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COHOMOLOGY OVER BANACH CROSSED PRODUCTS.
APPLICATION TO BOUNDED DERIVATIONS AND
CROSSED HOMOMORPHISMS

Guy Louprias

The purpose of this work is to study the structure of
bounded derivations and crossed homomorphisms of the
Banach crossed product A=LG, A) of a Banach-*-algebra
A acted upon by a locally compact group G. As bounded
derivations and crossed homomorphisms are related to
1l-cocycles, we first define and study cohomology over %,
generalizing cohomology over group algebras. Then, if G
is amenable and A is a C*-algebra, or the dual of a Banach
space, we show that a bounded derivation (resp. a crossed
homomorphism) on % is equivalent to some couple of a
bounded derivation (resp. a crossed homomorphism) from
A to M(G, A) and a bounded measure on A with value in
the centralizers of A (resp. an element of ).

1. Introduction. Crossed products of Banach algebras and
locally compact groups are interesting objects from a mathematical
point of view because they are generalizations of group algebras,
from a physical point of view because they are useful tools in
describing quantum dynamical systems. Hence it would be interest-
ing to know the structure of their automorphisms and derivations.
For a large class of automorphisms, the answer is given in [2]. In
this paper, our aim is to begin the study of bounded derivations
and crossed homomorphisms of Banach crossed products. For that
purpose, cohomology techniques seem to be useful and this is the
reason why we will begin with cohomology over Banach crossed
products, a generalization of cohomology over group algebras worked
out in [15].

Given a locally compact group G acting on a Banach =-algebra
A, A = LYG, A) will be the Banach crossed product of these two
objects. In paragraph 2, we collect known results about centralizers
on A and vector measures, and define several module structures on
them in paragraph 3. Paragraph 4 is devoted to the definition of
cohomology over U, while paragraph 5 contains a Riesz representa-
tion theorem for the elements of the spaces introduced in the
preceding paragraph. In paragraph 6 we extend the cohomology
over U to its centralizers. Finally paragraph 8 characterizes the
structure of derivations and crossed homomorphisms, using the
notion of vector means developed in paragraph 7.
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2. Notations and preliminary results. In the sequel, (4, G, 0)
will denote a Banach dynamical system, that is to say the triplet
of a (separable) Banach-x-algebra with norm |-| and (countable)
approximate unit {e,},.; contained in the unit ball, a second countable
locally compact Hausdorff (hence Polish, i.e., second countable, metri-
zable and complete) group G with Haar measure dg, and a repre-
sentation ¢ of G into Aut G (the group of continuous and isometric
x-agutomorphisms of A), representation continuous in the sense that

(1) (¢, 9)e A X G—0(9)ac A

is continuous.

Once A is given, we call M, (A) (respectively Mz(A), M(A)) the
space of left centralizers (resp. right centralizers, centralizers) on
A. Let us recall [2], [16], [3] that M,(A4) (resp. Mz(A)) is the
algebra with unit of continuous linear maps L (resp. R) on A such
that L(ab) = L(a)b (resp. R(ab) = aR(b)) for any a and b in A, the
product being .defined by L,-L, = L,oL, (the composition of maps)
(resp. R,-R, = R,oR)). M(A) is the =x-algebra with unit of couples
(L, R) of (automatically linear and continuous) maps on A such that
aL(b) = R(a)b for any a and b in A, the product and =-operation
being defined according to (L, R.)-(L,, R, = (L,-L,, R,-R,) = (L,°Ls,,
R,oR)) and (L, R)* = (R', L) where R'(a) = R(a*)* and L'(a)=L(a*)*.
If (L, R)e M(A), then Le M,(A) and Re M(A), and these algebras
become Banach algebras under the operator norms:

L, B)[| = [[LIl = [|R]| = lim [ L(e,)| = lim | R(e.)| -

Through the correspondence a € A — L, e M, (A): L,b=ab, bec A (resp.
acA— R, e M (A):Rb =ba,becA), A becomes a closed left ideal
(resp. right ideal, x-ideal) of M (A) (resp. My(A), M(A)) and.M(4A) is
the idealizer of A in M,;(A) (or Mz(A)). Moreover, A is dense in
M,(A) (resp. Mp(4), M(A)) for the strong (resp. strong, strict)
topology, i.e., the topology defined by the set of semi-norms ||L]||,=
|L(a)| = |L-a|,ac A (resp. |[R]|* = |R(a)| = |a-R|; ||[(L, R)|l.=|L|l.
and ||(L, R)||* = ||R]||*). The formulas

(9)(L-a) = a(9)L-a(g)a
(2) a(9)(a-R) = a(9)a-0(9)R
a(9)(L, R) = (6(9)L, o(9)R

allow to extend o(g9) as a continuous automorphism of M,(A), M.(A)
or M(A).

If A is a C*-algebra, M, (A) (resp. My(A)) is isomorphic to the
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algebra LM(A) (resp. RM(A)) of left (resp. right) multipliers on A,
i.e., the subalgebra of the enveloping Von Neumann algebra A” of
elements Le A” (resp. Rc A”) such that Lac A (resp. aRe A) and
M(A) = M,(A) N M(A) is the idealizer of A in A”. Moreover, if
we now call M (A4, A”) (resp. M (4, A")) the algebra of continuous
linear maps L (resp. R) from A to A" such that L(ab) = L(a)b
(resp. R(ab) = aR(b)), then it is possible to prove in the same way
that M, (4, A”") = M,(A, A”) = A”. And here too, d(g) extends to
A” by bitransposition as a normal automorphism.

We will now denote by ¥ = &,(G, A) the Banach space of con-
tinuous functions from G to A “vanishing at infinity” with the
uniform norm ||k}, = sup,.s | 7(9)|, h € X: it contains, as a dense set,
the subspace K(G, A) of continuous functions from G to A with
compact support.

If X =, F), the continuous operators from a Banach space
E to a Banach space F, with norms ||-||; and ||-||, respectively,
MG, X) will be the Banach space of regular Borel measures f¢ on
G with bounded variation [z| and norm ||z, = [¢#|(G) < «. Let
us recall [7] that if Be B(G), the ring of Borel sets in G, the varia-
tion |zt| of ¢ is the positive scalar measure on G defined by

(3) |141(B) = sup X || p(BY|

where the sup is over all (finite) families of mutually disjoint Borel
sets B; contained in B. Then g is said with finite variation if
[¢#](B) < oo for any relatively compact B in B(G) and with bounded
variation if |¢|(G) < oo.

Let now U be a linear mapping from K(G, E) to F. In the
usual way, we define

(4) Ul = sup UM, heKG,B).

It is a norm and

(5) Nl = 1 Ul Ikl

so that, if ||U]|] < -, U extends to &,(G, E) by continuity. One
can notice that ||U|| can also be defined according to

(4°*) 11Ul = sup || 2 Uk |l

where the sup is over all finite families of functions &, ¢ K(G, E)
such that support h, N support h; = @ for any 7+ j and ||h,]].<1
(or equivalently |3, k,||.. < 1).

In an analogous way, we can now define [2], [7]
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(6) T = sup 2 [| U |+

where the sup is taken over the some families as in (4°*). It is
a norm and

(7) 2N UG e = WU Rl

for any finite family of functions h;e K(G, E) with support AN
support h; = @ for ¢ + j, while

(8) Tl = MUl 1Ml = 1T 2]l

so that, if ||| U]|| < e, U extends to &,(G, E) by continuity.
It is now possible to prove the following theorem:

THEOREM 1. Let A be a Banach-+-algebra and X = < (H, F),
where E and F are two Banach spaces.
(@) There exists a ome-to-one linear correspondence between

M,(G, X) and the Banach space of linear mappings U from & (G, E)
to F such that |||U}|| < oo, given by

(9) pr— Uy Ush) = <, 1> = |dpx@)h(a), h e &G, B), e MG, X)
with
(10 T = lleel

(b) This correspondence induces a omne-to-one isometric corre-
spondence between M, (G, M (A)) (resp. M, (G, Mz(A)) and the Banach
space of A-right linear (resp. A-left linear) mappings U from X to
A such that ||| Ul|| < co.

() If A is a C*-algebra, this correspondence induces a ome-to-
one isomorphic correspondence between M, (G, A") and the Banach
space of A-right linear (or A-left linear) mappings U from X to A”
such that |||U]|| < .

Proof. (a) and (b) come from ([7], §19 no. 3, Theorem 2) and
([2], Theorem 3.9), while (¢) can be proved in the same way as (b)
thanks to

M, (A, A”) = Mn(A, A") = A" .
If we adopt the notations
(1) M(G, M (A)) = X34, M\(G, Mx(4)) = XF*; M(G, A") = &+

(any time we use A” without comment, we mean implicitely that
A is a C*-algebra) we can write, for p¢, e X594, p, e X4, peX*4" heX
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(12) {(F‘L, h) e A, {fts, hay = {tts, h)a,a e A
{pt, k) e A", {p, ha) = (g, B)a

(12" {<h7 tr) € A, {ah, ttz) = alh, tp),a €A
<hy 1y e A7, Lah, 1) = alh, ) .

Given geG and p, (resp. g, 1) we define

(13) ‘U (B) = a(g)t(B) (resp. ‘tx(B) = 0(9)tr(B),
‘uw(B) = a(9)u(B)), Be B(&)

or, in an equivalent way
ey by = 0(9)pr, 0(g7)hy (resp. <h, ‘pry =0(g){a(g7)h, tr),
ey by = a(9)y, 6(g7)hy, <k, 'ty = 0(9){o(g7)h, 1)) .
Of course,

{loml = o], el = el 0] = (¢

Hopell = el 1ol = el o2l = 12l

Then X}4, X}, X% become Banach algebras with unit (the unit
being 4., the Dirac measure at the neutral element ¢ of G) if we
define the o-convolution of measures according to [2], [8]:

(lgbi.\) {

(14)

trrvp, by = {p(u), {'vi(v), R(uv)), o, v € X5
exy, by = {pu), {"v(v), h(uv)), e, v e 54"

Chy tpxvey = (h(uw), "Wa(v)), tr(w)), U, Ve € X
Chy pxovy = (h(uw), *v(v)), pw)) .

Through the correspondence

(15) {

(15his> {

18)  feL(G, A)— 1, @) = [F@)P(0)dg, e K@)

the Banach space LY(G, A) (for the norm || f|, = S | f(9)|dg) of func-

tions from G to A, Bochner-integrable with respect to the Haar
measure, can be identified with a left ideal (resp. right ideal,
subalgebra) of X¥+4 (resp. %j4, ¥%“”) and we have the following
formulas, where 6 is the modular function of G:

foof, = | Fotwrudu
= |ACwotwAwdu
= {o@ ¢ u et un s
= {ou ) A Do 9t )du .

amn
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In the sequel, we will usually omit the subscript o to denote the
o-convolution. LYG, A) may be called the Banach crossed product
of G by A [4],[8] and the following theorem can be proved:

THEOREM 2. ([2], Theorems 4.10, 4.15, 4.19.)

Let A be a Banach-x-algebra, A" its enveloping Von Neumann
algebra when A is a C*-algebra.

M. (LG, A)) = X3
(18) MR(L\G, A)) = X
MLYG, A)) = x%4
where X¥*4 (in general different from M,(G, M(A)) is the idealizer of

LYG, A)in X4 or X34, LYG, A), ¥** and ¥*“" are Banach-+-algebras
if we define

F*9) = 6(g™a(9) f(g™)*
(o f)* = frepd; (Frper)* = phf*, (uxf)* = f*p*

and LYG, A) is a =-ideal (resp. =-subalgebra) of X** (resp. X*4”).

19)

3. Module structures on X, X4 X4, x4 X*4“, In this para-
graph, we are going to define several natural module structures on
the various objects we introduced in the preceding one. We first
begin with G-module structures.

ProPOSITION 1. X is a Banach-G-module in two different ways
corresponding to the two following different actions of G, denoted
successively by a - and by a o:

(20)  g-h = h*6,~1=h(-9); h-g = 0(g){0,~}xh=h(g-), he ¥, geCG
(20°+) goh = g-h; hog = h .

Proof. First of all ¢’-(9-h) = (¢’9)-h and ||g-h||. = ||~|]... Then,
given ¢, let ke K(G, A) such that ||k — k||.. < ¢/3 and V(e) a neigh-
borhood of e in G such that ||g-k — k|| < ¢/3 when g€ V(e). Then
lg-b —hl.=llg-h—g-kll. + |lg-k — k|l + |k — k||, =¢ when ge

V(e). Same proof for the right action.

ProposITION 2. X}4, X4 X*4 and X*4" are G-modules in two
different ways corresponding to the two following different actions
of G, denoted successively by a - and by o:
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(21b is)

Proof. The proof is straightforward, and left to the reader.
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Gt = 0¥ty thr- g = Mrx0g, YL €XP4, gEG

g lr = 0; s Ur-0 = Ur*0,; LR €XEY, 0@

9 (s M) = (91, 9+ 2)

(W, tr)- 9 = (M- 9, tr-9), (¢, tr) € X4 ge@
gepe = Ogft; - g = [txd,, pe X7, geG .

golly = p; 4109 = Ui g

gollr = Ugy Urog = Ur' g

go(tte, tr) = (Pr, Pr); (Lo tr)°9 = (Y8, Hrog)
goft = [ g = -9 .
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With the same notations, we then have the following formulas,

relating

these G-module structures:

PROPOSITION 3.

(22) {

(23) i

(22bis ) {

(Zgbis ) {

et gl = g gl = el 1 e g1l = 119~ ptelly = [ el 5

(24)

(g tory, by = pery heg)s Chy gty = {h-g, "ttr)
{g-pt, by = e, h-g); <hy g 1) = <hg, 1)
(9, by = ey, g-hy; (hy 9> = {g-h, tz)
<#'gr h’> = <ﬂy gh’>; <h7 #‘g> = <g'h, [l)
{gopr, hy = {ptr, hogy = iz, B ;

Chy gottzy = (hog, tey = <h, )

{gopt, by = {pt, hogy = (t, hy; <h, gopry = Chog, py = <h, 1)

(pereg, by = {ptz, gohy; <h, ptreg) = {goh, tz)
{ptog, by = g, goh); {h, prog) = {goh, tt)

o=l = Il gl = [l -

Proof. Formulas (22), (23), (22"*), (23"*) are just a matter of
computation. Let us prove (24): with notations of (6),

etz-gll = 1 Ue,-glll = sup 3 | Upyy(ho)| = sup 35| U (9 1)

=sup 3, | Uy (k)| = [[[ U lll = I 222 ]Iy

llg- gl = [l Ugrp Il = sup 3 | Uy (he) | = sup 21U, (e 9)]

and the

= sup 3| U,,, (h)| = [Ty, lIl = [*2ully = 122l

same for p, and p.
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PROPOSITION 4. The functions g—g-tt;, g— tiz-9 (resp. g—9g- Uz,
g Up-g; 9—>g-tt, g — t-g) are continuous jin the X-weak-topology,
i.e., the topology defined by the semi-norms: |p.|, = |{¢;, k)| (resp.
leel" = <k, ) |5 | 2210 and | p]*).

Proof. We give the proof for the first function only. Then,
given y,, h and ¢ > 0, there exists V(e), neighborhood of ¢ in G,
such that, if ge V(e), l[h-g—hll.<e/3llzll |{tt, kY =0(g™)pts, RYI<
¢/3 by continuity of g, |{g,, (g™ )h — k)| < /3 by second countability
of G and Lebesgue’s dominated convergence theorem. Hence,

19t — po, B | = [y, b gy — {ptr, B | = [0(9){tr, G(g7HR(g-))
=ty By | = |ty 0(g™HR(G-)) — 0(g7)tts, )|
=[{t, 0(g7HR(g-) — a(g™h + o(g™Hh — b + h) — a(g™"){t, h) |
=t 0(g™(g-) — o(g™h) | + [t 0(g™h — R)|
+[{ttr, ) —0(g7)ptr, B | S || el B g — Pl 4 [ {ptr, (g7 )R—P) |
[y By — o(g™) s, B[ < €.

In a second step, we now introduce more general module struc-
tures.

PROPOSITION 5. X becomes a unital Banach-X:4 (or X}4, or £°4)-
module (and a mneo-unital Banach-L'G, A)-module by restriction)
according to

(25) ﬂL°h = l/‘/,'h, h"ﬂL =
Utroh = ptp-h, hoptp = g

where

(tr-R)(g) = "pp(w), w-h(9)) = 'tz b9
(26) = (g, by = {0yt b

(ttn-1)(9) = <u-h(g), ‘tr(u)y = <h-g, °ttr)

= (b, g+ ptry = <h, Ooxltz) -

Then
(27) ezl = N pellll B llos 1 2t2e Rl = ] 221111 A e
(28) Po-poh) = (pxv,)-h; pr- Wr-h) = (Up*vz)-h

and, in particular

(29) Ogth =g-h,00ch =h.

If {\s}scs is a countable approximate unit in LYG, 4), then
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(30) to-h = lm (fpxeg) by fte- b = lim (fpreg) - b
@B a,p

Proof. (p.-h)(g) is continuous by Proposition 4. Moreover, as
!, is a regular Borel measure, given ¢ > 0, there exists a compact
Kc G such that |¢.|(G/K) < ¢/2||h||l, for heX. Given ¢ >0 and
K, there exists a compact K’ such that, if g¢ K’', sup,.. |h(gu)| <
&/2]l gl So

(1)@ | = gl (1))
= dlml@ineol + | dimlwirew)]
= llallysup [ RGgw)| + | G/E)- IRl < & it g2 K,

and then g,-hcX, and also gp-hcX. Formulas (26) and (29) are
just a matter of computation. Moreover (29) proves the unital
character of ¥, while its neo-unital character on L*G, A) comes
from (26): more precisely (26) shows the set {e.\s-h}scr e, I8 dense
in X, while the Curtis-Figa-Talamanca factorization theorem proves
this set generates a closed subspace of X%([6], p. 169-185). Hence
any he¥% can be written » = f-h' with A’ €% and f e LYG, A). This
allows to prove (30) because

lim (g %€ Ng)- b = Hm (g xeNg) - f-h' = lim (g xe = f)- b’
a,8 a,B a,8
= (pexf)-b = pu-f-B = pu-b .

It does not seem possible to define a nontrivial action of X*+
or X%+ on the right of ¥ which turns it into a Banach module.
Formula (30) of the preceding theorem means the action of z#“ or
X% 4 can be deduced from the one of L,(G, A) by extension to its
left and right centralizers.

PROPOSITION 6. X¥4, X34, X' and X' are wunital Banach
modules onto themselves in two different ways, corresponding to the
two following different actions, denoted successively by a - and by
a o:

{”L’#L = Vprllp; MoV = Ur*Yp

Vg Mr = Vr*llg; Ur*Vr = Ur*Vr

(Wi, vo) - (o, pr) =W, Vertn); (P, tr)- (Y, Vo) =(Ur*Vr, Me*Vr)
Ve[l = YRy ey =[xy

(31)

[’)L")UL = s Moy = ok,
Vpollp = [Mp; UroVr = HUp*Vp
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(i, ve)o(te, ttr) = (Ur, t2); (Mo, tr)o(Vr, YR) = (Hp*Vy, ta*Vy)
Yopt = ft; proy = pxy .

Proof. The proof is straightforward and left to the reader.

With the same notations, we then have the following formulas,
relating these module structures:

PROPOSITION 7.
(32) <#1,'VL; hy = </‘¢L7 v, h); <h, #R'VR> = <DR'h; tr)
vpoln, hy =y, hovy ) =y, h); {hyvgottr) = Chovg, ttr) =<Ch, tr)
ptpovy, hy = {ptz, vioh); <h, ptrovey = {Vgoh, ftz) .

According to formulas (22), (23) and (32) one side, and (22°¢),
(28"#) and (82"") on the other side, we can refer to the structure
denoted by a - as the “nondual” structure, and the structure denoted
by a o as the “dual” structure.

(32)1is)

4. Homology and cohomology over L,(G, A). In the sequel,
we will denote, for convenience,

(33) A = LG, A)
and
(34) LAY =ARAIR - QARQE=U"R X

where there are = copies of U(n = 0) and where ® denotes the

projective tensor product [11].
Let us define the application D, from L,(%, X) into L,_,(¥, %) by
the continuous linear extension of

3) DARLRL® - RLAN=LRAR - QL Ok
+ REDAR @i ® L@
+ (=D QL ® - Q@ fas ® (faoh)

where f,e, i=1,---,n and heZX (D, is defined as the null
application.) Then D,D,., = 0 for all » = 0 and it is possible to
introduce the quotient space

Ker D,

HOL %) = 2
(36) . A, %) Tm D,

One can notice that it is possible to write
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(37) L, %) = LG, A * Q% = LG @ A% Q %
or

(38) L%, %) = LG, A") Q%

or

(39) L, %) = LG, A5* R ) .

Let now L,(%, X)¥“ be the space of functionals 7 on L,(¥, %)
with values in A which are n-linear on 2, A-right linear on %, and
bounded in the sense that, for any finite family (h;) of functions
h; € K(G, A) with support h, N support h; = @ for any i # 7,

(40) ; I T(AQ @ Qb)) = Kl filli- - [ fullill Zhille
where K is some constant.

Hence it is possible to identify L., )74 with L*(%-X¥+), the
space of continuous m-linear functionals on A with values in X¥4

according to (we use the same letter T to denote the two corres-
ponding objects):

(41) If,Q - L@k =<T(/i® - L), h) .

In the same way, we could introduce L~ X%4), LY, X¥*4)
and L™, X*1").
Let us now define the application 4* from

L (YU, Xj4 )(resp. L* XA, Xp4), L1 (A, £%4), L1 (9, £*4))
into
L A, £¥4) (resp. L™, X¥4), L~(A, £*4), LA, X*4"))
by the following formula, corresponding to the “nondual” structure:
STHHEQ - Q) =[ir T, Q-+ @S
(42) +REDTE - @Ffin® - @ f)
+ (TR - @ fud)fu -

Then 4"+'4” = 0 and it is possible to introduce the quotient

space

Ker 4*+ _ Z*, Ep4)
Im4*  N*W,EHA)

(43) H» (U, x4) =

and, in the same way, H"(%, X54), H*(Y, ¥**), H"(A, £*4"),
In the “dual” structure case, we have to modify slightly our
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definitions, asking for T to be n-affine and continuous on 9%, and
replacing formula (42) by

LTHRQ - QF) =T ® -+ @)
(42" +EEDTUR - ®Fefea® @)
+ (“D"T(/i® -+ & fa-dofa -
In that case, it is easy to prove the “duality” formula:

(44) (T, D,(fiQ - Qf@h) =T, iQ - QFf @My

and we have the following theorem, relating (86) and (43) in the
“dual” case.

THEOREM 3. Let us assume there exists an Fe A’ such that
F(a) =0 imply a =0 (it s the case if A is separable). Then
H,®, %) =0 and Im D, closed is, in the “dual’ case, equivalent to
H™QU, X5 4) =0, H"(A, X5 4) = 0, H*(A, X**) =0 or H™(Y, **") = 0.

Proof. Let L™, ¥') the space of continuous n-linear functionals
on U with value in ¥’ (the dual of %), i.e., the dual of L,(3, %).
Given Te L™, X 4) and Fe A’ let T, be the element of L*(%, %)
defined by

Te, iQ - @@k =FKT, Q- R Fu @ W)

and let L*(¥, X} 4), be the closed subspace of L"(%, ¥') generated
by the set of T, with TeL*¥, ¥} 4). By faithfulness of F, the
correspondence T — T, is injective and the spaces L,(%, ¥) and
L, X¥4), are in duality. Moreover, if 47 means the equivalent
of 4* on L*(¥, ¥'), we have, if we define foT, =T, and T,of =
(T°f)F’

(Te, D""M(i@ - Qfats Q1)) =" T, i Q -+ @Fas Q B
=F(T, D" (fi® -+ @ fars @ W}=F{{4"M'T, i@ - -+ ® fu D))
=" T)p, iQ - @Fars @ h) .

So AT, = (4*+T),: 47+, when restricted to LY, X} *),, maps it
into L%, X74);, and is the transpose of D"+ in the duality
(L, %), L*(YA, X¥4),>. Hence, in the same way as in ([15], Corol-
lary 1.8), it is possible to prove the theorem is true if H™(, £} )
is replaced by H"(, X} 4),.

But let us now assume that H*(Y, X¥ 4) = 0, that is to say that
AT =0 imply T = 4T’ with T'e L"'(, Xf 4). By faithfulness
of F, A*+'*T =0 is equivalent to 47" T, =0 and T = 4*T" is equivalent



COHOMOLOGY OVER BANACH CROSSED PRODUCTS 345

to Tp = 4Ty with TpeL* (¥, &f*);. Hence H"(, %) =0 is
equivalent to H™¥, X'4), =0 which proves the theorem. The proof
is similar for H™, £}4), H*, £%4) and H"(Y, *4").

THEOREM 6. Let p be a positive integer. Then

H’n-Fp(QI; %) ~ Hn<m; Lp(my x))

(45) Hn+p(§)1’ }/f") ~ H"(QI, L"(m, IfA))

y " N > » *, 40
and equivalent formulas for X}, X*4 X4,

Proof. This is the Hochschild’s method for the reduction of
dimension [14] [15]. It consists in defining the natural isometry 7,
from L,.,(%, ¥) onto L,A, L,(Y, X)) thanks to the associativity of
the tensor product, the action of % onto L,(%, %) by

FiQ QLN =R QL

=5EDRAR - i ® - QL
+ (DR -+ @ fpi @ Soh
(i® - QHQR)S =/ - QF,®h

and to notice that 7, ,D,,, = D,7z, if D, denotes the equivalent of
D, on L,(¥, L,(¥, %)).

In the same way, one can define an isometry z* from L*+*(%,
X#4) onto L™, L*(A, £54)) by

[(@DAQ - Qi ® -+ R fasp) = TALR -+ @ faryp)
and the “nondual” action of A onto L?(YA, X¥+) by
DNAQ - QS =+*T(/i® -+ Ry
(T-NAHQ - Rf,) = T(H+1Q - Qfy)
+ 5 EDTERAR + @ Firfin® - ®F)
+ (-D"TF RO - Ry -

A “dual” action could be defined according to foT' = T and Tof =
T.f.

We close this paragraph by giving an example of T L™(, X34)
in the “nondual” case. Let (k,),ti=1,---,n be a family of func-
tions in L*(G), (F), 1 =1, ---, n a family of continuous linear forms
in the dual A’ of A4, and peX¥4. Let us define

(46) T=F1°k1®”'®Fﬂokﬂ

o
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by
(47) <Ty f;. ® ct ® f'n> = Fl(<k17 .f1>)F2(<k2’ f2>)' ot Fn(<km fn>)

where

48) &, £ = \kio)fhadg e 4.

It is easy to check that T has the desired properties for being an
element of L™(¥, X} 4). Considering f,® --- ® f. as an element of
L(G", A®”) (87), T is a function on G* with values in g(A@”, X4
such that (|T(g, :--, 9,)|| is in L™(G™). It is the purpose of the
next paragraph to prove that, under some hypothesis on A4, any T
can be represented by a function having these properties and
conversely.

5. A Riesz representation theorem for the elements of L"(,
x5, L™, XF4), or L™, ¥*4”), In this section, we will restrict
ourself to the case when A = Z’, the dual of some Banach space Z,
or when A is a C*-algebra (if A is both, it is a Von Neumann
algebra), and to the “nondual” structure. It could be possible to
adapt this paragraph to the “dual” one. We will denote by @ and
g an element of A% and G~ respectively.

We begin by recalling a theorem which asserts that any T can
be represented by a measure:

THEOREM 5. If A is a Banach-x-algebra, there exists an tsomor-
phism T — pt; between L™(A, X¥4) (resp. L™, X} 4), L"(A, X**")) and
the space of wvector measures on G" with finite variation and with
value in X(Aé”, X3 1) (resp. Q(/(A‘g”, X541, <§/(A®”, X*4)) such that
[¢r] = k(@)A|g| with he L*(G™), k = 0, where d|g| means the absolute
value of the Haar measure on G*, given by

@) TAE®- ®F) = |f@) Fle)dml, -, 0)
with
(50) T =11kl -
Proof. See ([7], 18, no. 38, Theorem 1, Corollary 2).
We are now going to prove that g, can be represented by a

funetion, with the help of the following generalization of Lebesgue-
Nikodym’s theorem.
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PROPOSITION 8. Let v be a regular Borel scalar measure on G",
L a measure on G™ with value in the Banach-+-algebra A = Z' (resp.
1n the Cx-algebra A), with finite variation |p|, absolutely continuous
with respect to v (i.e., |¢| is absolutely continuous with respect to
lv| in the usual sense). Then there exists a function V. on G
with value in A (resp. in A') such that:

(i) [ V)| ts locally-v-integrable and |p] = | V.(G)||v],
ie: [p@dln@ = (@) Vi@)1d1v|@, 9o L@, 1),

() (|Foiu), z) = [<V.@F@, »iv@), Fe LG, 4,1
for any z€Z (resp. zc A'),

(iii) If A (resp. A") is separable, V,.(g") is locally-v-integrable
and

\F@dre = (vior@we
(iv) If Z (resp. A’) is separable, then V,. is unique.
Proof. See ([7], §18, n°4, Theorem 5).

THEOREM 6. Let A =2', TeL"(Y, X54) (resp. L™(Y, X54)) and
Uy the corresponding measure. There exists a function V, on G
with values in f/’(Aé", XX 4) (resp. Q?”(Aé”, X%4) such that

(i) V@] = k(@) € L*(G™), where k is defined in Theorem 5
and

lp@ai @ = {p@ 1 V@l d171, o e LG, | 1]

with || T = [klle = [l Vo@ ] [l
(i) (VH@)P(@), by is integrable, where he X and @ € L}(G", A@")
and

(51) @), by = ({e@ap@), 1) = (<V.@0@), g
(ili) If A (and X) is separable, then V, ts unmique.

Proof. Let Be B(G") a Borel subset of G" and &, the measure
on G* with value in A defined by

1 (B) = {(B)G, B .

It is a measure with finite variation and absolutely continuous
with respect to dg because of

el = lallhllal | = [l [[R]k@d[F] .
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Hence, by Proposition 8, there exists a function GZ, on G" with
values in A such that
te, = Gz,dg and |pf | = |GZ,1d|g| < [a][[h]lk@)d|g] .

ayh

Let GZ(g) be the correspondence he* — GI ,(g). It is A-right linear
and if (h;,) is a finite family of functions in K(G, A) with support
h; N support h; = @ and ||Zh;l|l. <1, then, for any Be B(G"),

|, 162, @1217 = 3 11£,,1(B) = sup 3% |/, (By)]
= sup 3, [<t2(B)a, hyy | = sup [[#(Bya |l = sup || 1(B))][ ||
= ®)lal = (| k@dlgl)ial
from which we deduce that
3.16L,@1 = k@)l

almost everywhere or, else, |||GZ(g)]|| =< k(@) |@| almost everywhere.
By modifying it on set of measure zero if necessary, we have
GL(g) e X34 for any geG™ and

Nei@ . =k@lgl .

If V,(g) is the correspondence @ — G%(@), then

For any step function @' on G"with values in A‘Q”, we have

@), by = ({0 @dm@), v) = (<V.@0'@), g

so that, if @; is a sequence of such step functions converging to @
in LYG™, A@”), the Cauchy sequence (V. (§)?i(g), h) converges to
(Vi(@)9(9), hy in L(G", A) while S@Q(ﬁ)d#(y‘) converges to S!D(@)d#(ﬁ)
and (ii) is proved.

The inequality || V,(@)|| < k(g) shows that || V,.(9)|| € L™(G"*) and
so is locally integrable. Then the inequality

((B)a, by = | |<V:@)a, hy|d|g]

implies that

Bl = | 1 V2@ d1g)
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and

1B = | 1 V@l dlg

because || is the least positive measure such that ||z (B)lj =
[u(B)|. Hence

[k@alg = 1v.@lidiz) = [k@dlg,

which proves (i).
If A is separable, X is separable too by countability of G. If
V; is another function representing g,

| «va@) - Vi@)a, wydg =0

for any Borel B in B(G"), any & in A% and any k in X. So
(V@) — Vi(@)a, hy = 0 almost everywhere. Taking @ and % into
countable dense subsets we conclude that V,.(g) = V;(G@) almost
everywhere.

Next theorem is a converse of the preceding one.

THEOREM 7. Let A be a Banach-x-algebra and V a function on
G" with wvalues in Q(A&”, X¥4) (resp. K(Aé”, X% 4)) such that
NVl e L~(G™) and {V(g)a&, h) is measurable for any & c A% and
heZX. There exists a continuous linear map T from LYG", Aé") to
X541 (resp. X34) such that

62 <T@, b = {[(V@0@), g, 0 e LG, 4% .

If A=27', let V, and k the corresponding functions (Theorems
6 and 5). Then

k@) < 1| V@)l a.e., and [|T|| < ||| V@I |l -

If A (and %) is separable, then k(g) = || V(@)|| a.e., V=V, and
T =1TV@I e ~

Proof. As KV(@2@), k)| = | V@Il 12@)! k|l and
HV@ Il 12@)] e LXG™), [KV(@)2(@), hy|

is integrable. Let T, (@) = S(V(g)@(g), h)dg: the correspondence h—
T.(®), denoted T(®), is A-right linear and such that, if (;) is a
finite family of functions in K(G, A) with support %, support
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h; = @ and || hll. =1, then
SIT,0)] = | SKV@e@), ky1dlgl = I V@ewl.dlg)
= {iv@ie@iaiz < 1 val.iel. .

Hence T(@)eX+ and ||T@) |, Z I V@ l.|®ll,. So the corre-
spondence @ — T(®), denoted T, is linear and continuous with
T = I V@Il lllo: hence T e LA, ) and

(1@, 1y = [<V@0@), hdg = ([e@dm@), 1)

if p, is the corresponding measure according to Theorem 5 with
[¢r| = k(@)a2|gl, ke L*(G"). So, in particular,

lpe|(B) = SBII V@lldlg] and ¢ | = || V(@)Ild]g], ie., k@ = || V@)l

almost everywhere. Moreover, if V, is the function corresponding
to T by Theorem 6,

[<V@0@), g = {<Vi@0@), nydg

and, in particular,
V@a, k) = (Vi(@)a, k) a.e.,
which ends the proof of the theorem if A (and X) is separable.

REMARK. If the hypothesis A = Z’ is replaced by A is a C*-
algebra, then V, is, in any case, a function on G" with values in
C/(AQ?”, X*4): the proof of Theorem 6 is similar but the difference
comes from Radon-Nikodym’s theorem (Proposition 8). But then
Theorem 7 associates to V an element of L*(%, ¥*“”) and so is no
longer the converse of Theorem 6. The symmetry is restored if
we start with L%, £%*"): if A (and %) is separable, this space is
isometrically isomorphic to the space of functions V on G" with
values in 2(Aé", ¥4} such that || V(g)|| e L™(G") and (V(g)P(@), h)
is measurable for any @ € LY{G", A‘XA”) and heX.

6. Extension from U to X}4, ¥%“ or ¥*4, By Propositions 5
and 6, it is possible to define L,(X}4 ¥) and L*(XF4, X¥4), or
Lr(Xp4, 254"y if A is a C*-algebra, (and the same for X}“ or X*4)
in the same way as we did for 9. In this paragraph, we shall
state the relation between these spaces and the corresponding ones
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for A, under the hypothesis: A = Z’ or A is a C*-algebra.

THEOREM 8. Let A = 7' be a Banach-+-algebra. It is possible
to extend Te L™, £F4) (resp. L™, ¥H*), L"(A, ¥°1)) as an elemgnt
T of L*(Xp+, £4) (resp. L*(Ej, Xp4), L*XE**, %) with || T||=|T||.

Proof. Let (#),1 =1, ---,n with ¢, €X}* heX and {e.Nglacripes

a (countable) approximate unit in A. The set of {(T(gxe,Ng, -+,

Mu*€a, Mg, ), by is bounded in A, uniformly with respect to a; and 3,

and also in the bidual A”. So there exists a (nonunique) sequence

of such elements converging weakly in the bidual A” towards an

element 7(y, ---, pt,, h) which is evidently linear in g, ---, g,. It
is A-right linear in h because, for any Fe A’,
hmit << T(:ul*eil)"jl! ) #n*ein)"j,,r ha‘)y F>

Ly

= <T([“17 ) #n; ha)r F>
= limit <T(#1*ei1)‘" ) ﬁn*ei%)"jw h)a’ F>

. [ats
L Jk

= limit {T'(pe,xe; N, o v, fare; Nj ), @'F')

= <T(#1; ) #n)y a’tF> = <T({’el * .#n)a, F>

where the multiplication on the right of an element in the bidual
A" by an element in A is defined through bitransposition [1], [5].
Moreover, as A = Z' (i.e., A' =2">Z), T(p, ---, ttn, h) is in fact
in Ac A”, as we can see computing the limit for F=z2e¢Zc Z”,
and the right multiplication by a coincide with the product in A.

Now, given ¢ > 0 and z e Z, there exists 7,, and j,, such that,
if 4, > 4, and g, > Jou

1<T<#19 R h)y z>| = |<<T(/’el*ei1)\‘j1) Tty /‘en*eink’j,ﬂ)’ h>; z>[ + €.

So, if (k),1 =1, ---, m is a finite family in K(G, A) with support
h, N support hy, = @ for I = I’ and ||>} k]l <1, then

; I<T(ﬂ1) sy Py hl)’ z>l = ; <<T(#1*eil7\'j1y Tty #n*eink’jn)y h’l>7 z> I+m€
= Hz H El: |<T(#1*ei1>"j17 Ty #ﬂ*einhjn)’ hl>i + me

= |2 ][ [ T(txeq N, - - - ttaxes, N, |y + me
= el Tl - -1 a1l + me

Consequently,
Zl: I T(#ly Tty #y hl)] § ll T“ H#IH' * H/’t'n“

which proves that Te L*Xp+, %¥r4) with || T| < || T|l. But, if (f),
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t=1, ..+, n is a finite family in %,
limit (T (fixeq Ny, -« oy fareiNs), By = T(fy -+, fur B)
ik
=TSy -+ fu) B

where the convergence is even in norm. Hence 7T restricted to A
is T and ||T|| = || T|| because

HTHZ sup HT([JU ct #n)”lg sup HT(fly "';fn)HLZHTH'

gl [ fllg =t

REMARK. If the hypothesis A = Z' is replaced by A is a C*-
algebra, the preceding proof shows that TeL*(X}*, £%4"). So,
once again (see remark at the end of the preceding paragraph) we
see that, in the case of a C*-algebra, L™, ¥**") is a more natural
object than L™, X} ).

Thanks to Theorem 8, we can give a meaning to the function
T(g) on G" by T(g) = T®,, -+, 9,,) if §= (g, -++, 9.)€G*. We are
going to see that this function is closely related to the function
V., defined in Theorem 6 (see also the remark at the end of the
preceding paragraph).

THEOREM 9. Let A (and X) be separable and let \; be a countable
approximate wnit in LYG) such that lim;\;xk =k almost every-
where for any ke L™(G, A) or L*(G, A”). (This condition is discus-
sed in ([12, Theorem 44. 18]). If @ = (ay, ---, a,) € A%* and § =
(g4, *++, 9.) €G", then, with any of the two hypothesis on A,

(53) T(a0,, -, @ud,,) = Vi@
almost everywhere.
Proof. Let (p),ti=1,---,n with @, LG). For any heX

<T<a1¢1, ) an@n), h> = Sq)l(gl)' * '?ﬂ(gn)<VT(g)d’ h>dg and <V1'(g)d" h> €
L>(G", A) or L*(G", A”). In particular,

T(@,00, %N,y +* y @aby,¥N,), BY = Shjl(gf )+ N, (g7 ) V(@)@ hydi .

By hypothesis on A; and by successive applications of Lebesgue’s
dominated convergence theorem, we obtain

<T(a’15917 "ty anagﬂ), h’> = <VT(g)d7 h>
almost everywhere and, by separability of %,

T<a1391y ) a’nagn) = VT(Q')a—y a.e.
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We then have the following formulas

sy T@, B = (0@ T, -, ad,), g, P LG,

a :(afly ---,a,.),ﬁ'—:(gl, Tty gn)

(Taprap), b = (20249 T@0(@)a,,,), hdg.dg.
(55)
= {20200 Vala,, 0a0(0)a, hydg.dg., 9., P.e LHG) .

We can now determine the relation between L™(%, X34) (resp.
LA, £447) and L*Ef, &%) (resp. LA(Ep+, &04).

THEOREM 10. The restriction operation T — T from %4 to A
and 4 commute. This restriction induces a map from L"(X} 4, X}4)
(resp. L*(XP4, %4) to L™, XF4) (resp. L™, X*4")) such that
H"(%F4, XF4) (resp. H™(XF 4, X©47)) 1is isomorphic to H™A, Xi4)
(resp. H™(A, £*4")).

Proof. The proof is by induction, identical to the correspond-
ing one in ([15], Prop. 1.9 and Lemma 1.10), the proof of Lemma
1.10 being now achieved by noticing that fxg, =0 for any fe¥%
imply g, = 0.

7. Vector means. This paragraph collects and proves results,
some of which will be useful in the sequel, about vector means, a
natural extension of usual means on locally compact groups [10].
This notion appeared for the first time in [9].

We shall consider the following functional spaces:

X, = L*(G, 4);

X, = CB(G, A), the space of bounded continuous functions on G
with value in A4;

X, = UCB;(G, A), the space of bounded continuous functions %
on G with value in A with the property that, for any ¢ > 0, there
exists 77°(e), neighborhood of ¢ in G, such that, for any gec 7(e),
[k(v) — a(g)k(9™*v)| < ¢ for any veG;

X, = UCB,(G, A), the space of bounded continuous functions %
on G with value in A with the property that, for any ¢ > 0, there
exists 77°(e), neighborhood of ¢ in G, such that, for any ge 7(e),
|k(v) — k(g™)| < ¢ for any veG;

X, = UCB\(G, A), the space of bounded continuous functions %
on G with value in A with the property that, for any ¢ > 0, there
exists 7°(e), neighborhood of ¢ in @, such that, for any ge7(e),
k() — k(vg)| < ¢ for any veG; ’
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Xo = XsN Xy

X, =X,nX,.

Each of these spaces is a C*-algebra for the usual product
of functions, the uniform norm and the involution k—¥k: k(g)=Fk(g)*,
and we have the following inclusions:

X
c
X, o
S
X, C X, CX
C
X7 (/
S
X,

DEFINITIONS. An A-mean on X, is an A-linear positive continu-
ous map on X, with value in A4, with norm less than or equal to 1.
An A-mean on X,, X,, X, or X, is said left invariant if

(56) M, k(g™.)) = (M, k)

and topologically left invariant if (here » exceptionally means the
usual convolution)

57) o, sy = M, by \pwidu, peL(@) .

An A-mean on X,, X,, X; or X, is said o-left invariant if
(58) KM, o(@)k(g7".)) = o(g)XM, k)

and topologically o-left invariant if
(59) i, 9Ky = [pwow) M, kydu, e L@ .

An A-mean on X, X, X, or X, is said right invariant if

and topologically right invariant if (here usual and o-convolution
coincide)

6L (M, k) = M, by |pwdu, pe LHG), Fu) = o) .
These definitions make sense thanks to the following lemmas:

LemMmA 1. If pe LNG) and ke L>(G, A), then ®xk (the usual
convolution) is in X, and k«p in X,. If k is in X, =k is in X,
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and if k is in X,, kx® is in X,.

Proof.
| (xk)(v) — (pxk)(g™v)| = S lp(vu) — P(g~vu)| [k(w™)|du

= lle — e )Lkl
and

|(ex)(0) — ()00 | < | 110)| | 9(0™w) — Plg ™) | du
= llp = 2@k 1%l ,

and the conclusion comes from ([13], Theorem (20.4)).
If ke X,, it is enough to prove that @k is in X, but

| (pxk)(v) — (pxk)(vg)| = g [p(w)| [k(u™v) — k(u™'vg)|du
= llell e — k(.9) |l -
If ke X,, it is enough to prove that kx$ is in X, but

|6 P)w) — (ex)g™0)| = | 1htow) — g™ vw)| | p(w) | du
< @l Ik — k™)
LEMMA 1 bis. If o€ LXG) and ke L*(G, A), then p+’ke X, and
kpeX,. If keX, then px’ke X, and if ke X, then k= =k+® € X,.
Proof.
l(P*k)(v) — o(g)(P+k)(g™v)| = | Ss@(vu)a(vu)k(u“) du — a(g)

x \pomwmatgowkauau] < | lpu) — pg=ow)| |owuke) du
= llp — 2lg™)Il 1%l

and k+°® = kxp (see above).
If ke X, it is enough to prove that @«ke X, but

[ (pxk)(v) — (pxk)(vg)| = S ()| |o(wk(u™v) — o(w)k(u " vg)|du
= el ke — k(.9)llw
and if ke X, it is enough to prove that k+® is in X,, but

|(Bxp)(w) — a(g)k*P)(g™v) | < S | k(vu) — o(g)k(g™vu)| |P(w) | du
s llell e — a(@k(g™) |l -
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The relation between these different means and these different
spaces comes from the following proposition.

PROPOSITION 9. If there exists a left invariant A-mean, there
exists a right invariant one on the corresponding space, and con-
versely.

Proof. Let us consider the transformation k-— k: k(u) = k(u™).
It changes X, X,, X, or X, into X,, X,, X, or X, because if ke X,
then %(v) — k(vg) = k(v™) — k(g7v™). Let (M, k) = (M, k). Then,
if M is left invariant, <M, k(.g)) = (M, k(g™".)> = <M, k) = (M, k.

THEOREM 11. Let M a o-left, left or right imvariant A-mean
on X; or X,. Then M restricted to £ = (G, A) is null if G is
non- compact.

Proof. Let V be a relatively compact neighborhood of ¢ in G.
By noncompacity of G, there is no finite sequence (g;) in G such
that (g,V) is a covering of G. So it is possible to choose an in-
finite sequence (g;) in G such that ¢,+, ¢ Ui, 9.V for all integer =.
Hence if U is a symmetric relatively compact neighborhood of e
such that U?c V, the sequence (g,U) is made of pairwise disjoint
sets. Let I the canonical extension of M to X, or X,, the fune-
tional spaces corresponding to Z the associative Banach-x-algebra
with unit, defined according to (M, ap) = a(M @) for any a € A and
@ any function with scalar values belonging to X, or X,. Then a(J7,
P971)) = (M, ap(g™.)) = KM, a(9)a(9™)ap(9™".)) = 0(9){M, o(g7)ap) =
alll, ), i.e., (M, p(g7'.)) = (M, ). Let & e X, or X, be the char-
acteristic function of U: as 3,4, =1, we have X7, I, &) =1,
ie., (M, &> =0. Let heX. Given ¢, there exists a compact K G
such that |h(g)| < ¢ for g¢ K and a finite sequence (¢9;) in G such
that KU, g;U. So |1(g)| < ||h]| X &w+e and [{M, kY| < (I, &)=
e(l,1) <e. The proof is similar if M is left or right invariant.

The relation between topological left or right invariance and
left or right invariance is given by the two following theorems.

THEOREM 12. A o-left invariant A-mean is topologically o-left
invariant. A left (or right) invariant A-mean is topologically left
(or right) invariant.

Proof. Let e L,(G). Then, for ke X, 1 =1, 2,3, or 6,

[P at, a@ikta)du = M, pro(@(™.)
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— <M, §<p(u)o(ug)k(g—1u~l.)du>

- <M 5(g—l)§¢(ug-l)o(u)k(u—1.)du>

= (M, o(g)pl.g7)ky = 3(g™) | plug o ()M, bydu
- ng(u)o(u)o(g)(M, kydu .

This being true for any @, <M, a(g)k(g.)) = 0(9){M, ky. The proof
is similar for left and right invariance.

THEOREM 13. A o-left invariant A-mean on X, (or X, is
topologically o-invariant. A left invariant A-mean on X, (or X;)

18 topologically invariant, and the same for right inmvariance on
X; (or X)).

Proof. It is sufficient to prove the theorem for ¢ € LYG) contin-

uous with compact support. Let ke X,. The map ¢ csupport ¢ —
o(@k(g™.) e X, is continuous because, if ¢'g = g9”,

llo(@)k(g™.) — a(g'9)k((g'9) ") ]l = sup |o(9)k(g™'v)
— a(99"k((99") )| = sup [k(g™'v) — a(g"k(g" g7 v)| < ¢

if ¢’ is in some neighborhood of ¢ in G. The set {o(g)k(¢g™.), g€
support @} is compact in X, and if

0eX;, (0, | oo™ )p)ds ) = (<0, soetg ™)) P(a)dg .
Let us choose @ = FoM with F'e A’. Then

F (31, (otoia™)o(9)d0 )} = |FIM, ol@)hig™ Dp(o)dg -
In the same way, if we choose @ = Fsd,, te Gt

F{(5, [oha)0@)g)} = [F(G. ot@ra0e0)g
= | Fleo(oia D)t = F{@, 94} .
So go(g)k(g"-)qv(y)dg = @+k and
FUM, 9y} = [Fipa)M, o(@)k(g™ )

= |Fipto) s, idg = F {[p@o@)ar, b }dg
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This being true for any F,
M, iy = |2(9)0() (M, ydg -

The proof is similar for left and right invariance.
The next theorem asserts the existence of o-left, left and right
invariant A-means on G if G is amenable.

THEOREM 14. Let A be a Bamnach-+-algebra such that A = Z'
(resp. A is a C*-algebra). If G is ameanable, there exist o-left,
left and right invariant means on G with value in A (resp. in A”).

Proof. Let m be an invariant mean on G, ke L*(G, A), Fec A"
then Foke L™(G), || Fokl|l. < ||F||||k|l. and [{m, Fek)|| < || F|| || k]l
The correspondence F'— (m, Fok) is linear, continuous, and define
an element (M, k) in the bidual A” such that {(m, Fok) = (F{M, k)
and |[{M, k)| < ||k|l.. So the correspondence k — (M, k) is continu-
ous with norm less than or equal to one. If ¥ and F' are positive,
(F,{M, k) is positive and so <M, k) is positive. Moreover,
(F, (M, ka) = {m, Fokay = {(m, a'Fok) = (a'F, (M, k) = ({F, {M, kya)
where the product (M, k)a is defined through bitransposition [1],
[5]. In the same way, <M, ak) = al{M, k) and {F, {M, o(9)k(g™*.))=
{m, Foa(g)k(g™'.)) = {m, 0(9)'Fok(g™.)) = {(m, a(9)'F-k) = {o(9)'F,
(M, k) = (F, a(9)"\M, k). If A is a C*-algebra, the left and right
multiplications in A” by element from A coincide with the product
in the Von Neumann evelopping algebra, while a(g)®* is the natural
extension of o(g) to A”. If A =2Z’, then {M, k)ec A as we can see
by choosing FF=zeZ CZ" = A’ and the left and right multiplica-
tion by a € A is the product in A. The same kind of proof shows
that M is also left and right invariant.

REMARK. The converse of the preceding theorem is obvious: if,
for any Banach-x-algebra A, G is such that there exist invariant
A-means, then G is ameanable, because it is sufficient to take A=C,
the complex numbers.

8. The case n = 1. Bounded derivations and crossed homo-
morphisms. 1st Part: the ‘‘nondual’ structure and bounded
derivations. Let T be an element of Z(%, ¥#4): it is a linear and
continuous application from A to X}“ such that

(62) T(f1*f2) = T(fO)*fe + fixT(fy) .
By Theorems 8 and 10, its extension 7' is also in Z'(Xp4, X4

(63) T(#L*”L): T(F‘L)*”L =+ #L*T(”L) .
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However, in the case % = 1, it is possible to obtain a more
precise result than in Theorem 8:

THEOREM 15. Let TeZ'(W, Xp*) where A=2" or A is a C*-
algebra. Then T extends in a unique way as an element T of
ZNXP4, XP4) which 1s continuous from X+ with the strong topology
to X34 with the X-weak-topology and can be defined by continuous
extension:

(64) {T(pey), by = limit (T xens), by, heX.
a,f
Moreover, if T = Ap,, then T = Afi,.

Proof. Our hypothesis on A insure the existence of T and its
uniqueness comes from T(u)+f = T(p.+f) — t+T(f), and the last
statement of the theorem is evident. Now

(T(pzreany), hy = (T(pepreahs)*f, B
= (T(prreapxf), B') — {tixreahsxT(f), B')
= (T(pereahsx ), by — {proreadpsf7, W)

if we write h=f.n" and T(f).h' = f'.r" thanks to the neo-unital
character of X. Taking the limit in the norm of A, we have

liggit (T(erreaks), hy = CT(ppf), W) — {pusf', B
= (T(orf) — =T, 1y = {T(p)rf, 1y = (T, b

which proves the continuity property of 7, formula (64) and the
fact that T e ZY(X;4, X54).

REMARK. In the case of ZY(, X}4), even if A is a C*-algebra,
T takes its values in ¥#4 (and not 2*4”) and H*(%, X%4) is isomorphic
to HY(X}4, %%4) (see Theorem 10). The preceding proof works for
ZYx*4, ¥%4) but not for Z¥(Ex4, %%4). Of course if T e ZY (¥, X*4")
then T'e Z* (X} 4, ") and HY, ¥**") is isomorphic to H'(X} 4, £**").
Let us now consider the following function, linear on A,

(65) (9, )G x A—— (T(ad,), hy e A, T Z\(¥, £}4) .

Because |{T(ad,, b)Y | < || T|||a|lik]l., we can write (T(as,), ) =
(Vr(9)a, by where Vi,(g)e (4, X;*) and KVi(9)e, k) e L*(G, A): we
recover the function V, of Theorems 6 and 9. Of course,

T(ad,bd,.) = T(ad,)*bd, + ad,+T(bs,)
V99, ao(9)b) = V(9)axbd, + ad,*Vi(g")b .

Conversely, let

(66)
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(67) (9,0)eG x A—> Fl(g, @) e X4

a mapping, linear on A, such that <{F'(g, a), h) e L°(G, A), ||F|| =
SUPjais1,0e0 || F(g, @) |, <o and F(gg’, ac(g)b)=F(g, a)+bd, + ad,*F(g’, b).
Then there exists V(g) e (4, X%4) such that {F(g, a), h) ={(V(g9)a, h)
and F extends from G x A to U by

(68) (Flap), b = |#(9)(Flg, @), ydg, PeLi@)

and continuous extension. Then Fe ZY(, X}*) because

CE(ap)*bpy, Iy = (Flap)(u), o(u)bpy(v), h(uv))
= §¢1(g)<F (9, )(w), {o(W)bP,(v), h(uv))dg

= |20 g, a)w), {.w)o@bd.(v), huo)dw)dg
= (2o |p.0)(F(g, a)w), Co@bs.(v), Huv))dwdg
= S%(g)%(wa(g, )+bd,, hydwdg

where we used Fubini’s theorem to interchange the measures defined
by F(g, @) and ®,, while on the other hand,

@pF b, By = ap,(w), CFeP)(®), huo))
= alp oW F b)), s Ihwv)du

= a[pwow)|p.w)FG, W), o k) dwdu
= alp.) [P, W) F, w)w), huo)dwdu
= |ouw) {ap,w) (- F o, w)©), hwo))dudw
= |P.wp(g)<ad,w), <F®, (), huo))dgdw
= |Pu@)p.w)<ad,+F(b, w), hydgdw
thanks, once again, to Fubini’s theorem which is valid if we take

for instance @, and @, with compact support. So, if we add the
two preceding results,

(F(ap)bp, + apxF(bpy), b
= §¢1<g>¢2<w><F<g, a)bd, + ad,«F(b, ), hydwdg
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= S%(y)%(wXF(gw, aa(g)b), hydwdg
= Ssvl(g)%(g"W’KF(w’, ao(9)b, hydw'dg

A
= (Flap,*bp,), h) .

Of course the preceding discussion can be adapted to T e Z¥(, X*4").
Let us now consider the three functions on G with value in
x5
X(g) = T(3,)8,~ = — 0+ T(3,-1)
(69) X(g) = T(ad,)x0,~ = T(ad,) — ad,+T(6,~), ac A
“A(g) = 0,* T(a(g"‘(aBo)*(?y—u acA

for Te Z'(, X¥4).

LEMMA 2. For any he¥W and a € A, the three functions <X(g), h),
Ag), by and {*A(g), h) are in the space X, (see paragraph 7).

Proof. These three functions are bounded by ||T| ||k]|l. and
NTH k] |a| respectively. Moreover,

A(g) — X(¢"), by < [{T(ad,) — T(ad,), g7*.h)|
+ [{T(ad,), g7 h — g" .} |
< KT(ad,) — T(ad,), 970y + [| Tl la|llg™".h — ¢" b,
< 2¢ + |[{T(ad,xe.ns) — T(ad,xene)) |+ || Tl ] [|9g7"h — " k]l
for @ and B large enough, and less than 4¢ for ¢’ in a suitable

neighborhood of g. The proof for X(g) and “X(g9) would be similar.

PRrROPOSITION 10. Let us assume there exists a o-left imvariant
A (resp. A”)-mean on X, (for instance G ameanable). The formulas
{pr, by = M{KK(g), R}
(70) e, by = M{<X*(g), h)}
e, by = M{CX(9), b))
define py, t5 and °p;, as elements of Xp* (resp. X%4") related by

11, = T(ady) + adorpty, = pprad, +

(1) ¢ . .y
‘= T(ad,) + adpxpt, — prxad, = T(ad,) + A (ad,) .

Proof. The right hand sides of formulas (70) have a meaning
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by Lemma 2. They are A-right linear in » and if (k,) is a finite
family in K(G, A) with support ;N support h; = @ for i + j and
”Zu hi”oo é 1, then

3 | M{K), h}| = Zisup [<X(g), by | = sup (X[l = [[ Tl

which proves that p, e X¥4 (resp. ¥*%") with ||g. |, = ||T||. In the
same way g; and °g,eX}4 (resp. %*4”) with norm less than
|T]|la]. Formulas (71) comes from the equality between

T(ad,)*0,-1 = T(ad,d,)x6,~1 = T(ad,) + ad,+T(5,)*0,~
and

T(ad,)x0,~1 = T(0,%8,~1%adox8,)*0,-1
= T(8,)%8,~1xad, + 8,+T(a(g™)ady)*d,-1 .

THEOREM 16. Let Te Z'(%, X%*) (or Z*U, %)) and M a o-left
invariant A (or A")-mean or X, (this is the case if G s ameanable).
Then

T(ad,) = T(ady)«d, — ady+4ff,(0,) = — Aft,(ad,) + *,%0,
(12) {70, = — 4, (3,)
T(ady) = —de,(ad) + °p,

and

gy |T@®) = T@h)re — adrdinle) = —dpu(ap) + trurp
T(p) = —dp,(®) .

Moreover,

(74) o(g)adr,d,) — T(a(g)ady)«d, = Ap;(3,)+ad, — 5,+T(ady)

or, equivalently
(75) 0(9)* pL*0, = 0%y, .

If T restricted to A is inmer, (i.e., is a coboundary), then T is
inner.

Conversely, if teZ'(A, X¢") (or Z' (4, £%*")) and p,cx¥* (or
X*4) are related according to (74) or (75) where °p, is defined by
(71), then formulas (72) and (73) define an element T of Z* (U, X 4)
(or ZY(A, X%4")). If t is inner then T is imner.

Finally, iof TQ)CHA, i.e., if T is a derivation on U, then T(A)C
MG, A) and p, e X% N M(G, M(4)), and conversely.
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Proof.

<a'6v*#u hy = a<5g*#l.y hy = a<y&am h.g)
= ao(9){ttz, 6(g™Hh.g9> = aa(g)M{<X(u), o(g™h.g>}
= aM{o(9)<X(g7*w), 6(g7")h.9)}
= M{a{’X(g7'w), h.g>} = M{alg.X(g7'u), h)}
= M{{ad,* T(5,~1.)*0,~1,, h)}
= M{{T(ab,)3,~, 9.h)} — M{{T(ad,), h)}
= {7, g.hy — (T(ad,), h) .

So T(ad,) = p;+0, — ad,xy, which gives (72) with the help of (71).
Formulas (73) are then coming from {T(ap), ) = §q>(g)<1~‘(a8g),h>dg.
We obtain formula (74) from the equality between

T(o(g)ad,) = T(a(g)ad+d,) = T(a(g)ad)*d, + a(g)ad+T(5,)
and

T(o(g)asd,) = T(6,xad,) = 8,+T(ady) + T(5,)*ad,

equality which gives also (75) with the help of (71).
If T(ad)) = — A4p¢'(ad,), then T + 4 is zero on A and the cor-
responding °; is zero, so T + A}E’ = —A’Ze}, or T = —A(tf + p1).
Conversely, given ¢t and p,, let T(ad,) = t(ad,)*d, — aSO*A?ZL(ﬁg).
Then
T(ad,*bd,) = T(ao(g)bd,,)
= 1(a0(9)b3,)*dse — a0(9)b3y (D)
= t(ad,x0(9)bd,)*8,, — a0*bd,~1xApt;(0y0)
= t(ad)*0(g)bd,, + adort(G(G)bO)*S,, — ad,xbB,—1xAtt,(857)
= £(ad))*0,+bd, + ad,*0,-1xt(0(g)bd)*D,er — AB,+bd,-1xApt,(8,)%8,
— ad,xbd,-1x8,% A1, (8,
= #(ad,)*0,%b0, — ad,*bd,~1xApt;(8,)*8,,
1 @8, #{0,~1%t(a()bd,) %0,y — bSOy Aty (84}
= (£(ad)*8,%bd, — ad(g)bdyx At (,)%d,
1 @d,#(8,~1xt((g)bd,) %8,y — DO+ At (84)}
which, thanks to (74), gives

Had)*0,+b8, — e At (B,)xbd, + ad,x(t(bd)xd, — bds* A (g}
= T(ad,)*bd, + ad,+T(bd,) .

Finally, if T(a@) e for any a, @, this is equivalent to T(ad,)*®,
adyrptz+@ and a@xpe, be in U for any o and @. The last condition
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means that g, eX** instead of X¥4. If g, cXy* and e LXG), it
is easy to see that p, xpe LY(G, M, (A)). If ¢ = &5, the characteristic
function of some Borel Be B(G), the first condition reads {7(ad,)x
P}g) = T(ad)(gB) e A or else T(ad,) € MG, A). The second condi-
tion reads ap,(97'B) € A, which means that p, € M,(G, M(4)).

If G is discrete, this result is very close to ([17, Theorem 1]).

DEFINITION. Te Z'(Y, %) will be called special if T(A)c A,
i.e., T(ad,) = t(a)d, where t is a derivation on A.

THEOREM 17. Let Te Z'(, X3*) be special. Then T is equiva-
lent to the couple (t, pt;) where t is a derivation on A and p, an
element of X%+ related by (74) or (75) (where T(ad,) = t(a)d,). If t
is inner, then T is immer. Finally T(A)C ¥, i.e., T is a special
derivation on A, if p,eX**N M(G, M(A)) and conversely. If
TeZ'(A, X%*") is special, p, € X**" and conversely.

Pz‘oof. It is an adaptation of Theorem 16, noticing that condi-
tion T(ad,) € M,(G, A) is now automatic.

THEOREM 18. If T s such that 8,+T(o(g™")ady)*d,-» = T(ad,)
(which, in the case of a special T means that t(o(g)a) = (6(9)t(a)),

then °*py, = T(ad,) or, equivalently, adxp, = p xad, (i.e., A?cL(aBO) = 0),
and conversely.

Proof. It is a straightforward application of Theorem 16.

2nd part: The ‘““‘dual” structure and crossed homomorphisms.
All what has been done in the first part can be adapted to the
“dual” structure. An element T of Z'(¥, X}“) is now an affine and
continuous application from U to X¥4 such that

(76) T(fixfo) = T(foxfe + T(f) -

Theorem 1~5 works in exactly the same way, proving the
uniqueness of T e Z*(X¥4, X% 4) with

) T(prvy) = T(p)ew, + T(vy)

Substituting to the affine application T the linear one T, = T —
T(0), we can repeat all what has been done in the preceding part,
the only change being a new definition of °X(g):

(78) “Ug) = T(a(g™)ad)+d,—

and the use of a left invariant mean instead of o-left invariant one,
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so that now

s = T(ady) + pt, = prxad, + °py,

(79) \ ~ - ~
“tt, = T(ady) + . — per*ad, = T(ad,) + Apt(ad,)

and we obtain the equivalent of Theorem 16:

THEOREM 16"°. Let TeZ'¥, X3*) (or Z*U, X*4")) and M a
left invariant A (or A”)-mean on X, (this is the case if G 1is
ameanable). Then

T(ad,) = T(adp)*d, — dpt,(8,) = — Aps(ad,) + .3,

(80) T@,) = —dpea(3,)
T(aao) = - A#L(aao) +

and

@D {T(a@) = T(ad)@ — dpt(®) = — Aty (aP) + “p»
T(p) = — dpty(@) .

Moreover

(82) A,(8,) — T(0(9)ady)xd, = Apt,(8,)+ad, — T(ad,)

or, equivalently,

(83) KD %0, = g

If T restricted to A is inner (i.e., is a coboundary), then T is
mmner.

Conversely, if teZ'(A, %) (or Z'(A, £%*")) and p,cX¥* (or
%1 are related according to (82) or (83), them formulas (80) and
(81) define an element T e ZX(U, X3*) (or Z'(U, £%4")). If t is inner
then T is immer.

Finally, +f T(A)cC ¥, i.e., of T is crossed homomorphism on ¥,
T(A) c MG, A) and p, e, and conversely.

DEFINITION. Te Z' (¥, ¥4) will be called special if 7T(4)c A,
i.e., T(ad,) = t(a)d, where t is a crossed homomorphism on A.

THEOREM 17°°. Let Te Z Y, X¥*) be special. Then T is equiv-
alent to the couple (¢, pt.) where t is a crossed homomorphism on A
and p, an element of X} * related by (82) or (83). If t is inmer,
then T s inner. Finally TQA)C U ie., T 18 a special crossed
homomorphism on W if p,e WA and conversely. If Te Z'(UZX, **') is
special, p, e X" and conversely.
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The equivalent of Theorem 18 gives now rather trivial results.

THEOREM 18°°. If T is such that T(o(g )ad)+d,~1 = T(ad,)
(which in the case of a special crossed homomorphism means that
Ho(9)a)d, = t(a)d,, i.e., t = 0) then °*pt, = T(ad,) or, equivalently, tt, =
Uoxao, for any a, i.e., p, =0, and conversely.
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