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NONLINEAR SMOOTH REPRESENTATIONS OF
COMPACT LIE GROUPS

M. ROTHENBERG AND J. SONDOW

We study semi-free (=free off the fixed-point set) smooth
actions of a compact Lie group G on disks and spheres
with fixed-point set a disk or sphere, respectively. In dimen-
sions ^ 6 and codimension Φ2 we obtain a complete classi-
fication for such actions on disks and a partial classification
for spheres, together with partial results in dimension 5 or
codimension 2. We show that semi-free smooth actions of
G on the %-disk Dn, % ^ 6 4 - dim G, with fixed-point set an
(n-k)-άisk, kφ2, are classified by two invariants:

(1) a free orthogonal action of G on the (λ -l)-sphere
Sk~λ (the representation at the fixed points) and

(2) an element of the Whitehead group Wh(τro(G)).

In fact (§ 4, Theorem A), there is a Injection τ from the set
3ί%

p

ik of such actions, with a given representation p:G—> O(k) at the
fixed points, onto Wh(τro(G)), and for n — k ^ 2, Sίn

9

Λ is a group
under equivariant boundary connected sum and τ is an isomorphism.
The corresponding set S^n

p

tk of actions on spheres also forms a group
(§ 4, Corollary 4).

For G — Zm = Z/mZ we show (§4, Corollary 5) that these actions
on Dn restrict to distinct actions on dDn — S™'1 if n — 1 is odd. For
n — k these actions on Sn~ι are free (since Sn~k~ι = S~ι — 0) and,
in fact, are the same as those constructed by Milnor in [20], where
he used Reidemeister torsion to distinguish infinitely many of them.
We observe that his later application [21, Corollary 12.13] of the
Atiyah-Bott fixed-point formula [1, §7] implies they are all distinct.
For n>k we use Whitehead torsion to distinguish them, employing
the result of [11] and [3, Prop. 4.14] that Wh(ZJ is free abelian.
(For analogous applications of Reidemeister torsion versus Whitehead
torsion com- pare [19] vs. [37] and [33, 36] vs. [31].)

Thus for m Φ 1, 2, 3, 4 or 6, which according to [11] implies
rank Wh(Zm) > 0, we obtain (§ 4, Corollary 6) infinitely many dif-
ferent semi-free smooth actions of Zm on every sphere of odd
dimension greater than four, with fixed-point set a sphere of any
even codimension at least four. These actions are not smoothly
equivalent to linear actions, although they are topologically linear
according to [38] and [9].

Invariant (1) of a semi-free action is equivalent to a represen-
tation ρ:G-+O(k) that is "fixed-point-free", i.e., such that p(g) has
no eigenvalue equal to + 1 for g eG, g Φ identity. The only G which
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admit such a representation are the finite "fixed-point-free" groups
classified by Wolfe [40, Theorems 6.1.11 and 6.3.1] and S\ S3 and the
normalizer of SL in S3 (see Bredon [5, p. 153]). We do not use Wolf's
classification in this paper, and the only place we use Bredon's result
is in § 4, Corollary 2, which states in part that every semi-free
smooth action of a compact Lie group G of positive dimension on
Dn with fixed-point set an (n — ft)-disk is smoothly equivalent to a
linear action if n ^ 6 + dim G and ft Φ 2. This is proved without
assuming ft Φ 2 in [5, VI. 9.1].

The rest of the paper is organized as follows. In § 1 we discuss
(G, p) equivariant orientations and define &l*k and S^n

p

Λ. In § 2 we
define equivariant connected sum operations on J2?n

p

>k and S^%

p'
k, in-

troduce the group DSn

p

 k of equivalence classes of (G, p) orientation-
preserving diffeomorphisms of Sn equivariant with respect to the
linear action of G on Sn induced by G Λ 0(k) c 0(n + 1), and define
the set CS^n

p'
k (which is a group for n > ft) of fe-cobordism classes

of elements of &*ΐh. For n^k, and for n = k — 1 ^ 5 if G is
cyclic, these sets are related by an exact sequence

ex. β d v

in § 3. Then § 4 contains our main results, including the fact
(Corollary 5) that for G = Zm, n ^ 5 odd, and n ^ ft + 2, the exact
sequence of § 3 breaks into

0 > Wh(Zm) — ^n

p

k - ίU G9^'* > 0

and

where τ: &n

p

+Xfk -»Wh(Zm) is the isomorphism of Theorem A in § 4.
The proofs of some of the results in §§ 2, 3, 4 are postponed to § 5
in the hope of facilitating the exposition of the earlier sections.
Some of our results on £^n

p'
k, for n = ft and G cyclic, have also

been obtained by Sebastiani [29].
Finally, a word on the genesis of this paper. Some of the re-

sults were announced in [34, 35], where semi-free actions were
called relatively free. An early version of the paper was first
circulated as a preprint in 1969. It appears as a reference in the
following papers (this list is not necessarily meant to be exhaustive):
[6], [7], [26, 27, 28], [15] and [25], which contains a generaliza-
tion of Theorem A(l). [23, 24] are expository lecture notes on the
subject. [30] and [39] are related.

!• Definitions* Let G be a compact Lie group. Let p: G —>
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GL(k) be a linear representation, where GL(k) is the general linear
group on k real variables. The pair (G, p) will be fixed throughout
the discussion. We say that p and p':G-+ GL(k) are equivalent if
they differ by an inner automorphism of GL{k). We consider
GL(k) c GL(k + 1) c c GL(k + r) in the usual way and thus con-
sider a homomorphism p:G—>GL(k) as, a fortiori, a homomorphism
into GL(k + r). We say that p: G -• GL(k) and p': G -» GL(r) are
stably equivalent if they are equivalent considered as homomorphisms
of G into GL(s), s sufficiently large. It follows by the reducibility
theorem that if p and p' are stably equivalent then both factor
through GL(min(ft, r)) and are equivalent in GL(min(&, r)).

Let M be a C°° manifold along with a continuous homomorphism
7: G -> Diff (Λf), the latter having the C°° topology. Let F(M) denote
the set of points of M fixed by every element of G under the action
of G on M induced by 7. Then M (or more precisely the pair
(Λf, 7)) will be called a (G, p) manifold if for each a? 6 jF(Af) the
induced representation of G on the tangent space TMX of M at a?
is stably equivalent to ô. (This makes sense since the group of
nonsingular linear transformations of TMX can be identified uniquely
up to inner automorphisms with GL(dimension (Λf)).) Obviously
this property involves only the stable equivalence class of p. If
F(M) = 0 then the condition is vacuously satisfied.

Let M be a (G, p) manifold of dimension n, let TM denote the
tangent bundle of M and set F(TM) = TM\F(M). Then the action
of G on F(TM) via the differential induces (see [10, §38.2]) a re-
dution of the structural group of the bundle F{TM) from GL(ri) to
C(G), where C(G) is the centralizer of p(G) in GL(n). A (G, p)
orientation of M is a further reduction of the group of the bundle
F(TM) from C(G) to C((?)o, the component of the identity of C(G).
Note that if jP(Λf) is simply connected such a reduction always
exists. In general, the obstruction to such a reduction lies in
J5P(F(AΓ);Za0Z2© ••• 0 Z 2 ) where the number of factors of Z2=
Z/2Z depends on p. Then number of distinct reductions is ah where
a = number of components of C(G) and b — number of components
of F{M).

An oriented (G, p) isomorphism from one (G, p) manifold M to
another Mf is a G equivariant diffeomorphism f:M~+M' which
preserves the (G, |θ) orientation.

A (G, /o) manifold M is semi-free if G acts freely on ikf — F(M).
Let Fp>fc denote the set of (G, p) isomorphism classes of (G, p)
oriented semi-free (G, p) manifolds M, where dimension of ikf is n.
Let ^ ' * = {Me V^k\M and i<W), with C°° triangulations, are com-
binatorially equivalent to disks} and Sf*p'

h = {Me V?'k\M and F(Λf),
with C°° triangulations, are combinatorially equivalent to spheres}.
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The main aim of this paper is to obtain some results on the struc-
ture of the sets ^ ' & and £^n

p

Λ.

REMARK. We will often without warning use the same symbol
(M, Δ, Σ, etc.) to denote a (G, p) oriented manifold, its underlying
smooth manifold, its underlying action, and/or its (G, p) isomorphism
class in 3f*tk or Sfp*

tk. We hope the context will make the intended
meaning clear.

2* The groups ZλSj * and CS^P*
tk and additive structures on

£^p

%ik and <2tyk. The representation p is equivalent to an ortho-
gonal one, and we may as well assume p — i o pQ, where p0: G -> O(k)
and i is the natural inclusion of O(k) into GL(k). Thus G acts on
S1*-1 and Dk via po(G) and on Sn and Dn+1 for n^k-1 via the in-
clusion of O(k) into O(n + 1). So Sn and Dn+1 with this action are
(G, p) manifolds. They will be denoted by S?k and Z> +1'*.

IΐMeVpk (thus M is semi-free) and if the dimension of F(M)
is q then n — q is the smallest integer t such that p:G^ GL(k)
factors through a representation p':G-> GL{t). To simplify notation
we assume t = k (otherwise replace p by p'). If Vp'

k is nonempty
for some n then the action p of G on S*"1 must be free and to
avoid vacuity we now assume this is the case. (For G Φ Z2 this
forces k to be even.) Then S^k for n ^ k — 1 has fixed-point set
Sn~k (where S~' = 0), and TSw|S%-fc has a natural reduction to the
trivial group. Thus S"fk represents an element in V*tk and thus in
£fp

%>k. Similarly, D^+Uk has Dn+ι~k as fixed-point set and represents
an element of £&$+lfk. Furthermore, the restriction of the oriented
(Cr, p) structure on Dylfk to its boundary is just the ((?, p) oriented
manifold Sn

p

Λ.
Let DSn

p

>k for n ^ k — 1 be the set of equivalence classes of
oriented ((?, p) isomorphisms / of Sn

p

ik to itself, where two of them,
/ and / ' , are equivalent if / ' o f-1; Sn —> Sn extends to an oriented
(G, p) isomorphism of D*+lik to itself. Under composition of iso-
morphisms DS"k is a group with the identity map as the unit.

It is possible, if one is careful, to define an addition on the
sets 6^9

%k and ^^+ι>k for n>k, using equivalent connected sum
and boundary connected sum of manifolds, respectively.

To do this we utilize the notion of (G, p) orientation. First
consider the (G, p) oriented manifold D^ιk, with n>k. Now
JD CJB* = RkxRn~k and heG acts on the point (xfy)eDnc:RkxRn~k

by h(xf y) = (p(h)x, y). Let f: Dn~k —> Dn~k be an orientation-revers-
ing isometry, that is, f e O(n - k) - SO(n - k). Then j : Dn -> Dn

defined by j(x, y) = (a?, j'(y)) (that is, j — lxj'e lxθ(n — k)czθ{k)x
O(n — Jfc)cO(w)) is a G equivariant diffeomorphism. The pullback of
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the standard (G, p) orientation of D*>k by j induces a new (G, p)
orientation, and Dn

p'
k with this new (G, p) orientation will be denoted

by D%

p'
k. Note that if G — {e} then this reduces to reversing the

orientation in the usual sense, and in any case is independent of
the particular choice of f.

Now let M be any semi-free closed (G, p) oriented manifold of
dimension n. Let xeF(M). Then by [4] there exists a G equi-
variant embedding /: D*tk -> M with /(0) = x. By replacing / by
foL for some L e C(G) — C(G)0, if necessary, we may assume that /
is (G, p) orientation-preserving. The G equivariant embedding
/ © j : Dn

p

yk —> M defines uniquely a new reduction of the structural
group of TM\F(M)X to C(G)Q, where F(M)X is the connected com-
ponent of F(M) containing x. Thus picking one point out of each
component of F{M) determines a new (G, p) orientation of M. M
with this new (G, p) orientation will be denoted by M. Note that
M is defined only if dimension of M> k. (See [29] for dim M — k.)

With these preliminaries out of the way we can now define
connected sum and boundary connected sum in our category. Let
M and Mf be two (G, p) oriented manifolds of dimension n, with
n > k. Let / and / ' be G equivariant (G, p) orientation-preserving
embeddings /: Ό^k -> M - dM and /': D * -* M' - dMf. Set

M + M' = (M - /(Int JD%)) U (ΛΓ' - /'(Int D%)) ,

where i: Dw —> Z)w is the orientation reversal defined above. After
smoothing corners in the usual way, M + M' is a (G, p) oriented
manifold.

Now let N and N' be two (G, p) oriented manifolds of dimen-
sion n + 1, with n>k. Let / and / ' be G equivariant (G, p) orient-
ation-preserving embeddings /: Dn

p'
k -»3iV and /' : D£'& —> 3iV'. Set

N@N' = N\Jf,jf-iNr, where the union is taken along the images
of / and / ' . Again after smoothing corners we get N@N' as a
(G, /9) oriented manifold.

The following are proved in § 5.

PROPOSITION 1. If F(M) and F(Mr) are connected, then the
(G, p) isomorphism class of M + M' is uniquely determined by M
and AT, i.β , it is independent of the particular maps f and / ' .
Similarly if F(N)Π[dN = F(dN) and F(N')n dN' = F(βN') are con-
nected, the (G, p) isomorphism class of N(§)Nf is independent of f
and / ' .

COROLLARY. If n> k, then + as defined above induces a binary
operation on t9

p

P

n>k which is independent of the choices of basepoίnts
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x and xf and embeddings f and f . Under this operation &*p

n'k is
an associative, commutative monoid with S^>k as the identity. (See
[29] for the case n — k.) The same thing is true for £&n

p

+uk with
D^+hk as the identity.

REMARK. The above corollary is true because we are working
in the category of (G, p) oriented manifolds. It is not possible to
drop this notion and still get a well-defined addition. (However,
see Remark 1 in § 4.)

We now define another set CS^p

nΛ as follows: Let Σ and Σ' re-
present elements of ^p

n'k. We say Σ is h-cobordant to Σ' if there
is a (G, p) oriented semi-free (G, p) manifold W such that W and
F(W), with C°° triangulations, are combinatorially equivalent to
Snx[Q, 1] and S*-*x[0, 1], respectively, and dW as a (G, p) oriented
manifold is (G, p) isomorphic to the disjoint union of Σ and Σ'.
Then Λ-cobordism is an equivalence relation and the equivalence
classes are the elements of C£fp

n'k. It is simple to check that addi-
tion preserves fe-cobordism and hence induces a monoid structure
on CS^P

nΛ for n>k. Furthermore, the natural map v :^ W i f e ->
CS^p

n'k is an epimorphism of monoids. The usual proof (see [13])
goes through to show that Σ + Σ bounds an element in &n

p

+lΛ.
Hence Σ + Σ is fc-cobordant to the unit Sn

p

Λ in CSfp**k. Thus CS^P

%ik

contains additive inverses and is an abelian group for n > k.

3* Some morphisms and an exact sequence* We now wish
to examine the relations among the sets DS^P

n>k, ^P

nΛ, &n

p

+hk and
C£Sp

n'k, which are monoids for n>k. We already have the surjec-
tion v:£sp

n'k->C£>'p
n'k. We define some other functions.

(3.1) a: D S n

p ' k > <9*p

n+1>k.

Define a as follows. Let /: S">k —> S"'k be an oriented (G, p) iso-
m o r p h i s m . S e t a(f) = Dn

p

+ί'k[Jf Dn

p

+1>k, w h e r e dDn

p

+1>k = Sn

p'
k is i d e n t i -

fied with d(D;+ί>k) = Sn

P'
k under /. Then a(f)eS^P

n+uk. It is not
difficult to see that a is well-defined. We prove in § 5 that it is an
injection for n ^ k — 1 and a monomorphism of monoids for n^k.

(3.2) β:S"P

n>k >&n

p'
k .

Let Σ represent an element of S^P

n>k and let xeF(Σ). Choose
an equivariant (G, p) oriented embedding /: D^>k —> Σ with /(0) = x.
Set β(Σ) = Σ - /(Int Dn). If n > k, then β induces a well-defined
map from S^P

n>k to S^^k which is a morphism for n > k + 1. This
follows from the proof of Proposition 1 in § 5.

(3.3) d:^n

p

+1'k >S"P

n>k .
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The boundary map 9 is clearly well-defined for n ^ k — 1 and a
morphism for n > k.

PROPOSITION 2. The following sequence is exact for n ^k.

0 > DS«>k -^-> ^ +1 * -£-> ^ J + 1 ' f c — ,9J * -^-> O ^ * ' f c > 0 .

The proof is straightforward and will be omitted.

NOTE. DSJJ * is a group for any n. For n > k the first and
last terms are groups while the other terms are monoids.

COMPLEMENT. The above sequence (of sets) is also defined and
exact for n — k — 1 ^ 5 and G cyclic.

Proof. For n = k - l and Σ e y / + α the fixed-point set
F(Σ) = S° is just two points. The map β is a priori not well-
defined here, i.e., it may depend on the choice of xeS°. However,
it follows easily from Milnor's application [21 Corollary 12.13] of
the fixed-point formula of Atiyah-Bott [1, § 7] that for n ^ 5 and
G cyclic, β is well-defined and in fact is the constant map β(S^p

n+1>k) =
£)«+i,* 6 tgrn

p

+ι>k

m Then exactness of the sequence follows easily.

4* Main results* Our main result is a computation of &n

p>
k

for k Φ 2 and w-dim G ^ 6, where dim G = dimension of G as a
manifold, and a partial computation for ?ι-dim G = 5 or k = 2. The
proof is in § 5.

THEOREM A. Assume kφ2 and let π — πQ(G) = G/GQ where GQ

is the component of the identity of G. Then there is a function

τ: &;>k > Wh( τ) ,

where Wh(ττ) denotes the Whitehead group of π (see [Milnor 4, § 6]),
such that

( 1 ) τ is a morphism for n > k + 1,
( 2) if w-dim G ^ 6, then τ is a bijection,
( 3 ) for w-dimG — 5, the set &n

p

>k contains a subset ^ p

n Λ such
that τ\^p

n>k is a bijection onto the subgroup z(J^p

n'k) == {x + x\xe
Wh(ττ)}, which has finite index in Wh(ττ) (see [21, § 6.10 and § 11.5].
For the definition of conjugation x see below and [21, p. 373 and
p. 398].) If n > k + 1 and Wh(ττ) is free abelian (e.g., if π is
cyclic, see [11] and [3, Prop. 4.14]), then ^~p"

>k is a subgroup of
the monoid &n/c and τ\J?~p

n>k is an isomorphism onto its image.
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ADDENDUM. For k = 2 and n-άimG ^ 6, we have ξ?P

n>2~ {D^2},
where gy1'2 — {Δe 2$P*\Δ — F{Δ) has the homotopy type of the circle
and π^dΔ - dF(Δ)) is Z).

REMARK 1. From the definition of τ (see § 5) one sees that
τ(Δ) for J e ϋ ^ ^ depends only on the action and not on its {G, p)
orientation. Thus, for w-dim G ^ 6 and k Φ 2, the function from
&?* to \3f?% defined by "forgetting" the (G, p) orientation, is a
bijection, where \&P

nΛ\ denotes the set of equivariant diίfeomorphism
classes of semi-free actions of G on D% with fixed-point set an
(n — &)-disk and representation p at the fixed points. This is be-
cause every such action can be (G, p) oriented and τ is injective.
In particular, any two (G, p) orientations of such an action are re-
lated by an oriented (G, p) isomorphism.

COROLLARY 1. A semi-free action of a compact Lie group G on
the n-disk, n ^ 6 + dim G, with fixed-point set an (n — k)-dίskf k Φ 2,
is smoothly equivalent to a linear action if and only if its White-
head torsion vanishes. Two such actions are smoothly equivalent
if and only if they have equivalent linear representations at the
fixed points and the same Whitehead torsion.

Proof. This follows immediately from Theorem A and Remark 1.

COROLLARY 2. If Wh(π) = Wh(πo(G)) = 0, then 3t;>k = 0 and
DSn

p-
1>k = S^P

n'k = C^p

nΛ for n ^ 6 + dim G and k Φ 2. In particular,
this is true if dim G > 0 or if G = Z2, ZSf ZA or ZQ.

Proof. For n > k the first statement follows immediately from
Theorem A and Proposition 2. In case n — k, we have DSk

p~
1>k =

£fp

kik. This gives S>P

kyk a group structure which is preserved by
v: .9f'k -> C ^ ' \ Since ker v = 0, the result follows.

The second statement is true because if dimG > 0 then (see [5,
p. 153]) G = S\ S\ or the normalizer of S1 in S\ so that, in any
case, πQ(G) = 0, Z2, Z3, Z4 or Z6. and thus Wh(τro(G)) = 0 (see [11] and
[3, Prop. 4.14]).

REMARK 2. The case dim G > 0 is proved in [5, VI. 9.1] without
assuming k Φ 2.

COROLLARY 3. // n ^ 6 + dim G, n > k + 1 and k Φ 2, then
£^>Λ>fe under © is an abelian group.

Proof. The additive inverse of an element Je£^*> f c is —J =
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Caveat. It is not Δ{ — Δ with opposite (G, p) orientation as de-
fined in § 2). In fact, Δ = Δ in Sff*. See Remark 1.

COROLLARY 4. If n ^ 5 + dim G,n>k and kφ2, then .97/ c

is an abelian group under + .

Proof. This follows from an easy algebraic argument applied
to the exact sequence of Proposition 2, knowing that i%rp

pλΛ>k and
C,9*P

n>h are groups.
Under the hypotheses of Corollary 4, all the monoids in the

exact sequence of Proposition 2 are groups and all the morphisms
are homomorphisms.

Let d: &p

n+1>k —> £&p*
 k denote the composition d = /9°3, which is

defined for n> k (and for w = k if n ^ 5 and G is cyclic). For
n > k + 1 the function d is a morphism and d2 = 0. Under the
hypotheses of Theorem A(2) we can interpret d: Wh(ττ) —> W(π). We
would like to give an algebraic description of d.

The action of G on Rk — 0 via the representation p induces a
homomorphism v: G -> Aut(Hk^(Rk - 0)) = Aut(Z) = Zf = {-1,1}.
Clearly Go is in the kernel of v. Hence v induces a homomorphism
w:π —> ̂ 2 . Then w induces an anti-automorphism —, with square
the identity, on Z[π], the integral group ring of π, characterized
by a = w(a)a~ι for all aeπaZ[π]. This anti-automorphism of Z[π]
induces an automorphism of Wh(ττ) still denoted by —with x = x,
for all α;6Wh(7r). In our situation G acts freely on Rk — 0 and
from this it is easy to show that w(π) = 1 unless G ~ Z2 in which
case Wh(G) = 0.

The following is proved in § 5.

THEOREM B. Set g = dim G. If n> k and k Φ 2, then

τ(dΔ) = τ(Δ) - ( ~ 1 ) ? I

/or J 6 j&rp

n+1*k. Hence if in addition n - g ^ 6 ,
^5,Λ>fc cα^ δβ identified with the homomorphism d: Wh( τ) —> Wh(7r)
defined by d(x) ~ x — (—l)n~9x. This makes sense for n — g = 5
(mα Theorem A (3)) and is ίrue i / Wh(τr) is free abelian, e.g., if ΊZ
is cyclic.

COROLLARY 5. Let G = Zm and let p: G ~> GL(k), k Φ 2, be a re-
presentation such that G acts freely on S f e-1, i.e., Sk~1/p(G) is a lens
space. Then for n odd, n ^ 5 and n^k, the function β: £fp

%+lιk •->
£&pn+1'k is zero. Hence,

0 > W h ( Z J — .5^*'* -^-> C ^ Λ ' f c • 0
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is a short exact sequence and a: DSn

p

ik —> Sf+1'k is an isomorphism.

Proof. Since Wh(Zm) is free abelian, conjugation is the identity
(see [21, Corollary 6.10]). It follows, therefore, from Theorems A
and B that if n ^ 5 is odd and n > k Φ 2 then d: &P

n+1>k -> &?* is
injective (in fact, d is multiplication by 2 in a torsion-free group).
Furthermore, from the exact sequence of Proposition 2 it follows
that β: Sfpn+1'k -> 3?P

n+ι'k is zero since d is injective and d ° β = 0.
Hence, the exact sequence breaks into

0 > ^rp

n+ί'k - i - > <9*P

n>k — ί U CS?'k > 0

and

o — > DS;<k - ^ srP*+1-k — > o .

Applying Theorem A again completes the proof.

COROLLARY 6. Assume n ^ 5 is odd, k 2̂  4 is even, n — &^ — 1
αwd m ^5, m Φ 6. Then there exist infinitely many distinct semi-
free actions of Zm on Sn with fixed-point set an (n — k)-sphere. In
fact, the set of equivariant diffeomorphism classes of nonlinear
semi-free actions of Zm on Dn+1 with fixed-point set an (n — k + 1)-
disk is infinite and the restrictions of these actions to dDn+1 — Sn

are all distinct.

Proof. According to [11] Wh(Zm) has positive rank if m Φ 1, 2,
3, 4, or 6. Now, any smooth manifold Δ homeomorphic to Dn+1 is
diffeomorphic to Dn+1 if n ^ 5 by [32]. Thus for n - k ^ 1 the
result follows from Corollary 5 and Remark 1. For n = k — 1 we
must show that 3or"1 maps Wh(Zm) one-to-one into ,Sfk~uk (for n>k
this follows from exactness). To do this assume 3z/0 = dAι for z/0,
Λ e ϋ^,fc'fc. Let /: dA0 —• 9^ be an equivariant diffeomorphism. Glue-
ing Jo and z/i together equivariantly along their boundaries produces
an element Σ e S^k'k. It follows from the sum and duality theorems
for Whitehead torsion (see [21, §7.4 and §10]) that τ(β(Σ)) =
τ(4>) — /*MΛ)) But /* is the identity since/ is equivariant. Since
conjugation is the identity in Wh(Zm) it follows from the Comple-
ment to Proposition 2 that r(4>) - τ(Λ) = ^08(2)) = 0. Hence z/0 = Jx

as required. This completes the proof of Corollary 6.

REMARK 3. It is easy to see that these free nonlinear actions
of Zm on S^"1 are the same as those constructed in [20], where Milnor
showed that infinitely many of them are distinct, using Reidemeister
torsion invariants, while we have observed that his later result
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[21, Corollary 12.13] implies they are all distinct.
From Theorem B it follows by a well-known result [8] that

ker d: &p

n>k -> 3F*~X* modulo im d: &p

n+1>k -> &** is Hn-g(Z2; Wh(ττ))
where Z2 acts on Wh(ττ) via conjugation —. The groups Hn(Z2; Wh(ττ))
are of course periodic of period 2.

Now doβ = 0, so β{£fp

n+uk) c k e r d. Since d = /3°3 we have a
well-defined

1 * > Hn+ι-.(Z%; Wh(ττ)) .

Let ψ2 be the composition

We have 3(ker d) c a(DSn

p-
uk) and 3(im d) = 0. Thus d induces a

map ψz: Hn+ί.9(Z2; Wh(ττ))

PROPOSITION 3. ^Lsŝ me n — g = n — dim Cr^6, ^ ^
k Φ 2. Γ̂ βw ίfcβ following sequence is exact

ί U Hn+r+2.g(Z2; Wh(τr)) -

^ c ^ + r + i f * ^ i , Hn+r+1_g(Z2; Wh(π))

^ Hn+1-9(Z2; Wh(τr)) - ^ U ^

Proof. This follows from Proposition 2 and Theorem B by an
elementary algebraic argument.

5* Proofs* The proofs of this section depend on the following

LEMMA (Equivariant covering isotopy theorem). Let N and M
be compact smooth manifolds with dM = 0, and let G be a compact
Lie group acting smoothly on N and M. Assume that X is an
equivariant isotopy of N in M, i.e., a smooth family of equivariant
embeddings Xt:N—>M. Then there exists an equivariant covering
isotopy of M, i.e., an equivariant isotopy ψ of M such that ψt°\ = \
for te[O,l].

Proof. By the (nonequivariant) covering isotopy theorem (see
[22], [16] or [18]) there exists an isotopy φ of M such that φQ —
identity and φt<>x0 = Xt for te[O, 1]. Then by Theorem 3.1 of [5,
Chap. VI] there exists an equivariant isotopy ψ of M such that

= φt\X0(N). This completes the proof.

Proof of Proposition 1 and its corollary. We wish to show
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that the sum and the boundary sum operations for (G, p) oriented
manifolds are well-defined. We consider only the sum operation,
the argument for boundary sum being the same except for trivial
modifications.

Let M and Mf be two ^-dimensional (G, p) oriented manifolds.
We wish to show that M + M' is defined uniquely up to oriented
(G, p) isomorphism and that + on isomorphism classes is commutative
and associative, provided F{M) and F(Mf) are connected. What we
have to show is that the result is independent of the (G, p) equiv-
ariant orientation-preserving embeddings f: Dn-*M and /': Dn->M'.

Suppose we replace / by f:Dn-*M, where /(0) = /(0) and / is
a (G, p) orientation-preserving embedding. Then uniqueness of equiv-
ariant tubular neighborhoods [5, p. 310] implies that / is equivari-
antly isotopic to flf and / to flf such that ft = fx°ψf where
ψ: Dn —> Dn is an equivariant linear map, i.e., ψ e C(G). Since / and
/ were chosen as (G, p) orientation-preserving, it follows that
ψeC0(G). Thus ψ is equivariantly isotopy to the identity. It fol-
lows that / and / are equivariantly isotopic.

Now suppose we replace / by / where /(0) Φ /(0). Since we
assumed F(M) is connected, there is a path in F(M) joining /(0) to
/(0), that is, an equivariant isotopy of /(0) to /(0). Using the equiv-
ariant covering isotopy theorem, we can then equivariantly isotop
f to f with /(0) = /(0). Then the argument above shows / is equi-
variantly isotopic to /. Hence, / is equivariantly isotopic to / for
any other (G, p) equivariant orientation-preserving embedding
f:Dn->M.

Thus we can apply the equivariant covering isotopy theorem to
get an oriented ((?, p) isomorphism h:M->M with h<>f = f. This
proves that the sum is well-defined up to (G, p) oriented isomorphism
class. Associativity and commutativity are immediate from the
definition since we may assume j = j ~ \

Proof that a: DSn

p~
lyk —> ,S^p

%yk is an injection for n ^ k and a
morphism for n ^ k + 1.

We assume n ^ k + 1 (a similar proof goes through for n = k).
Recall that a is defined as follows. Given an oriented (G, p) iso-
morphism /: SJ-1'* -» SJ;-1'*, set a(f) = DQ

n \Jf D?, where D? = Dn

p>
k

and Όΐ - Dn

p>
k. Now let h: Do

n (J/ A* -> A* Uf A* be a (G, p) orient-
ed diffeomorphism. Since n ^ k + 1, the fixed-point set F(a(f)) is
connected. Hence by the proof of Proposition 1 we can equivari-
antly isotop h to h': Do

n \Jf D? -> Do

n \Jf, D? such that h'\AΛ is inclu-
sion. It follows that h" = h'\D?:D? —> D? is a (G, jθ) oriented iso-
morphism such that h"\dΌ? is exactly / ' /" ' . Hence Z'/" 1 extends
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over D^ik and thus / = / ' in DS^'lik. Hence a is injective.
To show that a is a morphism of monoids one simply chooses

carefully the disks used in constructing the equivariant connected
sum of (G, p) manifolds. For a(f) = Do

n \J/ A* use the disk l)f while
for a{f) = DQ U/' A" use D?. With this choice the construction
for a{f) + α(/') yields a(fΌf) on the nose.

Proof of Theorem A.

DEFINITION OF r. Let J represent an element of @ffth. Let
ε: T —> J be a closed G equivariant tubular neighborhood of F(J) in
Δ. (For a semi-free action F{Δ) Φ ψ since no nontrivial group can
act freely on a disk.) Let δ(T) be the associated sphere bundle to
T. For kΦ2f it follows easily that ε(δ(Γ))c4 - Int(s(T)) is a
homotopy equivalence, while for k = 2 the hypothesis of the Ad-
dendum to Theorem A implies this. Let V = ε(δ(T))/G = δ(T)/G=
Dn~kxSk-1IG and W = (Δ - Int(β(T)))/G be the decomposition mani-
folds. Since they are the base spaces of principal G bundles the
inclusion £: F —> PΓ is a homotopy equivalence, under our hypothesis.
Hence (see [21, § 9]) there is defined a Whitehead torsion invariant
τ(c) e Wh(πΊ(V)). By abuse of notion we define r(J) = τ(c).

For &>2 we have that π^V) — πι(D*~kxSk~ι/G) is isomorphic to
7Γ = τro(G) = G/Go — the group of covering transformations of the
universal cover V = Dn~kxSk~~1/G0. This isomorphism is unique up
to inner automorphisms, which induce the identity automorphism
of the Whitehead group. Hence there is a canonical identification
Wh(τr1(F)) = Wh(ττ) and we have τ(Δ)eWh(π).

From the uniqueness theorem for closed equivariant tubular
neighborhoods, the equivariant covering isotopy theorem, the in-
var iance of Whitehead torsion under diffeomorphism, and the fact
that the canonical identification Wh(πΊ(F)) = Wh(ττ) is preserved
under equivariant diffeomorphism, it follows that r: &p*"k —> Wh(τr)
is well-defined for k > 2.

If k = 2, then πx(V) = Z or 0, hence Wh(τr1(F)) = 0 by [11]. If
k = 1, then G = Z2 so TΓ^F) = 0 and thus Wh(τro(G)) = 0. Therefore
τ is well-defined in all cases.

Proof that τ is a morphism for n > k + 1. We have defined
τ: i^Λ*—>Wh(ττ). For w>fc + l we have a monoid structure on
both the domain and range of τ. We wish to show that τ is a
morphism. To do this, let Δ and Δ' represent elements of &p

n>k.
We can assume that Δ, Δ' and Dn

p~
ίkx[Qf 1] (with G acting trivially

on [0,1]) are pairwise disjoint. Let /: Dn

p~
uk -> dΔ and /' : Dn

p~
uk -> 34'

be equivariant (G, /t>) oriented embeddings. Set ΔQ = (J9"~lAx[0,1/2])
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U / Λ where / glues Dn

P~
l>kx[0,1/2] to Δ along D«-ι>kx{ϋ\ = f(Dn

p-
1>k),

and 4 = (DΓαx[l/2,1]) U/ Λ', where / ' glues £>Γ l fcx[l/2,1] to J'
along fl;-αx{l} = f'{Dn-ι>k). Then clearly as elements of j ^ * we
have Δo = J and 4 = J'. Furthermore, J φ / is represented as an
element of ^Λ* by 4>U4, where 4> is glued to 4 along Dn

p~
likx {1/2} =

4> n 4 .
Now choose equivariant tubular neighborhoods ϊ\ of JP(4) and

T2 of JP(4) such that T= Tt\jT2 and Γ3 = 2\ n Γ2 are equivariant
tubular neighborhoods of F(ΔOUΔ'O) and F(D%~ukx{1/2}), respectively.
Using the notation of the definition of r, we have W •= WγΌ W2,
Wz = Wi Π TF2, F - F, U F2, and F 3 = F x n F 2. Now by the sum
theorem of [14] τ(ή = τ(O + τ(O — τ(r3), where c: V-> W and
V7<~> W4 are inclusions, i = 1, 2, 3. But r(r3) = 0 since F 3 =
2>-*-iχS*-i/G and TΓ8= F8x[0, 1], with *.(&) = (αf 0) for x e 7 3 .
Hence

0 4) - r(0 - τ(O + τ(c2) = τ(4) + τ(4)

+ r(zί') .

This completes the proof.

Proof that τ is surjective for % ^ 6 + d i m ( τ . G a c t s f r e e l y o n

Sfc~1 under p and hence freely on S^xD"-16 via h(x, y) = (/t>(λ)«, 3/),
where heG. This action extends to an action on DkxDn~k defined
by the same formula.

Set V = (Sk~ι x Dn~k)/G = S'-'/G x Dn~k. If ^-dim G = 1 + dimen-
sion of F ^ 6 then Sailings' construction [37] (see [21, §11.1]) gives
a manifold W which is an A-cobordism between V and V'9 with
VΓiV = φ and 3 TF = F U F ' U V", where F " is a product cobordism
between 3F and dV, such that the Whitehead torsion τ(W, V) is
equal to any preassigned element r0 of Wh(τr) = Wh(ττ1(F)). Let
p: W -> W be the principal G bundle over W induced from the G
bundle Sfc"1xDw"fc-> F by a deformation retraction of W onto F.
Then p~\V) = Sk-1xDn-]c with the given action of G on it. Let i
denote the identity map of p~\V). Then after smoothing corners
DkxDn~k \Ji W becomes a contractible manifold with 1-connected
boundary and hence by [32] is diffeomorphic to Dn. The actions of
G on the summands piece together to give the required action Δ of
G on Dn, with τ(Δ) — τ0, proving surjectivity (compare [20]).

Proof of part (3): the case w-dim G = 5. For w-dim G = 5,
Stallings' construction is replaced by the "wedge" construction of
Siebenmann-Sondow [31] (extended easily to manifolds with boundary)
which provides invertible /t-cobordisms between 4-manifolds with any
torsion of the form x + x. The rest of the above recipe for w-dim
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G^tβ goes through unchanged, proving that there is a function
σ:H-+&p

nk such that τ°σ = identity, where H is the subgroup
H = {x + x\xe Wh(ττ)} of Wh(ττ). Set jTp«>k = σ(H).

If Wh(ττ) has no elements of finite order, then for every heH
there exists a unique x e Wh(π) such that h = $ + α? (Proof: If
a? + a? = #0 + #0, then 2(# — x0) = (x — x) — (x0 — x0). But x — x and
x0 — x0 have finite order by [21, Corollary 6.10]. Therefore, so does
x — xQy so x = a?0.) Then the uniqueness theorem for ft-cobordisms
(see [21, § 11.3]) implies that σ is a morphism from the group H to
the monoid 3ff* if w > k + 1 (compare the proof of invertibility
in [31]). Hence jrp ».* = σ(£Γ) is a group and τ| J^w ' f c = σ"1: J^""* ->H
is an isomorphism. This completes the proof.

Proof that τ is injective for w-dim G ^ 6. Using the notation
of the definition of r, let s": T" ->3J be a closed G equivariant
tubular neighborhood of dF(Δ) c dΔ such that T\dF(Δ) = Γ' c Int T"
and ε"| T' = ε| T. Introducing a corner along 8(T")jG we have that
W is an &-cobordism between V and F ' = (dΔ - Int s"(T"))IG, with
3 W = TFUF'UF", where F " is a product cobordism between dV
and dV.

Now given Λ, Δ2 e ^p

n>k we apply this construction to each and
get Λ-cobordisms {Wt; Vi9 VI), i = 1, 2. Each ^ is a G equivariant
bundle over a disk JD%~\ SO Tt when considered as a bundle with
group C(G) is still trivial, i.e., each Tt = DkxDn~k with G action
defined by h(x, y) = (p(h)x, y) for feeG. It follows that, up to iso-
topy, there is a well-defined equivariant diffeomorphism /: TL -* Γ2

which we may assume is (Gf p) orientation-preserving (since other-
wise we may replace / b y Lof for some LeC(G) — C(G)Q). Then
fWTJ: δ(Tx)-* δ(Tt) covers a diffeomorphism /0: δ(TJ/G-*δ(Tt)/G.

If r(4) — r(zί2) then, by definition, the inclusions ^: Vx —> WΊ and
2̂ ^2 —̂  Ŵ2 have the same torsion invariant. Since %-dim G — dimension
of Wi ^ 6, the uniqueness theorem for fc-cobordisms implies that
/o VΊ —• F2 extends to a diffeomorphism /x: WΊ -» W2. Then by ele-
mentary bundle theory this lifts to a G equivariant diffeomorphism
of principal bundles f1:W1~>W2 such that Λ l ^ =/|δ(Γχ). Thus
/ and /L piece together to yield an oriented (G, p) isomorphism
/U/i:Λ-*4s Hence τ is one-to-one for n-dimG^6. This com-
pletes the proof of Theorem A.

Proof of the Addendum. It follows easily from the definition
of gy1'2 that the above construction applied to any element Δ 6 gy1'2

yields an ^-cobordism (W; V, V). In defining τ we saw that
Wh(π1(F)) is trivial. Hence the s-cobordism theorem of [2], [17]
and [37] (see [12]) implies that W is a product cobordism. The
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above proof then shows that A is the trivial element A = D"'2 e gy*'2.
This completes the proof.

Proof of Theorem B. We wish to calculate the Whitehead torsion
τ{dA) for A e &p

n+hk and d: &p

n+ι>k -> &P

n>k. Let / : Dn

p'
k —> dA be an

equivariant (G, p) oriented embedding. Then dA = dA — /(Int Dn

p>
k) e

<&P*
tk. Choose a closed equivariant tubular neighborhood ε:T—>A

of the fixed-point set F(A) in A such that T\F(f(Dn

p>
k)) and Γ |F(dJ)

are closed equivariant tubular neighborhoods of F(f(Dn

0

>k)) and F(dA)
in f(Dn

p>
k) and cL4, respectively. Set W= (A - ε(f))/G, W,=

(f(Dn

p'
k) - ε(f\F(f(Dn

p'
k))))/G and W2 = (dJ - ε(T\F(dA)))/G where Γ

is the open disk bundle associated to T, i.e., f = T — δ(T). Also set
F = δ(Γ)/G, F x - (δ(T)\F(f(D"p>

k)))/G and F 2 = (δ(T)\F{dA))jG. Let

2* ' 2 »" 2

« F >tF

• . T/Γ7" I I TJ/" TJ7'

i4: F, > TF

denote the inclusions. We wish to compare τ(dA) — τ(c2) with
τ(A) = τ(0- Now 3TF = F U ̂  U Wt, with F Π (W, U TΓ2) = 9 F =
dCWxU TΓa) = FiU F 2 . Since TΓX = F ^ t O , 1], where Vx is identified
with F x x 0 and WιΠWi= VΊxl, it follows that r(ix) = r(i2). By
the duality formula of [21, §10] we have r(0 = ( — I)n~9+Iτ(i2)f since
^ _ g + l == dim W. Hence τ(0 = ( - l ) * - ^ 1 ^ ) . Now factor the
inclusion F 2 —> T^ in two ways:

W2

/ \
F 2 TΓ

\ . /
V

Hence (see 21, § 7]) r(/2) + r(iO = τ(is) + τ(0 On the other hand we
can also apply duality to i3 to get r(i8) = ( —l) d i m F lr(i 4), However,
V = Dn+ι-kxSk-1IG and F x = Dn-kxSk-ί/G and i4 is the natural in-
clusion. Hence τ(i4) = 0. Therefore r(i8) = 0. Thus τ(O+^(ίi) = r(0-
Therefore τ(dJ) = τ(i2) = τ(c) + (-I)n~9+1τ(c) = τ(J) + (-1)—H?), as
required.

For n — g = 5 the "wedge" construction of [31] is used in the
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proof of Theorem A (3) to produce an action σ(h) B^p

n>ka&p

n>k such
that τ(σ(h)) = h, for any h e H = {x - x\x e Wh(ττ)}cWh(π). It is not
difficult to see that σ(h) = dτ~\x) for some x e Wh(7r) such that
h — x + x. In other words, given x e Wh(7r) the wedge construction
yields the same element σ{x + x) = ώr"1^) = β{Kτ~\χ)))e ϋ̂ >*>fc as
does our construction of taking the action τ~\x) e £2fp

n+ltk which has
Whitehead torsion equal to x, then restricting the action to the
boundary d(τ~\x)) and finally removing (via β) a copy of the trivial
action D"tk at a fixed point. Thus we have

σ(H) = ^ ? * c d ( ^ +1'*) c T

because r(cLJ) = τ(Δ) — ( — l)n~9τ{A) e H since n — g = 5 is odd.
Now if Wh(7r) is free abelian σ~x = τ | ^ w > f c : ^ % > f c -> if is an iso-

morphism by Theorem A (3). Moreover, τodor"1: Wh(π) -> ΐf is an
isomorphism since it is x \-+ 2x in a free abelian group. Therefore,
d(&P

n+1'k) = ^P*'h and d: &p

n+uk-> ^r'* is t h e isomorphism d =

(jo(rodor"1)or. This completes the proof of Theorem B.
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