X and Ax U A2 e ^ T Then either

Ax e &~ or A2 e ^ί Moreover, a dual statement holds for ©.
(2 ) Let Ae Γ^X, B 6 Γ^X and A\JB = X. Then either

or Be®.

REMARK 1. Let (X, ^ 7 ^ ) be an ordered topological space with
a semi-closed order. For each xeX, we write

- {A is a subset of X: d(x) S A} ,

= {A is a subset of X: i(x) £ A) .

Then every £^(d(x)) is a closed filter, but it need not be a maximal
closed filter in (X, ^ ) under the inclusion relation. Moreover, a
dual statement holds for S^(i(x)). S^(d(x)) is obviously a closed filter
in (X, <%f). In order to show that it need not be a maximal closed
filter let us consider the following example:

Let N = {0,1, 2} be an ordered topological space with usual order
and discrete topology. Then S^(d(2)) and S^(d(l)) are not maximal
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closed filters in (N, &). However, if the order on JV is given as
discrete, S^(d(x)) is a maximal closed filter for every xeN.

LEMMA 3. Let (X, J7~, tί) be an ordered topological space with
a semi-closed order. Then for each xeX, (S^{d(x)), S^(i(x))) is a
maximal hi-filter.

Proof. Let AeS*(d(x)) and Be£f(i(x)). Then d(x) Q A and
i(x) £ B. Hence A Π B Φ 0 . Therefore (£S(d(x)), *9*(i{x))) is a bi-
filter. Suppose that there exists a bi-filter C^7®) such that
(SS(d(x)), £S(i(x))) £ (J^7 ©). It follows that 6^{d{x))^^ or

Suppose that S*(d(x)) £Ξ ̂ T Then there exists an F G J?" such
that F$£S(d{x)). Hence d(x) ξjί F. Since ^ is a closed filter in
(X, <g/), there exists a decreasing closed set A such that A 6 &~
and A £ a?*. Hence eZ(&) £ A and x$A. Therefore i(x) £ X — A or
X - A 6 ̂ (i(&)). It follows that X - A e ®. Hence A Π (X ~ A) = 0 .
It is a contradiction. Similarly in the case that &*(i(χ)) £= ®, we
have a contradiction. Therefore (£*(d(x)), S^{i{x))) is a maximal
bi-filter.

In what follows, we assume that (X, ^ 7 ^ ) is a convex ordered
topological space with a semi-closed order. Let α>0(X) be the collec-
tion of all maximal bi-filters (^7 ©) on X. For given closed decreased
set A, and closed increasing set B in X, define

Ad = {(^7©)eo)o(X): i

α)0(X): S

Then it is easy to see that {Ad: A e Γ^X) forms a closed base for a
topology, say W^, on ωo(X). Similarly, the family {Bu. BeΓ^X]
forms a closed base for a topology, say Ύ/^^, on ωo(X). Let *W
be the smallest topology containing 'W* and ^ ^ . Then every
basic open set (ft)0(X), W) can be written in the form ωo(X) —
(Ad U Bι) for some AeΓ^X and some BeΓ^X. We also note that
(Ax Π A2)

d =.Af Π Af for A,, A2 in Γ^X and (5X n JB2)" - 5? Π -B? for
Blf B2 in Γ.s X. We define an order relation <; on ωo(X) as follows:

Cî Γ, ®I) ^ (^ί, ®2) if and only if J^Γ 2 J ^ and ©t S ®2. Then
obviously ^ is a partial order.on ωo(X). Hence (ωo(X), W~, <£) is
an ordered topological space.

REMARK 2. Let (ωQ(X), W~, ^ ) be the ordered topological space
obtained in the above. Let AeΓ^X and BeΓ&X. Then Ad is a
closed decreasing set and Bι is a closed increasing set in α)0(X).
Moreover, α)0(X) is a convex ordered topological space.
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LEMMA 4. Let {X, ̂ ~, <*) be a convex ordered topological space
with a semi-closed order. Then the map Φ:X->ωo(X) defined by
φ(x) = {S^{d{x)), S^(i(x))) for any xeX is a dense embedding into
(ωQ(X),

Proof. First, we show that Φ is an order isomorphism into
Q)0(X). To show that Φ is one to one, let x Φ y in X. Then x ^ y
or | / ^ i If x S V t ^ e n V & i(χ) o r i(y) §Ξ i(χ)- It follows that

or Sf{i(x)) g <5*(i(y)). Hence {^{d{x)\ S^{i{x)) Φ
(y)))). Similarly, if y ψ x then Φ(x) Φ Φ{y). Clearly,

Φ is increasing. It is also immediate that if Φ(x) <: Φ(y)9 then
x ^ y. Hence Φ is an order isomorphism into ωo(X). Secondly,
we show that Φ is a dense homeomorphism from X into Φ(X). We
observe the following: For a given closed decreasing set A,

Ad n Φ{X) =
- {Φ(x): x e A} -

Similarly, for a given closed increasing set B, B* Π Φ(X) =
Since X is a convex ordered topological space, Φ is evidently a
homeomorphism from X onto Φ(X).

To show that Φ(3Γ) is a dense subset of ωo(X)f let ωo(-X") —
(Ad U Bl) be a nonempty basic open set, where A e Γ^X and J5 6 Γ^,X
Then there exists a maximal bi-filter (^7@) such that
ωo{X)-{AdΌBi). It follows that ( ^ © ) M d and
Hence i g ^ " and ΰ ? ® . By Lemma 2, A U ΰ ^ X Therefore
(X - A) Π (X - B) Φ 0 . Let y e (X - A) n (X - -B). Then it is easy
to show that Φ(y) e ωo(X) - (Ad U J54). Hence Φ{X) n (α>0(X)) -
(Ad LJS')^ 0 . Hence Φ(X) is a dense subset of α>0(X). This com-
pletes the proof.

LEMMA 5. (ωQ(X), W", <*) is a T^compact ordered space.

Proof. First, we show that ωo(X) is a 7\-space. Suppose that
i) = (^Γ, ©2) in o)0(X). Without loss of generality we may

assume that ^ ^ ^ . Then there exists an - F ί e ^ ί such that
Fx & &\. Since ^[ is a closed filter in (X, ̂ ) , there exists a closed
decreasing set A1 such that A1e%^i and Ax C ί\. Hence A^^\.
It follows that (ĵ Γ, ©x) e Af and ( j ^ , ©2) g Af. Therefore α>0(X) - Af
is an open neighborhood of {JF[, ©2) in α)0(X) such that (^7, ©J g
ft>0(X) — At. Since .^7 S ^I> we may consider the following two
cases:

Case 1. ^ §S «̂ Γ: By the same method as before, there exists
an open neighborhood of {^[, ©J, which does not contain
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Case 2. ^l Q ^[\ then ®2 §£ ®lβ Hence there exists a closed
incleasing set B2 such that B2e&2 and B2ί®1 It follows that
( Λ ® 2 ) e δ ί and (Ĵ Γ, ©JgJ?!. Therefore, α)0(-ϊ) - B\ is an open
neighborhood of C^Γ, ©J in ωo(X), which does not contain ( ^ , ®2).
Hence Λ)o(-X") is a TΊ-space.

Now we show that ωQ(X) is a compact space. Let {A«, By.
a e Γ, β 6 A) be a family of subbasic closed sets having a finite inter-
section property. Since AiΓ\ B$ Φ 0 implies Aa Π Bβ Φ 0 , {Aa, Bβ:
aeΓ, β eΔ) has a finite intersection property. Let Jϊf be the filter
generated by {Aa: aeΓ} and & be the filter generated by {Bβ: βeΔ}.
Then (J^ &) is obviously a bi-filter, and hence there exists a
maximal bi-filter ( ^ ©) containing (J^< ̂ ) . It follows that Aae^~
and Bβe® for all α e Γ and all βeΔ. Therefore (^®)eA* and
(jη®)eBl. That is, ( ^ ^ e i ί ί l ί j for all α and all /9. It
follows that (J^;@) e f|α̂  (-4ί Π 5J). Hence (ωo(X), <W) is compact.

By Lemmas 4 and 5, we have the following theorem:

THEOREM 1. Let (X, ^ 7 ^)be a convex ordered topological space
with a semi-closed order. Then (ωo(X), y/^y <L) is a Ί\-compact
ordered space in which X is densely embedded.

REMARK 3. In the proof of Lemma 5, we see that (ωo(X),
is an ordered topological space which has either a lower semi-closed
order or an upper semi-closed order. We note that a compact
ordered space with a lower semi-closed order need not have a semi-
closed order. For example, let Z+ be the set of all natural numbers
with the usual ordering and the cofinite topology. Then obviously
Z+ is compact and its order is lower semi-closed. But its order is
not a semi-closed order because it is not upper semi-closed. In
particular, this shows that a ϊ\-compact ordered space need not have
a semi-closed order. We also note that if the given order on X in
Theorem 1 is discrete, then it reduces to the Wallman compactifica-
tion of (X, ^~) in the general topology.

Let (X, ^ 7 ^) be an ordered topological space with a semi-
closed order and (Y, ^~', < '̂) a compact ordered space with a closed
order, and let/: J - > 7be a continuous increasing map. Define ^ " *
to be the filter generated by a family {A is a closed decreasing set
in Y:f~\A)e^'}f and ©* to be the filter generated by a family {B
is a closed increasing set in Y: f\B)e®}.

LEMMA 6. Under the above assumption, (^~*9 ©*) is a bi-filter
on Y and there exists a unique point y in Y such that ye (\{F<Γ\G',
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Proof It is straightforward that ( ^ * , ©*) is a bi-filter in Y.
Since Y is. compact, {F Π G: FeJ?~*, G e©*} has a limit point y,
that is,

ye n{FfΓ
£ n{in B:

where «̂ V* is a filter base for ^ * consisting only of decreasing
closed sets, and &^ is a filter base for ©* consisting only of in-
creased closed sets. Hence there exists a y in Y such that ί/eίl
{î Π G: Fe^*, Ge©*}. In order to show the uniqueness of y,
suppose that there exist x Φ y in Y such that x and 7/ are elements
of ί l ^ n G F e ^ G G r } . Then we may assume that x S V-
Hence i(x) ΓΊ d(y) = 0 . Since Y is a compact ordered space with a
closed order, there exists an open increasing neighborhood U of x
and an open decreasing neighborhood V of y such that £7 Π V — 0 .
Hence ( F - 17) U (Y - V) = Y, and hence f~\ Y- U) U f~\ Y- V) = X.
Since / is a continuous increasing map, f~\ Y — U)e J?~ or
Γ\Y - V)e® by Lemma 2. By the definition of J ^ * and ©*,
( Γ - U)e^~* or ( Γ - 7)6©*. If ( Γ - C7)6^"*, then α? 6 Γ - Ϊ7,
and hence x $ U, which contradicts the fact that x e U. Similarly,
in the case that (Y — F)e©*, we have a contradiction. Hence
x = y.

THEOREM 2. Let (X, J^7 ^) be a convex ordered topological
space with a semi-closed order, and (Y9j7~f, <*') a compact ordered
space with a closed order. For a continuous increasing map
f: X-+ Y, there exists a unique continuous increasing map f from
o)0(X) into Y such that f ° Φ — f, where Φ is the embedding: X—>

Proof. For given ( ^ ©) e ωQ(X), let J^~* and ©* be the filters
given as before. By Lemma 6, there exists a unique point y e
DiFnG^FeJ^*, Ge©*}. We show that the map f:ωo(X)->Y
defined /(^7 ©) = y is the required map. Indeed, (1): f ° Φ = f; let
x be any point of X. It is easy to see that [S^(d(x))]* = S^(d(f(x)))
and [Sf{i{v))Y = ^(i(f{x))). Hence ([^(d(xW, [<9*{i{x))Y) =
(^(d{f(x))),<9>{i{f{x))))._ It follows that (f oφ)(x)= f((S^(d(x))9

SS(i(χ)))) = /(x). (2): / is a continuous map: Since ωQ(X) and Y
are convex ordered spaces, it is sufficient to show that / is continu-
ous from (ωo(X), ^ ^ ) into (Y, &>). For a fixed point ( ^ ©) 6 ωo(X),
let U be an open decreasing neighborhood of /((^7©)) in Y". Then
y — U is a closed increasing set, which does not contain /
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Thus d(f((jη ©))) Π (Y - U)= 0 . Let W be an o_pen decreasing
set and V an open increasing set such that c£(/(C 7̂ ©))) £ TF,
7 - [ ί g 7 a n d l 7 n 7 = 0 . Then ( Γ - TΓ) U ( Γ - V) = Y. There-
fore /-χ( Y - W)Ό f~\ Y - V) = X. Furthermore, [f~\ Y - W)Y U
[f~\ Y- V)]d=.ωQ(X). Since f((jT, ©)) ί Γ - W, (J*7 ©) ί [/"̂  Y- W)}\
Hence ωQ(X) — [f~\ Y — W)Y is an open decreasing neighborhood
of ( j ^ ©) in_(ft>0(X), a^V). And clearly, /(α>0(-2Γ)-LΓι( Γ - IF)]*) £ U.
Therefore / is continuous from (ωQ(X), W~<u) into (F, <£?). Dually,
/ i s continuous from (ωo(X), W~*) into (F, ^ ) . Finally, (3): / i s an
increasing map: Suppose that (ĵ Γ, ©x) ^ ( ^ , ©2) and /((^Γ, ©0) ^
/((^2> ®2)) Since F i s a compact ordered space with a closed order,
there exists an open increasing neighborhood U of /((*^7, ©i)) and
an open decreasing neighborhood V of /(C_^I, ©2)) such that U Γ)
V = 0 . Thus /((^Γ, ©0) ί F. Since / i s continuous from (ωo(X), ^ V )
into (Y, = ^ ? ), there exists a closed increasing set A in X such that
ft)0(X) — Ai is an open decreasing set containing (<β^, ©2) and
f(ωo(X) - A') £ VL Since ( ^ , ©x) ^ ( j ^ , ©2), (^Γ, ©,) e ωo(X) - A\
It follows that /((^T, ©J) e F, which contradicts the fact that
/((^T, ®i)) e F. Therefore /((^T, ©0) ^ / ( ( ^ , ©2)) In particular,
the uniqueness of / is straightforward (see [7], page 97, Theorems
14, 19).

THEOREM 3. Let (X, ^ 7 <ί) be a compact convex ordered space
with a semi-closed order. Then (X, ^ ^ ) is isomorphic with
(ωo(X),

Proo/. Let ( ^ ©) be a maximal bi-filter on X Then {F f] G:
^ 9 Ge©} has a limit point, say x, in X It follows that {#}£

Γ\{AΓ\ B:Ae&jr, Be&*}, where ^ ^ and . ^ are closed bases of
^ in (X, ^ ) and © in (X, J?7) respectively. Since X has a semi-
closed order, we have (^7 ©) £ (^W»)), ^(i(a?))). By the maximality
of ( ^ ©), (J^;©) = (^((i(a?)), ^(i(α))). Hence Φ(X) - (WO(X), that
is, (X, _̂ 7 ^ ) is iseomorphic with (ωo(X),

We recall that an ordered topological space (X, S~, ^ ) is normally
ordered if, for every two disjoint subsets A, JB of X, where A is a
decreasing closed set and B is an increasing closed set, there exist
two disjoint open sets U and V such that U contains A and is
decreasing, and V contains B and is increasing [5].

THEOREM 4. Let (X, ^ 7 S)be a convex ordered topological space
with a semi-closed order. If ooo(X) has a closed order, then X is a
normally ordered space.
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Proof. Clearly, ωo(X) is a normally ordered space. Let A and
B be two disjoint subsets of X, where A is a decreasing closed set
and B is an increasing closed set. Thus Ad Π 2?* = 0 . Since ωo(X)
is normally ordered, there exists an open decreasing set W and an
open increasing set W in ωo(X) such that Ad £ W, Bί £ W and
jpn TF' = 0 . Further, PF and TP could be written in the form:
W = Ui (ωo(X) - J5J) and TF = \J3 (ωo(X) - A?), where Bβ in /VΣ"
and Ay in Γ&X. Since Ad and JB* are compact, Ad £ U/=i (O>0(-3L)—-By) =
o)o(X) - CiUB) = α>0(X) - ( Π y - i W Similarly, B* £ α>0(X) -
(Πr=i Ay)

d. Let C7 = X - (Π5-i By) and V - X - (07=! A,). Then C7
is an open decreasing set and V is an open increasing set. Let
xeA. Then d(x) Q A, and hence ( y ( φ ) ) , y ( φ ) ) ) e i d . Since
Ad £ α>o(X) - (ΠΓ î ̂  )% (^(d(x)\ SS(Mfi))) $ {ΠU Bs)*. It follows
that Πy=i-By g ^(i(aθ). Hence i(») g Π?=i δy Therefore x e l -
Πi=i By. Hence AQU. Similarly, B £ V. Since [α>0(X) - (Πy-i B,)'] Π
[ft)0(X) - (Γl?=i -Ay)d] = 0 , we have Z7Π V = 0 . Hence X is a normally
ordered space.

REMARK 4. If the given order on X is discrete, then the previ-
ous results reduce the corresponding results in the general topology.
However, we do not know whether the converse of Theorem 4 is
true. We finally note that, in [2], a compact ordered space /3<HXΓ

with a closed order for a completely regular ordered space X is
constructed. It immediately follows that given the following
diagram:

A
there exists a continuous increasing map β0 from a)Q(X) onto βo(X)
such that β0 o φ = /30. Furthermore, if ωo(X) has a closed order,
βQX and ωo(X) are iseomorphic under β0 such that the above diagram
commutes.
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