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RIESZ-PRESENTATION OF ADDITIVE
AND ¢-ADDITIVE SET-VALUED
MEASURES

WERNER Rupp

In this paper we generalize the well known Riesz’s
representation theorems for additive and s-additive scalar
measures to the case of additive and s-additive set-valued
measures.

1. Introduction. Consider a nonvoid set 2 and an algebra .o
over 2. Amn additive set-valued measure @ on the field (2, %) is a
function 9: .7 - {TC R™ T # @} from .o into the class of all non-
empty subsets of R™, which is additive, i.e.,

2 #+ O(A)c R™ for all Ae.o”
and
Q(A1 U Az) = Q(Al) + @(Az)

for every pair of disjoint sets 4,, A,€ .94 If .97 is a o-algebra then
@ is called a g-additive set-valued measure, iff

for every sequence A4,, A4,, --+ of mutually disjoint elements of .
Here the sum >,»., T, of the subsets T, T,, -+ of R™ consists of all
thevectors: “x =37, z, with «, € T, for ne€ N. In the sequel, “@|. o7
is an additive [resp. g-additive] set-valued measure” is an abbreviation
for an algebra [resp. a c-algebra] over 2 and a function @:.97 —
{(TCR™ T +# @} which is additive [resp. o-additive]. The calculus
of additive and o-additive set-valued measures has recently been
developed by several authors (see [2], [4], [5], [1] and [6]) and the
ideas and techniques have many interesting applications in mathe-
matical economics (see [3], [4] and [10]), in control theory (see [8]
and [9]), and other mathematical fields. Additive and o-additive
set-valued measures have also been discussed for their own mathe-
matical interest, because they extend the theory of scalar additive
and o-additive measures in a natural way. This is the background
of the present paper. Theorems 1 and 2 extend the known represen-
tation thiorems of Riesz for bounded, additive [resp. regular, o-
additive] scalar measures to the case of bounded, additive [resp.
regular, g-additive] set-valued measures.
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2. Some properties of additive set-valued measures. The
following Lemma 1 is well known and has appeared in the literature
in several forms (see [1], Proposition 8.1, p. 105). We state it here
in a form suitable for the sequel, and for completeness we also give
the proof.

LEMMA 1. If @|.7 is an additive [resp. o-additive] set-valued
measure, then the function p,,|.7 with

te,0(A): = sup Kz, ¥): y € @(A)}

18 an additive [resp. o-additive] scalar measure for all xe R™.

Proof. The set function p, ,|.97 is well defined and with values
in (—eo, + 0], The additivity of g, . is trivial. Let A4, A, --- be
a sequence of mutually disjoint sets 4,€.% and A =y, A,. If
z2e@(A) then z = 3.7, 2,, where z,€®(A,) for ne N. Then

(1) (w2 = 3 <@, 2> < liminf 3} 1, (4,)

and therefore p, 4(A) < liminf, 3., 2, ,(4,). If g, o(A) = o there
is nothing else to show. If g, 4(A) < o, the additivity implies
U.0(4,) < o for every n. Given ¢ > 0, choose for each » an ele-
ment ¥y, € ®@(A,) such that g, ,(4,) <<=, y,>) +¢-2™". Denote ¥, =
=1 Yn + Dinsc %4 Then F, e @(A) and

(2) lim sup 3 t,.6(4,) — & < lim sup <z, 5> < L. o(4) -
Since ¢ is arbitrarily small, (1) and (2) imply f¢,.0(4) = D, to(4,).

We call an additive set-valued measure @|.%7 bounded, iff
U.co @(A) is a bounded subset of R™. In the case that @ is o-addi-
tive the following Lemma 2 is a result of Z. Artstein (see [1], p.
105). If @ is only additive, the proof is given in [12], Korollar 2a.
|v] denotes the total variation of an additive scalar measure v|.&7
and e, ---, ¢, the 2m vectors of the form (0, ---, =1, -+, 0).

LEMMA 2. Let @|.%7 be a bounded, additive set-valued measure

[resp. @ o-additive set-valued measure with bounded ®(2)] and fi: =

™ |th, 0l Then f].o7 is a mommegative, finite additive |resp.
o-additive] scalar measure with

sup {ly|: y € (4A)} = fi(A)
for all Ae
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Let B(2,.%7) denote the set of all uniform limits of finite linear
combinations characteristic functions of sets in .% and B, (2, .%)
the subset of all nonnegative functions of B(2, .%). B(2, &) is
a Banach space. The norm on B(£2, .%7) is denoted by || ||.

LEMMA 3. If @|.57 is a bounded, additive set-valued measure,
then:
(a) Every feB(2, .5) is p,~integrable for all xe R™.

(b) If fe B9, .5) then Squ) with (S fd(b)(x): - Sfdp,,v, is a
sublinear functional on R™.

Proof. (a) Choose e R™ and Ac . By Lemma 1 g, is an
additive scalar measure and by Lemma 2

[t 0(A)] < || f1(A) .

Therefore
1001(4) = Jo] A(4)
and hence
|| fares| < \1F1d1nsl S U1 0l(@) < o for all FeB(@, .57) .

(b) The function g 4(A)|R™ with (. o(A))(x): = Y, (4) is sub-
linear for every A€ .o% Therefore |\ td® is sublinear for every simple
function ¢ € B,.(£2, .7) and hence gfd@ for every fe B,(2, .&7).

Consider the system (%; 6) of all nonvoid, compact subsets of
R™ with the Hausdorff distance 6 and &,: = {Ke % K convex)}.
(9%, 0) is a metric space and

(1.1) (£, 0) 1is complete

(see [4], (5.6), p. 362). Let A, be the closed unit ball in B™ and
s: F — E(A,) with s(T): = s(-, T) and sz, T): = sup{{z, ¥D:ye T}
for xe4,, Te.<,. By [11]

1.2) s is an isometric function .

LEMMA 4. If @|.%7 is an additive set-valued measure such that
O(A) is compact for all A e .7 then @ is o-additive iff 6(P(4,), {0}))—0
for every sequence A, A,, -+, in S with A, ] @.

Proof. See [12], Satz 1 or [6], Prop. 3.4.
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3. Representation theorems. Our aim is to identify certain
additive [resp. og-additive] set-valued measures as linear mappings
between suitable linear topological spaces. Let BA(L2, .&4 m) be the
set of all bounded, additive set-valued measures @|.%7 with @#(4) € &,
for all Ae.& and E, the set of all functions s(-, T): 4, — R with
Te <, -E, is a convex cone in the Banach space &(4,,) of all real-
valued continuous functions on 4,. Therefore V,:=E,— E, is a
linear subspace of &(4,,). The norm on <7(4,) is denoted by || |l..
Finally <Z.(B(2, &); V,) denotes the set of all continuous, linear
mappings ¢: B(2, %) — V,, where ¢o(f)e E,, for all fe B, (2, .%7).

THEOREM 1. The mapping w: BA(2, 7 m) — L (B, 7); V,.)
defined by (@(@)(f): = Sfd@ is one-to-ome and onto for all me N.

Proof. (1) First we show that 7 is well defined. Choose @ ¢
BA(Q, %, m) and fe B(2,.%7). By Lemma 3(a) the function Squ)
is well defined and by Lemma 3(b) Sf*d@ and Sf‘dd) are sublinear
functionals on R™. With the Hahn-Banach theorem it follows that

(] £1d0)@) = sup {¢a, w3: ¢, 9> = (| £ra0 )}

and
([ rdo)@) = sup {<z, 3: ¢, > = (] a0}

for every x ¢ R™. The set T.: = {yeR’”: (Y = <S fidd)>(-)} is an

element of &%, and therefore S f*d® c E,. Since Sfd(b = Sf*d@ —_
S fado, Sfd(l)e V.. Obviously the equality

(w(@)af + Bg) = a(x(®)(f) + B=(D))9)
holds and

”S fao — Sgd@Hl =iV ngeug |20l (2)

for all f, ge B(R, .&) and @, B R. So 7 is well defined.

(2) Second we show that #(®) = z(®’) implies @ = @’ for all
9, @' € BA(2, .o4 m). Let @, @' € BA(2, .o m) and (@) = n(@’). Then
Yo o(A) = p1,,0(A) for every xe4, and Ae. .. The Hahn-Banach
theorem and @(4), ¢'(A) e &, for every Ac. imply @ = @'.

(8) Third we have to show that for an arbitrarily chosen
pe Z(B(R, &%); V,) there is a @c BA(R, .4 m) with 7(0) = o.
Choose ¢ € & (B(R, .o7); V,). For every fe B,.(2,.%) there exists
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only one T(f)e %, with o(f) = s(-, T(f)). Define @|.o7 by &(A): =
T(x.), where x, is the characteristic function of A. Since ¢ is linear
the equation

T(XAI + Aap) = T(La,) + T((4,)

holds for disjoint sets A,, 4, .97 i.e., @?|.&7 is an additive set-valued
measure with @®(A)e &, for all Ae.»Z Moreover, by (1.2) and the
continuity of ¢, it follows

o(P(A), {0}) = [Is(-, TNl
= llp(rolly
= sup {[lp(g)lli: g € B(?, .7), [lg]] = 1} < o

for all Ae . Therefore @ is bounded. Let xe4,. Then
@,: B(2, &) — R with ¢,(f): = (p(f))(x) is a continuous linear fune-
tional and by the Riesz representation theorem ({7], Theorem 1, p.
258) there is a bounded, additive scalar measure \,|.& with ¢,(f) =

Sfd)», for fe B, .o7). So

o, (A) = 8@, T(Xa) = Pa(l2) = Ni(A)

holds for all Ae.oZ That means 7(®) = .

B(£2, »7) denotes the topological dual of B(2, .%) and ba(2, .o7)
the set of all bounded, additive scalar measures v on .o~ So we get
the following corollary of Theorem 1.

COROLLARY 1. There is anm isometric isomorphism between
B(2, &7) and ba(L, o) such that the corresponding elements 1) and

v satisfy the identity 7(f) = Sfdv for all fe B, 7).

Proof. We have to show only that each 7 e B(2, .%)" determines
a veba(2, &) such that Sfdv =n(f) for feB(R, &). Let ne

B(2, o) and (p(f))(x): = an(f) for fe B(R, &) and ze[—1,1]. o
is an element of <7 (B(2, .7); V,) and by Theorem 1 there exists a

& e BA(R, 54 1) with ©(@) = o, Le., depz,ﬂ = an(f) for fe B2, )
and xe[—1, 1]. Therefore

7(Xs) = sup {y: y € O(4)}
and

—9(x.) = —inf {y: y € O(A)}
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for Ae .o This means that ®(A) consists only of one point v(A4)
and v is an element of ba(2, .%7). Furthermore

g fdy = (S a0)1) = 7(f) for feB@,.57).

Now let 2 be a topological space. A o-additive set-valued
measure @|<Z(2) on the Borel sets .Z(2) of 2 is called regular, iff
Yoo B (2) is regular for every zed,. RCA(R, Z(2), m) denotes
the set of all regular, o-additive set-valued measures @|.<Z(2) such
that #(B)e &, for Be Z(2). If 2 is a compact Hausdorff space,
& = &(2) and &’ the topological dual of & then (&, V,)
denotes the set of all pe &7 (%, V,) such that: there is a e &
with [lp(f)ll, = 9(f]) for feZ.

THEOREM 2. If 2 is a compact Hausdorff space then the map-
ping . RCA(2, Z(Q), m) — F (&, V,) defined by (n(D))(f): = Sfd@
is one-to-one and onto for all me N.

Proof. By Lemma 2 each @ € RCA(2, &#(2), m) is bounded and
hence RCA(Q, Z(2), m) C BA(R, &(2), m). Analogous to (1) of
Theorem 1 one shows w(RCA(RQ, #(2), m)) C L (&, Va.). Let ¢
RCA(R, #(2), m). By Lemma 2 the o-additive scalar measure
f= 3\t 4 is finite and

@Il = sup | 171411,
=< \Irap,

therefore n(®)e ¥ (&, V,). If @ is also an element of RCA(Q,
FB(2), m), then 7(®) = n(P’) implies Sfdy,,,¢ = Sfdp,,,w for xe4,,
fe &, and by the regularity of f,, and £, we have @ = @’. Now
we show that for each p € &%(%, V,) there is a @ € RCA(R, Z&(2), m)
such that n(®) = ¢. Let pe ¥(%&, V,). By the Riesz representa-
tion theorem ([7], Theorem 3, p. 265) there is a nonnegative, regular,
o-additive scalar measure \,|.Z(2) with |lp(f)], = S Ifldx, for fe&.
Furthermore for each fe <%, f = 0, there is only one T(f)€ &, such

that o(f) = s(+, T(f)). Let Be<#(2). Since A\, is regular there
exists a sequence f,f; +-+, iIn & such that 0=f,<1 and

S s — fuldhe — 0. (1.2) implies
o(T(fa), T(f) = llo(fa — FIlL

n, K—00
’———)0
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and by (1.1) there is a T(B)e .5, with 8(T(f,), T(B)) — 0. Define
0| <Z(2) by 2(B): = T(B). The definition is independent of the choice
of the sequence f,, f;, - -+, and, since ¢ is linear and o(T,+ T, T+ T,) <
8T, T} + &(T,, Ty) for T, T,c (i =1,2), we have T(B,UB, =
T(B) + T(B,) for disjoint sets B, B, € &(Q), i.e., ®|Z(2) is an addi-
tive set-valued measure with @(B) € &%, for Be <#(2). Furthermore,
@ is o-additive, since by (1.2) and Lemma 4

o(P(B,), {0}) = No(B,) —> 0

for every sequence B, B,, --- in <Z(£2) such that B,| @. Let 2z€4,
and @.(f): = (p(f))(x) for feZ. @, is a continuous linear functional
on ¥ and by the Riesz representation theorem ([7], Theorem 3, p.
265) there is a regular, g-additive scalar measure vy, on “Z(2) such

that S fdv, = ¢, (f) for fe z. If we can show the equality v, = £,
then the regularity of @ and 7(®) = ¢ follows. Since ]S fdv,; = S |f1dN,
for fe & and because of the regularity of v, and A\, the inequality

I (U) = M(U)
is true for every open subset U of 2 and therefore
(") .| (B) = No(B)
for Be &#(2). 1f Be &#(Q) then there is a sequence f,, f;, -+- in &
such that 0 < f, < 1 and S s — fuldne — 0. By ()

| its = £ din) —0
and therefore
toB) = lim (s, T(£,) = lim | £,dv, = ».(B) .

rea(R2, Z(2)) denotes the set of all regular, o-additive scalar
measures Yy on Z(£2). From Theorem 2 we get the following corollary.

COROLLARY 2. If 2 is a compact Hausdorff space, then there
18 an 1sometric isomorphism between &’ and rca(R, & (2)) such that

' the corresponding elements 7 and v satisfy the identity (f) = gfdv
for all fe&.

Proof. We have to show only that each 7€ %’ determines a
v e rea(2, Q) such that Sfdv = 7(f) for fe @
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Let e &’. Then there are positive linear functionals 7, 7,€ &’
with 7 =7, — 7,. For each 4= 1,2 we define (p,(f))(x): = 2-7,(f)
for fe® and xe[—1,1]. ¢, is an element of <~ (%, V,) and since

PNl = (AN = 7:(151)

for fe &, we conclude ¢, € &' (&, V,) for ¢ =1,2. By Theorem 2
there is a @,e€ RCA(Q, #(2),1) such that S fap, o, = x-n(f) for
ve[~1,1], fe® and i = 1,2. Therefore Sfd(y,,,,,i b s = 0 for

every fe@ and the regularity of p,, implies t4,, = —_,0, for
v =1, 2. Since

t,0,(B) = sup {y: y € 9,(B)}

and
t_y,o(B) = —inf {y: y € 0,(B)} ,

the set @,(B) consists of only one point y;(B) for every Be .Z(Q)
and v; is an element of rca(?, #(2)) for ¢ =1,2. The o-additive
measure Y. = vy, — Y, is also an element of rca(2, <Z(L2)) and

Sfdv - Sfdul — Sfdvz

= ({ra0,)0) - (7de.)®

= 771(f) - ﬁz(f)
= 7(f)

for every few.
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