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COHOMOLOGY OVER BANACH CROSSED PRODUCTS.
APPLICATION TO BOUNDED DERIVATIONS AND

CROSSED HOMOMORPHISMS

GUY LOUPIAS

The purpose of this work is to study the structure of
bounded derivations and crossed homomorphisms of the
Banach crossed product WL—IMGIA) of a Banach-*-algebra
A acted upon by a locally compact group G. As bounded
derivations and crossed homomorphisms are related to
1-cocycles, we first define and study cohomology over 9ί,
generalizing cohomology over group algebras. Then, if G
is amenable and A is a C*-algebra, or the dual of a Banach
space, we show that a bounded derivation (resp. a crossed
homomorphism) on 21 is equivalent to some couple of a
bounded derivation (resp. a crossed homomorphism) from
A to MάG, A) and a bounded measure on A with value in
the centralizers of A (resp. an element of 91).

1* Introduction* Crossed products of Banach algebras and

locally compact groups are interesting objects from a mathematical
point of view because they are generalizations of group algebras,
from a physical point of view because they are useful tools in
describing quantum dynamical systems. Hence it would be interest-
ing to know the structure of their automorphisms and derivations.
For a large class of automorphisms, the answer is given in [2]. In
this paper, our aim is to begin the study of bounded derivations
and crossed homomorphisms of Banach crossed products. For that
purpose, cohomology techniques seem to be useful and this is the
reason why we will begin with cohomology over Banach crossed
products, a generalization of cohomology over group algebras worked
out in [15].

Given a locally compact group G acting on a Banach *-algebra
A, 81 = L\G, A) will be the Banach crossed product of these two
objects. In paragraph 2, we collect known results about centralizers
on A and vector measures, and define several module structures on
them in paragraph 3. Paragraph 4 is devoted to the definition of
cohomology over 9ί, while paragraph 5 contains a Riesz representa-
tion theorem for the elements of the spaces introduced in the
preceding paragraph. In paragraph 6 we extend the cohomology
over 31 to its centralizers. Finally paragraph 8 characterizes the
structure of derivations and crossed homomorphisms, using the
notion of vector means developed in paragraph 7.

333
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2* Notations and preliminary results* In the sequel, (A, G, σ)
will denote a Banach dynamical system, that is to say the triplet
of a (separable) Banach-*-algebra with norm | | and (countable)
approximate unit {ea}aeI contained in the unit ball, a second countable
locally compact Hausdorff (hence Polish, i.e., second countable, metri-
zable and complete) group G with Haar measure dg, and a repre-
sentation σ of G into Aut G (the group of continuous and isometric
^-automorphisms of A), representation continuous in the sense that

(1) (α, g) 6 A x G • σ(g)a e A

is continuous.
Once A is given, we call ML(A) (respectively MR(A), M(A)) the

space of left centralizers (resp. right centralizers, centralizers) on
A. Let us recall [2], [16], [3] that ML(A) (resp. MB(A)) is the
algebra with unit of continuous linear maps L (resp. R) on A such
that L(ab) = L(ά)b (resp. R(ab) = aR(b)) for any a and b in A, the
product being defined by LXL2 = L^L2 (the composition of maps)
(resp. R1-R2 = R2°Ri). M(A) is the *-algebra with unit of couples
(L, R) of (automatically linear and continuous) maps on A such that
aL(b) = R(a)b for any a and b in A, the product and ^-operation
being defined according to {Lu R^-{L2f R2) = (L^L^ Rλ R2) = (LιoL2f

R2oRλ) and {L,R)* - (R'91/) where R'(a)=R(a*)* and L'(α)=L(α*)*.
If (L,R)eM(A), then LeML(A) and ReMB(A), and these algebras
become Banach algebras under the operator norms:

||(L, R)\\ = \\L\\ = ||Λ|| = lim|L(ββ)| - lim|Λ(ββ)| .
a a

Through the correspondence ae A —> La eML(A): Lab^ab, b e A (resp.
α e A —> i?α e MR(A): Rab = ba,be A), A becomes a closed left ideal
(resp. right ideal, *-ideal) of ML(A) (resp. MB(A), M(A)) and,M(A) is
the idealizer of A in ML(A) (or MR{A)). Moreover, A is dense in
ML(A) (resp. MR(A), M{A)) for the strong (resp. strong, strict)
topology, i.e., the topology defined by the set of semi-norms | |L | | β =
\L(a)\ = \L-a\,aeA (resp. .HBH* = \R(a)\ - |α Λ|
and | |(L, R)\\a = \\R\\a). The formulas

'σ(g)(L-a) = σ(g)L-σ(g)a

σ(g)(a R) = σ(g)a-σ(g)R

σ(g)(L, R) =

( 2 )

allow to extend <7(#) as a continuous automorphism of ML(A), MR(A)
or ikf(A).

If A is a C*-algebra, ML(A) (resp. MR(A)) is isomorphic to the
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algebra LM(A) (resp. RM(A)) of left (resp. right) multipliers on A,
i.e., the subalgebra of the enveloping Von Neumann algebra A!1 of
elements LeA" (resp. Re A") such that LaeA (resp. aReA) and
M(A) = ML(A) Π MR{A) is the idealizer of A in A". Moreover, if
we now call ML(A, A") (resp. MR(A, A")) the algebra of continuous
linear maps L (resp. R) from A to A" such that L(ab) = L(α)δ
(resp. R(ab) = aR(b)), then it is possible to prove in the same way
that ML(A, A") = MR(A, A") = A". And here too, σ(flr) extends to
A" by bitransposition as a normal automorphism.

We will now denote by X = ^ ( G , A) the Banach space of con-
tinuous functions from G to A "vanishing at infinity" with the
uniform norm ||/*ΊU — supgBG \h(g)\, feeϊ: it contains, as a dense set,
the subspace K(G, A) of continuous functions from G to A with
compact support.

If X ~ £?{E, F)9 the continuous operators from a Banach space
E to a Banach space F, with norms \\-\\E and H Û  respectively,
MX{G, X) will be the Banach space of regular Borel measures μ on
G with bounded variation \μ\ and norm [|/̂ [d = \μ\(G) < ©o. Let
us recall [7] that if BeB(G), the ring of Borel sets in (?, the varia-
tion \μ\ of μ is the positive scalar measure on G defined by

(3) \μ\(B) = QMpΣ\\μ(Bi)\\
i

where the sup is over all (finite) families of mutually disjoint Borel
sets Bi contained in B. Then μ is said with finite variation if
\μ\(B) < oo for any relatively compact B in B(G) and with bounded
variation if \μ\(G) < ©o.

Let now U be a linear mapping from K{G, E) to F. In the
usual way, we define

(4) ||tf|| = sup ||J7(Λ)||F, heK(G,E).

It is a norm and

(5) \\U(h)\\F^\\U\\\\h\U

so that, if | |J7| | < oo, U extends to ^Q(G, E) by continuity. One
can notice that || U|| can also be defined according to

(4bis) | |EΓ||=sup||^D r(A<)IU

where the sup is over all finite families of functions ht e K(G, E)
such that support ht Π support hs = 0 for any i Φ j and | | ^ | U ^ 1
(or equivalently \\Σi h^ ^ 1).

In an analogous way, we can now define [2], [7]
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( 6 ) \\\U\\\ = supΣ \\U(ht)\\F

i

where the sup is taken over the some families as in (4bis). It is
a norm and

(7) Σ \ \ U ( h t ) \ \ F £ \\\U\\\ \ \ Σ h t \ \ M
i i

for any finite family of functions ht e K(G, E) with support ht Π
support hj = 0 for i Φ j, while

( 8 ) || 1 7 | | ^ IIIC/HI; \\U(h)\\F ^ \\\U\\\

so that, if HI J711| < oo, U extends to ^(G, E) by continuity.
It is now possible to prove the following theorem:

THEOREM 1. Let A be a Banach-*-algebra and X = J*f(E, F),
where E and F are two Banach spaces.

(a) There exists a one-to-one linear correspondence between
MX(G, X) and the Banach space of linear mappings U from ^ΌiG, E)
to F such that \\\ U\\\ < co, given by

( 9 ) μ < >Uμ: Uμ{h) = {μ, h) = \dμ(g)h(9), h β &0(G, E), μ 6 M^G, X)

with

(10) infi l l

(b) This correspondence induces a one-to-one isometric corre-
spondence between M^G, ML(A)) (resp. M^G, MR(A)) and the Banach
space of A-right linear (resp. A-left linear) mappings (J from ϊ to
A such that \\\ U\\\ < oo.

(c) If A is a C*-algebra, this correspondence induces a one-to-
one isomorphic correspondence between Mλ(G, A") and the Banach
space of A-right linear (or A-left linear) mappings U from X to A"
such that \\\U\\\ < oo.

Proof (a) and (b) come from ([7], § 19 no. 3, Theorem 2) and
([2], Theorem 3.9), while (c) can be proved in the same way as (b)
thanks to

ML(A, A") - MR(Af A") = A" .

If we adopt the notations

(11) M^G, ML(A)) = **L>\ MX(G, MR(A)) = %%>A; MX{G, A") = Tί*>A"

(any t i m e w e use A " w i t h o u t c o m m e n t , w e m e a n implici tely t h a t
A is a C*-algebra) w e can w r i t e , for μL 6 JLf'Λ9 μR e%%**, μe JL*iA"9 heU
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KμL, h) e A, (μL, ha) = (μL, h)a, aeA

\(μ, h) € A", (μ, ha) = (μ, h)a

(12bis)
,</&, μβ> 6 A , <α&, μB) = α<λ, μΛ>, α

Given 0 e G and μL (resp. μΛ, μ) we define

(13) ' ^ ( 5 ) = σ{g)μL{B) (resp. ' ^ ( B ) = σ{g)μR{B),
= σ(g)μ(B)),BeB(G)

or, in an equivalent way

b i K9μL, h) = σ(g)(μLf σig'^h) (resp. <ft, "μ^^σigXσig^h, μR),

[(9μ, h) = σ(g)(μ, crig'^h), (h, 9μ) = σ{g)(σ(g~

Of course,

{\βμL\ = I μ L I , \ 9 μ R — μ R \ , 9 μ = \μ\
(14) Γ

(II^LIII — II^LIII, 11 ̂ s 111 = ll^llif llg^lli -

Then ϊ j " 4 , X|'^, X*'-1" become Banach algebras with unit (the unit
being δe9 the Dirac measure at the neutral element e of G) if we
define the σ-convolution of measures according to [2], [8]:

\<μ*9», h) - <μ(u), Cφ), h{uv))), μ, v e ϊ * ^ "

( 1 5 b i 8 ) ' > R f R > R> R &

Through the correspondence

(16) / 6 L\G, A) > μf: (μf, φ) = \f(g)φ(g)dg, φ 6 K{G)

the Banach space L\G, A) (for the norm | | / | | i = I \f(g)\dg) of func-

tions from G to A, Bochner-integrable with respect to the Haar

measure, can be identified with a left ideal (resp. right ideal,

subalgebra) of %t'A (resp. H%tA

9 lί*'A'J) and we have the following

formulas, where d is the modular function of G:
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In the sequel, we will usually omit the subscript σ to denote the
σ-convolution. L\G, A) may be called the Banach crossed product
of G by A [4], [8] and the following theorem can be proved:

THEOREM 2. ([2], Theorems 4.10, 4.15, 4.19.)

Let A be a Banach-*-algebra, A" its enveloping Von Neumann
algebra when A is a C*-algebra.

(18)

•ML(L\G, A)) = *%'A

MB(L\G, A)) = XS-1

M(L\G, A)) = %* Λ

where Tί*tA (in general different from M^G, M(A)) is the idealizer of
L\G, A) in £* A or X%>A. L\G, A), ϊ * ^ and ϊ * ^ " are Banach-*-algebras
if we define

G"L*/)* = /**/*/*; (/*/**)* = μi*f*> (μ*f)* =

and !/(£, A) is a *-ideal (resp. *-subalgebra) of ϊ*" 1 (resp. X*"4").

3* Module structures on 36, ϊ j ,̂ 36|>i4, X*"1, X*^"* In this para-
graph, we are going to define several natural module structures on
the various objects we introduced in the preceding one. We first
begin with G-module structures.

PROPOSITION 1. ϊ is a Banach-G-module in two different ways
corresponding to the two following different actions of G, denoted
successively by a and by a <>:

(20) g*h = h*δg-ι = h('g); h g = σ(g){δg-ι}*h = h(g ) , h e X, g eG

(20 b i s) goh = g-h; hog = h .

Proof. F i r s t of all g' (g h) - (g'g) h and \\g-h\U = \\h\\... Then,

given ε, let keK(G, A) such t h a t ||A — JklU ^ e/3 and V(e) a neigh-

borhood of β in G such t h a t \\g-k — k\\ < ε/3 when gre F(e). Then

llflr fe - feU^ Hflr λ - f l r fclU + Hίjr A?-fc|U + | | f c - f e l U ^ ε when ge
V(e). Same proof for t h e r i g h t action.

PROPOSITION 2. Tί£A, %%'Λ, %*'Λ and Tί**A" are G-modules in two

different ways corresponding to the two following different actions

of G, denoted successively by a and by <>:
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(21)

(21bis)

g.μL = §g*μL; μL.g - μL*8g, μh e %t>A,

Q μ& = 8*μB; μB g = μB*δs; μR 6 36̂ -*, gr 6 G

9 (μL, μR) = (β μt, g μR)

(J*L, μώ 9 = (AV0, μ« flθ, (J«L, j««) 61* A, geG
g μ = δg*μ;μ-g = μ*δg, μeH*-1, geG .

, μR°g)

(g°μL = μL;μLog = μL-g

g°μR = μB;μB°g = μR a

9°(J*L> μR) = (μL, μR)\ (μL, μR)°g =
goμ = μ μog = μ-g .

Proof. The proof is straightforward, and left to the reader.
With the same notations, we then have the following formulas,

relating these G-module structures:

(22)

(23)

(22bis)

PROPOSITION 3.

(g μL, h) = (aμL, h g); (h, g μB) = (h g, °μB)

(g μ, h) = (sμ, h g); (h, g μ) = (h g, μ)

(μL 9, h) = (μL, g h); (h, μB g) = (g h, μB)

(μ g, h) = (μ, g h); (h, μ g) = (g h, μ)

'(gaμL, h) = (μL, hog) = (μL, h)

(h, g°μB) = (hog, μR) = (h, μB)

(goμ, h) = (μ, h*g) = (μ, h); (h, goμ) = (hog, μ) = (h, μ)

(23b l s)

(24)

\L°g, h) = (μL, goh); (h, μBog) = (goh, μs)

l(μ°g, h) = (μ, goh); (h, μ°g) = (goh, μ)

\\μL-g\\ι = llflr ^Llli = WμΛ; \\μR g\\ = \\g μ*\\i =

\\g μ\l = \\(t g\l = \\μ\\ί •

Proof. Formulas (22), (23), (22bis), (23Ms) are just a matter of
computation. Let us prove (24): with notations of (6),

L\k= \\\U3.llL\\\ =
ΰ

(hi g)\

U,PL(ht)

and the same for μB and μ.
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PROPOSITION 4. The functions g-~>g μL, g-*μL-g (resp. g->g-μR,
g —y μ>R-g\ g -+ g-μ, g-*μ-g) are continuous \in the %-weak-topology,
i.e., the topology defined by the semi-norms: \μL\h — \(μL,h)\ (resp.
\μR\h = \(KμR)\;\μ\h and \μ\h).

Proof. We give the proof for the first function only. Then,
given μL, h and ε > 0, there exists V(e), neighborhood of e in G,
such that, if geV(e), \\h g-h\\M<6β\\μL\\lf \(μL, h}=σ(g-1)(μL, h)\<
e/3 by continuity of σ, \ (μL, σ(g~x)h — ft> | < e/3 by second countability
of G and Lebesgue's dominated convergence theorem. Hence,

\<g-μL - μL, h}\ = \(9μL9 h g) - (μL, ft>| = \σ(g)(μL,

= I <μL, σig-'Mg-)} - σ(9-
ί)(μL9 ft> I

σ(g~1)h — ft + ft) — σ(g~ι)(μL, ft) |

+ I <X, o(g~1)h - ft) I

+ \<μL9 h) - σ{g-ι)(μL, ft)|<ε.

In a second step, we now introduce more general module struc-
tures.

PROPOSITION 5. 36 becomes a unital Banach-HfA (or XI"4, or H*'A)~
module (and a neo-unital Banach-L\G9 A)-module by restriction)
according to

[μL°h = μL h, hoμL = μL

\μRoh = μR-h, hoμR = ^

'M fterβ

XμL'h)(g) = (9μL(u), U'h(g)) = < ^ z , ft flf)

j(i"Λ Λ)(^) = (u h(g), 9μR(u)) = (h-g, 9μR)

Then

(27) ll/v^lloo ^ H/^xllillftlU; l l ^ l̂ioo ^ H^l l iPl loo

(28) ^ . (v7j ft) = (/i^*^) h;μB (vR- ft) = (μB*vs) ft

α^ώ, w particular

(29) 5,-ft = g h,δo-h = ft .

If {λ ĵ̂ ej is a countable approximate unit in !/(<?, A), then
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(30) μL'h — lim (μL*eaXβ) h; μR h = lim (μB*eaXβ) h .
a,β a,β

Proof. (μL'h)(g) is continuous by Proposition 4. Moreover, as
μL is a regular Borel measure, given ε > 0, there exists a compact
KdG such that | ̂  | (G/J8Γ)< e/2| |λ|L for feel Given ε > 0 and
K, there exists a compact Kf such that, if g&K', swρueκ\h(gu)\ <

So

\(μL h)(g)\£<\μL\,\h(g )\>

- \ d\μL\(u)\h(gu)\ + ( dljMMWflw)!

£eiί g$K' ,

and then μL-hel, and also μB-he%. Formulas (26) and (29) are
just a matter of computation. Moreover (29) proves the unital
character of X, while its neo-unital character on L\G, A) comes
from (26): more precisely (26) shows the set {eaXβ h}aeI}βeJ is dense
in 36, while the Curtis-Figa-Talamanca factorization theorem proves
this set generates a closed subspace of ϊ([6], p. 169-185). Hence
any h 6 X can be written h = f-h' with V e 36 and / e L\G, A). This
allows to prove (30) because

lim(μL*eaXβ)'h = Hm(μL*eaXβ) f'h' = lim {μL*eaXβ*f) h'
cc,β a,β <x,β

It does not seem possible to define a nontrivial action of ϊ? ι

or X| ^ on the right of 36 which turns it into a Banach module.
Formula (30) of the preceding theorem means the action of jc|A or
Tί%'A can be deduced from the one of Lx(Gf A) by extension to its
left and right centralizers.

PROPOSITION 6. %*tΛ, %%A, X*f/1 and X*'A" are unital Banach
modules onto themselves in two different ways, corresponding to the
two following different actions, denoted successively by a and by
a o:

(31)
B); (μL, μB)-{vL, vB) = {μL*vLf μB*vB)

μL\
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L, »B)°(J*L, μR) = (μL, μR); (μL, μR)°(vL, »R) =

Proof. The proof is straightforward and left to the reader.

With the same notations, we then have the following formulas,
relating these module structures:

PROPOSITION 7.

(32) (μL'»L, h) = <X, vL-h); (h, μR'VR) = (vB h, μR)

\ L μL, /-\pLf L/-\μL, /, \ > B μR/-\ R,μR/-\ ,μR/

According to formulas (22), (23) and (32) one side, and (22bis),
(23bls) and (32bir) on the other side, we can refer to the structure
denoted by α as the "nondual" structure, and the structure denoted
by a © as the "dual" structure.

4* Homology and cohomology over L^G, A). In the sequel,
we will denote, for convenience,

(33) 81 - L\G, A)

and

where there are n copies of SΆ(n ^ 0) and where (§) denotes the
projective tensor product [11].

Let us define the application Dn from Ln(SΆ, X) into Lw_i(Sί, X) by
the continuous linear extension of

where /<€8l, ΐ = l, •••,?& and feel (Do is defined as the null
application.) Then DnDn+1 = 0 for all n ̂  0 and it is possible to
introduce the quotient space

(36) **.o», * ; = I m D ^ •

One can notice that it is possible to write



COHOMOLOGY OVER BANACH CROSSED PRODUCTS 343

(37) Ln{% *) = L\G, A)^n (g) X = L\Gn) (x) A&n <g) £

or

(38) Ln{% 3E) = L\Gn, A*

or

(39) £.(81, 36) = L2(GW, A 5

Let now L»(8l, 3£)J'4 be the space of functionals ϊ 7 on L»(8t, X)
with values in A which are ^-linear on 81, A-right linear on X, and
bounded in the sense that, for any finite family Qι%) of functions
ht e K(G, A) with support ht Π support h5 — 0 for any i Φ j ,

i 1 . n —

where K is some constant.
Hence it is possible to identify LΛ(8ί, X)*-4 with Ln($l-Xi'A), the

space of continuous ^-linear functionals on 81 with values in ϋtyA

according to (we use the same letter T to denote the two corres-
ponding objects):

(41) T(fx <g> ® Λ (x) Λ) = <Γ(Λ (8) ® Λ), Λ> .

In the same way, we could introduce L*(Sί, X2>A), Ln(8ί, X*'4)
and LΛ(9ί, X* A I /).

Let us now define the application An from

Z/*"1^, 36^)(resp. L^'XSί, %%tA), L%~1(S^f ϊ * > 4 ) , Z/Λ~1(Sί, X*>i4/y))

into

Z/W(SΪ, X*'A) (resp. Ln(SΆ, XJ'4), Ln(tyί, 3L*>A), Ln(Wί, X*>A//))

by the following formula, corresponding to the "nonduaΓ structure:

^•Γ(/i ® ® Λ) = / r ΓίΛ ® ®/•)

(42) + E ( - i ) ^ ( / i ® ••• ®Λ*/*+i® ••• ® Λ )

Then An+1An — 0 and it is possible to introduce the quotient
space

and, in the same way, Hn{% &% A), Hn{% X*-1), Hn{% H*'A").
In the "dual" structure case, we have to modify slightly our
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definitions, asking for T to be w-affine and continuous on % and
replacing formula (42) by

ΔnT{f ® ® Λ) = Γ(/2 ® - <g)Λ)

(42bίs) + £ ( - i ) W i ( g ) <8>/**/i+i<8) (8)/J

In that case, it is easy to prove the "duality" formula:

(44) <Γ, Dn{f® <g)Λ<g> Λ)> = <4T, Λ<8)

and we have the following theorem, relating (36) and (43) in the
"dual" case.

THEOREM 3. Let us assume there exists an FeAr such that
F(a) = 0 imply a = 0 (it is the case if A is separable). Then
i2*(δΐ, X) = 0 and Im Z)n closed is, in the "dual" case, equivalent to
Hn{% X* A) = 0, Hn{% X% A) = 0, H%% X*-4) - 0 or Hn{% ϊ*'Λ / /) = 0.

Proof. Let Lw(2ί, X') the space of continuous ^-linear functionals
on 31 with value in X' (the dual of X), i.e., the dual of Ln{% X).
Given TsL\%'S*A) and FeA' let 2V be the element of Ln(% X')
defined by

and let L*(8Ϊ, ϊ * ^)F be the closed subspace of Z/(9Ϊ, X') generated
by the set of TF with TeL^Sί, XJ ^). By faithfulness of F, the
correspondence T—>TF is injective and the spaces Ln(% X) and
Lw(Sί, X*'̂ )^ are in duality. Moreover, if ΔX means the equivalent
of Δn on Ln{% X'), we have, if we define foTF = TF and Γ^o/ =

( x ) / n + 1 ® h)) = <JΓ+ 1 ΓF > Λ <g> (x)Λ

= < ( ^ + 1 Γ ) ^ f / 1 ( 8 ) « (8)Λ+ 1(8)Λ> .

So JΓ+1ΓF = (Jn+1T)F: Δΐ+1, when restricted to Ln(SΆ,ϊί*L

A)F, maps it
into LW+1(SΪ, Xί"4)^, and is the transpose of Dn+1 in the duality
(Ln(% X), Lw(5ί, X?^)^). Hence, in the same way as in ([15], Corol-
lary 1.3), it is possible to prove the theorem is true if 1P(3Ϊ, Xf4)
is replaced by ίP(3ί, X£ A)F.

But let us now assume that ίP(5ϊ, X£ Λ) = 0, that is to say that
Δn+1T=0 imply T = ΔnT' with Γ' e L ^ S l , X7* ^). By faithfulness
of F, Δn+1T=0 is equivalent to Δ?+1TF = Q and T = ΔnT' is equivalent
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to TF^AΐTF with TFeLn-\SΆ, X*"%. Hence IP(2Ϊ, X?'A) = 0 is
equivalent to Hn(% XΪ W 4 )F = 0 which proves the theorem. The proof
is similar for Hn(% X|M), Hn(% X*'̂ 4) and IP(SΪ, X*^").

THEOREM 6. Let p be a positive integer. Then

( 4 5 ) [Hn+P(% Xί

and equivalent formulas for X%tA

f X*"4, X*>A"

Proof. This is the HochschikΓs method for the reduction of
dimension [14] [15]. It consists in defining the natural isometry τn

from Ln+P(% X) onto Ln(% Lp{% X)) thanks to the associativity of
the tensor product, the action of Sί onto Lv{% X) by

MA <8> <8>Λ <8) h) = /*/χ (g) (x) Λ ® λ

Ji*Ji+i

and to notice that τM_1Z>κ+J) = D'%τn if Z)̂  denotes the equivalent of
Dn on £,„(«, L,(«, X)).

In the same way, one can define an isometry τ" from L"+P(9ί,
lfA) onto LΛ(Sί, L»(W, Xfx)) by

[(τnT)(Λ ® ® Λ)](/.+ 1 (8) ®/.+,) = Γ(/x ® ®/.+,)

and the "nondual" action of Sί onto Lp(Sί, %tΛ) by

(/• Γ)(/x® ®/,) = / Γ(Λ® ®/,)

(T /)(Λ ® ® fP) = Γ(/*Λ ® ® /,)

+ g(-D'2X/®/i® ®/« Λ+i® ®Λ)

+ (-i)"2χ/®/i® ®Λ)

A "dual" action could be defined according to /o T = T and T°/ =

Γ./.
We close this paragraph by giving an example of TeLn(% 3Lf A)

in the "nondual" case. Let (kt), i = 1, , n be a family of func-
tions in L°°(G), (Ft), i = 1, , n a family of continuous linear forms
in the dual A' of A, and μ&Ht A. Let us define

(46) T^F.ok,® •••®Fnok«
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by

(47) <Γ, Λ <g>. • - <8> Λ> = F^K f))F2((k2, Λ » . . . Fn((kn,

where

(48) <fci,Λ>

It is easy to check that T has the desired properties for being an
element of 2/(81, Tίf Λ). Considering Λ (x) (x)/u

 a s a n element of
L^G71, A®n) (37), T is a function on Gn with values in £f(A**, %Ϊ'A)
such that IIΓ^i, - ,gn)\\ is in L°°(Gn). It is the purpose of the
next paragraph to prove that, under some hypothesis on A, any T
can be represented by a function having these properties and
conversely.

5* A Riesz representation theorem for the elements of Z/Λ(8l,
a**-4), L»(8l, %Ϊ'A), or Ln{% ϊ * 4//) In this section, we will restrict
ourself to the case when A = Z\ the dual of some Banach space Z,
or when A is a C*-algebra (if A is both, it is a Von Neumann
algebra), and to the "nonduaΓ structure. It could be possible to
adapt this paragraph to the "dual" one. We will denote by a and
g an element of A®n and Gn respectively.

We begin by recalling a theorem which asserts that any T can
be represented by a measure:

THEOREM 5. If A is a Banach~*-algebra, there exists an isomor-
phism T~ μτ between Ln(% %Ϊ>A) (resp. Ln(% X% A), Ln(% X*"1")) and
the space of vector measures on Gn with finite variation and with
value in j^(A&n, %tA) (resp. £f(A&%, %ί'A), ^(A®n, ϊ*^")) such that
\μτ\ = k(g)d\g\ with h e L°°(Gn), k ^ 0, where d\g\ means the absolute
value of the Haar measure on Gn, given by

(49) T(f (x) (x) fn) = J/^Λ) - fMdμτ(gu , gn)

with

(50) l|

Proof See ([7], 13, no. 3, Theorem 1, Corollary 2).

We are now going to prove that μτ can be represented by a
function, with the help of the following generalization of Lebesgue-
Nikodym's theorem.
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PROPOSITION 8. Let v be a regular Borel scalar measure on Gn,
μ a measure on Gn with value in the Banach-*-algebra A — Z' (resp.
in the C*-algebra A), with finite variation \μ\, absolutely continuous
with respect to v (i.e., \μ\ is absolutely continuous with respect to
v\ in the usual sense). Then there exists a function Vμ on Gn

with value in A (resp. in A") such that:

( i ) I Vμ(g)I is locally-v-integrable and \μ\ — \ Vμ(g)\\v\,

i.e.: \φ(g)d\μ\(g)= \ψ{g)\Vμ{g)\d\v\{g), φeL\G\\μ\),

(ii) (^F(g)dμ(g\ *) = \<VP(S)F(S), z)dv(g), FeL\G\ A, μ)

for any zeZ (resp. zeA')9

(iii) // A (resp. A") is separable, Vμ(gn) is locally-v-integrable
and

\F(g)dμ(S) - \vμ(g)F(g)dm ,

(iv) // Z (resp. A') is separable, then Vμ is unique.

Proof See ([7], §13, w°4, Theorem 5).

THEOREM 6. Let A = Z', TeLn{%HfA) (resp. Ln(% XI"4)) and
μτ the corresponding measure. There exists a function Vτ on Gn

with values in Sf(A&%, Tί% A) (resp. i f ( A ^ %%'*) such that

( i ) || F r (^) | | = k(g) eL°°(Gn), where k is defined in Theorem 5
and

\ψ{Q)dIμτI(g) = \φ(g)\\ Vτ(g)\\d\g\,<peL\G\ \μτ\)

with \\T\\ =
( i i ) <Vτ(g)Φ(g), h) is integrable, where he% and Φ eL\Gn, A®n)

and

(51) <Γ(Φ), h) = (^Φ(g)dμτ(g), λ ) = \(Vτ(g)Φ(9), h)dg .

(iii) // A (and X) is separable, then Vτ is unique.

Proof Let B e B(Gn) a. Borel subset of Gn and μ% h the measure
on Gn with value in A defined by

μτ; h(B) = (μτ(B)α, h) .

It is a measure with finite variation and absolutely continuous
with respect to dg because of

μτ\ == \α\\\h\\Mg)d\g\ *
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Hence, by Proposition 8, there exists a function G-ah on Gn with
values in A such that

&.> = <%.hdff a n d \μlh\ = \Gτ-h\d\g\ <ί \d\ \\h\\MS)d\g\ .

Let G£(#) be the correspondence heU—>G%th(fi) It is A-right linear
and if (fe£) is a finite family of functions in K(G, A) with support
fe, Π support fey = 0 and H f̂eJU ^ 1, then, for any BeB(Gn),

\ Σ I Gf,Ai(ff) I d I» = Σ I ̂  I (B) = sup Σ

= s u p Σ I (μΛB^a, h{}\ ^ s u p H ^ C B ^ α l l i ^ s u p | | μ Γ ( £ ; ) l l l « l
i ί 3 3

= \μτ\{B)\a

from which we deduce that

almost everywhere or, else, |||(?£(£)||| ^k(g)\a\ almost everywhere.
By modifying it on set of measure zero if necessary, we have

%t'Λ for any geGn and

If Vτ(g) is the correspondence a —> G|(α), then

FΓ(^) e ^ ( A ^ , X*"1), II FΓ(^)|| ^ fc®), and <7Γ(£)ά, fe> = G

For any step function Φf on G%with values in A^n, we have

(T{Φf), h) =

so that, if Φ'i is a sequence of such step functions converging to Φ

in L\Gn, A®n), the Cauchy sequence (Vτ(g)Φi(g), h) converges to

<Vτ(g)Φ(g), h} in L\G\ A) while Jφί©)<TO) converges to \φ(g)dμ($)

and (ii) is proved.
The inequality || Vτ(g)\\ ̂  k($) shows that 11 Vτ{g) \\ e L~{Gn) and

so is locally integrable. Then the inequality

(μτ(B)ά,h)tί \ \<Vτ(g)a,h)\d\g\
JB

implies that

^ ί \\Vτ(g)\\d\g\
JB



COHOMOLOGY OVER BANACH CROSSED PRODUCTS 349

and

^\ \\Vτ(g)\\d\g\

because \μτ\ is the least positive measure such that \\μτ(B)\\ ^
\μτ(B)\. Hence

\k{g)d\g\ <, \\\Vτ{$)\\d\g\ ^ \k{g)d\g\

which proves (i).
If A is separable, X is separable too by countability of G. If

V'τ is another function representing μT9

\ <(VT(9)~ Vm)a, h)dg - 0

for any Borel B in B(Gn), any a in A®n and any h in X. So
(Vτ(g) — Vί(g))a, h) = 0 almost everywhere. Taking a and fe into
countable dense subsets we conclude that Vτ{g) = Fy(^) almost
everywhere.

Next theorem is a converse of the preceding one.

THEOREM 7. Let A be a Banach-*-algebra and V a function on
Gn with values in £?(Aίn, %fA) (resp. £f(A&*, 3EJA)) such that
|| V(g)\\ eL^(Gn) and (V(g)a,h) is measurable for any as A®" and
h 6 9£. There exists a continuous linear map T from L\Gn, A&%) to
%fA (resp. HfA) such that

(52) (T(Φ), h) = ^(V(g)Φ(g), h)dg, Φ e L\G\ A^) .

If A = Z', let F Γ and fe the corresponding functions (Theorems
6 and 5). Then

MS) £ |] F(^)|| a.e., and | |Γ | | £ || || V(g)\\ |L .

If JL (and 36) is separable, then k{g) — \\ V{g)\\ a.e., V — Vτ and

Proof As \(V(g)Φ(g), Λ>l ^ II ̂ (ff)ll 1^)1 P I L and

is integrable. Let Th(Φ) = \<F(^)Φ(^), /̂ >cίg: the correspondence ft-»
Γλ(Φ), denoted Γ(Φ), is A-right linear and such that, if (ht) is a
finite family of functions in K(G, A) with support ht Π support
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hj = 0 and \\Σah\L ^ 1, then

Σi\Tki(Φ)\ ^\ΣΛ\<V(g)Φ(S)9hiy\d\g\ £ \\\V(S)Φ(S)\\id\g\
i J ί J

Hence T(Φ)eX£A and || T{Φ)\\X ^ || || V(g)\\ \U\Φ\\^ So t h e corre-

spondence Φ -> Γ(Φ), denoted Γ, is linear and continuous with
II2ΊI ^ || || V(g)\\ |||U: hence Γ e L ίSί, Xf^) and

<JΓ(Φ), ft> = (<F(̂ )Φ(fif), h)dg = ([φ(g)dμτ(g)9 h \
J \J /

if μτ is the corresponding measure according to Theorem 5 with
\μτ\ = k(g)d\g\, keLcx>(Gn). So, in particular,

\μτ\{B) ^ ί || V(g)\\d\g\ and \μτ\ ^ || F(^) | |d |^ | , i.e., k(g) ^ || F(^)||

almost everywhere. Moreover, if Vτ is the function corresponding
to T by Theorem 6,

\<V(g)Φ(g), h)dg= \{Vτ(g)Φ{g\ h)dg

and, in particular,

)a,h) a.e. ,

which ends the proof of the theorem if A (and X) is separable.

REMARK. If the hypothesis A — Zf is replaced by A is a C*-
algebra, then Vτ is, in any case, a function on G% with values in
J2^(A^W, 36*'A"): the proof of Theorem 6 is similar but the difference
comes from Radon-Nikodym's theorem (Proposition 8). But then
Theorem 7 associates to V an element of ZΛ(δϊ, H*tA") and so is no
longer the converse of Theorem 6. The symmetry is restored if
we start with Z/(δΐ, ϊ*»4"): if A (and X) is separable, this space is
isometrically isomorphic to the space of functions V on Gn with
values in ^{A&\ X*-4") such that || V(g)\\eL°°(Gn) and (V(g)Φ(g), h)
is measurable for any Φ e L\Gn

9 A*n) and h e 36.

6. Extension from SI to XJfii, ϊ | ' 4 or £*Λ By Propositions 5
and 6, it is possible to define Ln(%t'A, X) and Ln{TίVA, %t'A), or
Ln(%t'Af **'A") if A is a C*-algebra, (and the same for X%>A or X*'4)
in the same way as we did for Sί. In this paragraph, we shall
state the relation between these spaces and the corresponding ones
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for 9ί, under the hypothesis: A — Z* or A is a C*-algebra.

THEOREM 8. Let A — Z' be a Banach-*-algebra. It is possible
to extend TeLn(W, %VA) (resp. Ln{% X%*A), Ln(% £*'4)) as an element
TofL\HV\lίVA) (resp. L«β%>\ X%>A), ZΛ(X* ' , **•')) with || Γ| | = || 2*||.

Proof. Let (μt), i = 1, , n with /^ 6£f"4, feeϊ and {eαλ^βe/ .jej
a (countable) approximate unit in 81. The set of (T(μ^eaiXβlf •••,
μn*eanXβn), h) is bounded in A, uniformly with respect to a^ and βtf

and also in the bidual A". So there exists a (nonunique) sequence
of such elements converging weakly in the bidual A" towards an
element T(μlf •••,/*«,/&) which is evidently linear in μu « ,JMW. It
is A-right linear in & because, for any FeA',

limit ({T(μ1*eil\h9 , μ**etn\ίn, ha), F)

= <T{μlt • • •, μn, ha), F)

= l i m i t {T{μ1*ehXh, ••-, μ.*ei%κjn, h)a, F)

= limit <Γ(ft β4lλΛ, , μ»*etΛ\iit)t a'F)
ikOk

where the multiplication on the right of an element in the bidual
A" by an element in A is defined through bitransposition [1], [5].
Moreover, as A = Z' (i.e., A' = Z"z>Z)f f(μί9 , μn, h) is in fact
in A c A", as we can see computing the limit for F — ze Z c Z'\
and the right multiplication by a coincide with the product in A.

Now, given ε > 0 and z e Z, there exists iOιJb and jOfk such that,
if ifc > iOtk and ifc > jOtk,

I <%i, , μn, h), z) I ^ I ((Tfate^, , μΛ*etn\Jn), h}, z) \ + ε .

So, if (fez)> ϊ = 1, , w& is a finite family in K(G, A) with support
ft, n s u p p o r t ftΓ = 0 for Z =?* Z' and I I Σ i ^ l U ^ 1, t h e n

Σ I <T{μu . , μn, ft,), ^> I ^ ΣΣ I <{μu , μn, ), > I Σ

Σ

^ IUII II T(μ^ehXhj - ^ ^ λ y j l l i + mε

Consequently,

Σ

which proves that TeL%%t A, X*-4) wi th \\f\\ g | | Γ | | . But, if (/,),
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i = 1, , n is a finite family in Sί,

limit (T(f^ehXh, . . . , fn*et\dn), h) = T{fu •••,/.,

where the convergence is even in norm. Hence Γ restricted to
is T and | |Γ | | = | |Γ | | because

\\T\\ = sup ||ίί(jκ1> l/O||12}: sup || T(fu
l l / ' l l ^ i l l / l l ^ i

REMARK. If the hypothesis A = Z' is replaced by A is a C*-
algebra, the preceding proof shows that T eLn(£*'Λ, %*yΛ"). So,
once again (see remark at the end of the preceding paragraph) we
see that, in the case of a C*-algebra, L%(Sί, £*>4//) is a more natural
object than £%(3I, Xi Λ).

Thanks to Theorem 8, we can give a meaning to the function
T(3) on Gn by T(g) = f{dH, f δ j if g = (Λ, , g j 6 G\ We are
going to see that this function is closely related to the function
Vτ defined in Theorem 6 (see also the remark at the end of the
preceding paragraph).

THEOREM 9. Let A {and 36) be separable and let X5 be a countable
approximate unit in L\G) such that lim^ Xj*k — k almost every-
where for any keL°°(G, A) or L°°(G, A"). {This condition is discus-
sed in ([12, Theorem 44. 18]). If a = {al9 --^a^eA^ and g =
(9u '"t 9n)εGn> then, with any of the two hypothesis on A,

(53) f(aiδgι, •• , α Λ J = Vτ(g)ά

almost everywhere.

Proof Let (φt), i = 1, . . -, n with <pt e L\G). For any heU

(T{a&lf , anφn\ h) = J ^ C Λ ) . <Pn{gnKVτ{g)a, h)dg and {Vτ{g)a, h) e

L°°{Gn, A) or L°°{Gn, A"). In particular,

T ( a ^ * H , , anδ9n*XJn), h) =

By hypothesis on λy and by successive applications of Lebesgue's
dominated convergence theorem, we obtain

, ajβn), h) - (Vτ{g)a, h)

almost everywhere and, by separability of X,

a.e.
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We then have the following formulas

<T(aΦ), h) = J<P®)<2Wfl, , <*AJ, *><», * 6 L\G*) ,

α = ( a u ••, α j , £ = ( & , •••, gn)

(55)

We can now determine the relation between £/*(Sϊ, XJ"1) (resp.
ZΛ(«l, ϊ*' 4 / /)) and L (3EJ ,̂ XlA) (resp. 2 / ( 3 ^ , X*"4")).

THEOREM 10. The restriction operation f-> T from Ht>A to 81
α^ώ Δn commute. This restriction induces a map from Ln{Hi'A, Tίi'A)
(resp. Ln(%i>A, *A")) to L\%ϋfA) (resp. L%% %*>A")) such that
Hn{HfA

t^tiA) (resp. Hn(%i>A, H*>A")) is isomorphic to Hn(%3it>A)
(resp. iJ*(8ϊ, X*Ό).

Proof The proof is by induction, identical to the correspond-
ing one in ([15], Prop. 1.9 and Lemma 1.10), the proof of Lemma
1.10 being now achieved by noticing that f*μL — 0 for any / e ϊ
imply μL = 0.

7 Vector means* This paragraph collects and proves results,
some of which will be useful in the sequel, about vector means, a
natural extension of usual means on locally compact groups [10].
This notion appeared for the first time in [9].

We shall consider the following functional spaces:
X, - L~(G, A);
χ2 = CB(G, A), the space of bounded continuous functions on G

with value in A;
χ3 =: UCBr(G, A), the space of bounded continuous functions k

on G with value in A with the property that, for any ε > 0, there
exists T^(e), neighborhood of e in (?, such that, for any g e y(e),
\k(v) — o{g)k{g'1v)\ ^ ε for any veG;

χ4 — UCBr(G, A), the space of bounded continuous functions k
on G with value in A with the property that, for any ε > 0, there
exists T'ie), neighborhood of e in G, such that, for any g e T*(e),
\k(v) — k{g~xv)\ <̂  ε for any veG;

χδ = UCBι(G, A), the space of bounded continuous functions k
on G with value in A with the property that, for any ε > 0, there
exists 7r{e)f neighborhood of e in Gf such that, for any g e
\k(v) — k(vg)\ ^ ε for any veG;
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xQ = x 3 n x 5 ;
x7 = x 4 n x 5 .
Each of these spaces is a C* -algebra for the usual product

of functions, the uniform norm and the involution k-^k:k(g) —
and we have the following inclusions:

cX>

X 5 C J5Γ2 C X t

DEFINITIONS. An A-mean on Xt is an A-linear positive continu-
ous map on Xt with value in A, with norm less than or equal to 1.

An A-mean on Xlf X2, X4 or X7 is said left invariant if

(56) <M, k(g-\)) - <Λf, &>

and topologically left invariant if (here * exceptionally means the
usual convolution)

(57) <M, <p*k) - <Af, fc> U(u)dw, ^ 6 LX(G) .

An A-mean on Xlf X2f X3 or X6 is said σ-left invariant if

(58) (M, σ(g)k(g-\)) = σ{g)(M, k)

and topologically α-left invariant if

(59) <M, <P*°k) = \φ(u)σ(u){M, k)du, φ e L\G) .

An A-mean on Xl9 X2i Xδ or X7 is said right invariant if

(60)

and topologically right invariant if (here usual and ^-convolution
coincide)

(61) <AΓ, fc*φ> = <Λf, &>J^(u)du, φ e LX(G), φ(u) = φ{u~ι) .

These definitions make sense thanks to the following lemmas:

LEMMA 1. If φeL\G) and keL°°(G, A), then φ*k (the usual
convolution) is in X4 and k*φ in Xδ. If k is in Xδ, φ*k is in X7
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and if k is in X49 k*φ is in XΊ.

Proof

\(φ*k)(v) - (φ*k){g~ιv)| ^ \ \φ(vu) - φig^v^

^Wφ-φig-'.mmi
and

\(k*φ)(v) — (k*φ)(vg)\ <; I \k(u)\ \φ{v~ιu) — φ{g~1v~ιu)\du

and the conclusion comes from ([13], Theorem (20.4)).
If keXδ, it is enough to prove that φ*k is in Xδ but

\{φ*k)(v) — (φ*k)(vg)\ ̂  I \φ(u)\ [kiu^v) - k(u~1vg)\du

If keXt, it is enough to prove that k*φ is in X4 but

\(Jc*φ)(v) - (k*φ)(g-ιv)\ ^ J \k(vu) - k{g-ιvu)\ \φ{u)\du

LEMMA 1 bis. If φe L\G) and k e L°°(G, A), then φ*σk e X3

*σφ e X5. If keX5 then φ*ak e X6 and ifkeX5 then k*σφ=k*φ e X6.

Proof.

\(φ*°k)(v) — σ{g){φ^k){g~1v)\ — \ [φivu^ivutyiu^du — σ(g)

x l^βf^t ^ σ ^ " 1 ! ; ^ ) ^ " 1 ) ^ I ^ \ \φ(vu) — φ{g~1vu)\ \σ(vu)k(u~ι)\du

and k*aφ — k*φ (see above).
If keXδ, it is enough to prove that φ*keX5 but

\{φ*k){v) - (^*&)(^)i <: 1 \φ(u)\ \σ(u)k{u~ιv) — σ(u)k(u~1vg)\du

£\\<P\\i\\k-k(.g)\\\»

and if keX3 it is enough to prove that k*φ is in X3, but

\(k*φ)(v) — σ{g)(k*φ){g~xv)\ ^ \ \k(vu) — σ{g)k{g~1vn)\ \φ(u)\du
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The relation between these different means and these different
spaces comes from the following proposition.

PROPOSITION 9. // there exists a left invariant A-mean, there
exists a right invariant one on the corresponding space, and con-
versely.

Proof. Let us consider the transformation k->k:k(u) •=k{u~1).
It changes Xu X2f X4 or X7 into Xlf Xif Xδ or X7 because if keX4

then k(v) - k(vg) = k(v~\- Kg-'v'1). Let (M, k) = (M, fc>. Then,
if M is left invariant, <AΓ, k(.g)) = (M, k(g~\)) = (M, k) = <M, £>.

THEOREM 11. Lβ£ ikΓ α σ-left, left or right invariant A-mean
on Xγ or X2. Then M restricted to H — ̂ 0(G, A) is null if G is
non- compact.

Proof. Let V be a relatively compact neighborhood of e in G.
By noncompacity of G, there is no finite sequence (gt) in G such
that (QiV) is a covering of G. So it is possible to choose an in-
finite sequence (gt) in G such that gn+1ί\j7=igίV for all integer n.
Hence if U is a symmetric relatively compact neighborhood of e
such that U2cz V, the sequence {gJJ) is made of pairwise disjoint
sets. Let M the canonical extension of M to X± or X>, the func-
tional spaces corresponding to A, the associative Banach-*-algebra
with unit, defined according to <ikf, aφ) — a(M φ} for any as A and
φ any function with scalar values belonging to Xx or X2. Then α<M,
φ(g-\)) = <M, α ^ - \ ) > - <ikΓ, σ{g)σ{g-*)aψ(g-\y> = σ(g)(Mf σ(g'ί)aφ} =
a(M, φ), i.e., <M, ̂ (flr"1.)) = <M, ̂ >. Let ^ G ^ or X2 be the char-
acteristic function of U: as Σ?=i ί̂ ^ ^ 1> we have Σ?=i < ^ <f̂> ^ 1,
i.e., <M, ξ̂ > = 0. Let heϋ. Given ε, there exists a compact KczG
such that I h(g) | < ε for g g K and a finite sequence (g's) in G such
that X c L U tf So |fc(ί/)l ^ P I I Σ i f ^ + e and \(M, h)\S <M, ε) =
ε(Mt 1> ^ ε. The proof is similar if M is left or right invariant.

The relation between topological left or right in variance and
left or right in variance is given by the two following theorems.

THEOREM 12. A σ-left invariant A-mean is topologically σ-left
invariant. A left (or right) invariant A-mean is topologically left
(or right) invariant.

Proof. Let φeL^G). Then, for keXif i = 1, 2, 3, or 6,

\φ(u)σ(u)(M, σ(g)k(g-\))du = (M, φ*σ(g)k(g-\))
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= (M, \φ(u)σ(ug)k(g~1u~1.)du

= \φ(u)σ(u)σ(g)(M, k)du .

This being true for any φ, (M, o(g)k(g~ι.)} = σ(g)(M, fc). The proof
is similar for left and right in variance.

THEOREM 13. A σ-left invariant A-mean on Xs (or XQ) is
topologically o'-invariant. A left invariant A-mean on Xi (or X7)
is topologically invariant, and the same for right invariance on
X5 (or Xτ).

Proof. It is sufficient to prove the theorem for ψ e L\G) contin-
uous with compact support. Let k e Xz. The map g 6 support φ —>
(^(g)^"1.) e X3 is continuous because, if g'g = gg",

\\σ(g)k(g-\) - σ(g'g)k((g'g)-\)\U - sup \σ(g)k(g~1v)

- σ(gg"Mgg")-ιv)\ = sup \k(g~'v) - σ(g")k(g"-^v)\ < e
V

if g' is in some neighborhood of e in G. The set {σ(fl')A;(sf~1.), g e
support φ} is compact in X3 and if

ΦeX's, (Φ, \σ(g)k(g-\)φ(g)dg^= J<Φ? σ(g)k(g-\))φ(g)dg .

Let us choose Φ = F°M with FeA'. Then

F {(M, \σ(g)k(g-K)φ(g)dg^ = \F{(M, σ(g)k(g-ί.))}φ(g)dg .

In the same way, if we choose Φ — F<>δt, 16 G:

F [(dt, \σ(g)k(g-\)φ(g)dg"j\ = ^F{<βt, σ(g)k(g-\))}φ(g)dg

= \F{φ(g)σ(g)k(g-H))dt = F{(δt, φ*k)) .

So \σ(g)k(g~1.)φ(g)dg = φ*k and

F{(M, φ*k)} = JFMffXΛf, σ(g)k(g-K))}dg

- \F{φ{g)σ{g)(M, k)}dg = F §φ(g)σ{g)(M, k) }dg .
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This being true for any F,

(M, φ*k) = \φ{g)σ{g)(M, k)dg .

The proof is similar for left and right in variance.
The next theorem asserts the existence of σ-left, left and right

invariant A-means on G if G is amenable.

THEOREM 14. Let A be a Banach-*-algebra such that A — Zf

(resp. A is a C*-algehra). If G is ameanahle, there exist σ-left,
left and right invariant means on G with value in A (resp. in A").

Proof. Let m be an invariant mean on G, keL°°(G, A), FeA':
then FokeL~(G), | |F°fc|L ^ ll^li \\k\L and | <m, FoJc}\\ ̂  \\F\\ P | U
The correspondence F—>(m,F°k) is linear, ^continuous, and define
an element <Λf, k) in the bidual A" such that <m, F<>k) = (F(M, k))
and |<Λf, fc>| ^ ||fc|L So the correspondence k—>(M,k) is continu-
ous with norm less than or equal to one. If k and F are positive,
<F, <AΓ, &)) is positive and so <Λf, fe> is positive. Moreover,
(F, (M, ka)) = <m, Foka) = <m, α'JFofc) = ( α ^ , <M, fc» - <F, <M, &>α>
where the product (M, k)a is defined through bitransposition [1],
[5]. In the same way, <Λf, ak) = α<M, &> and <F, <ikΓ, σ(g)k(g~\)} =
<m, Foσ(g)k(g-\)) = <m, σ(gyFok(g-\)} = <m, σ(gYFok) = <σ(^)^,
<Λf, A;)) = <JF, σ(g)u(M, k)). If A is a C*-algebra, the left and right
multiplications in A" by element from A coincide with the product
in the Von Neumann evelopping algebra, while α (flf)" is the natural
extension of σ(g) to A". If A = Z', then <Λf, fc> e A as we can see
by choosing F = « e Z c Z" = A' and the left and right multiplica-
tion by α 6 A is the product in A. The same kind of proof shows
that M is also left and right invariant.

REMARK. The converse of the preceding theorem is obvious: if,
for any Banach-*-algebra A, G is such that there exist invariant
A-means, then G is ameanable, because it is sufficient to take A = C,
the complex numbers.

8* The case n = !• Bounded derivations and crossed homo-
morphisms* 1st Part: the "nondual" structure and bounded
derivations. Let T be an element of Z\SΆ, TίfA)\ it is a linear and
continuous application from Sί to ΊLl*A such that

(62) T(Λ*/2) =

By Theorems 8 and 10, its extension f is also in Z\HfA,

(63) T(μL*vL): T{μL)*vL + μL*T(vL) .
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However, in the case n = 1, it is possible to obtain a more
precise result than in Theorem 8:

THEOREM 15. Let TeZ\%TίtA) where A^Z' or A is a C*-
algebra. Then T extends in a unique way as an element f of
Z\%>tA, %*fA) which is continuous from HfA with the strong topology
to Tίt'A with the ϋ-weak-topology and can be defined by continuous
extension:

(64) <T(μL\ h) = limit <T(μL*eaXβ)9 Λ>, h e 3£ .

Moreover, if T = AμL} then f ~ ΔβL.

Proof. Our hypothesis on A insure the existence of f and its
uniqueness comes from T(μL)*f = T(μL*f) — μL*T(f), and the last
statement of the theorem is evident. Now

<T{μL*ea\β), h) - (T(μL*e«Xβ)*f, h'}

- <T(μL*ea\β*f), h') - <μκ*eaXβ*T(f), K)

== <T(μL*ea\β*f), h') - <μL*ett\β*f, h")

if we write h — f.h! and T{f).h' = f.h" thanks to the neo-unital
character of 3£. Taking the limit in the norm of A, we have

limit <T(μL*ea\β)f h) - <Ί\μL*f), K') ~ <μL*f, h"}
cc,β

= <ΆμL*f) - μ^ΊXf), h') - <T(βL)*f, h') = (f(μL), h}

which proves the continuity property of T, formula (64) and the
fact that T<zZ\%ϊ>Λ,%l Λ).

REMARK. In the case of Z\% ^t A), even if A is a C*-algebra,
t takes its values in %l A (and not %* A") and H\% %t'Λ) is isomorphic
to H\Ht'A, ^t'A) (see Theorem 10). The preceding proof works for
Zι($* Λ, %*'Λ) but not for Z\Ht'A, H%-A). Of course if TeZ\% Z* A")
then TeZ\H*L'\ %*•*") and H\% X* 4") is isomorphic to HK$i Λ, X* Λ").

Let us now consider the following function, linear on A,

(65) (g,a)eGx A > <T(adg), h)eA,TeZH&, %ΐΛ)

Because [ζf(aδ,, h)\< || T\\ \a\ \\h\\m, we can write (f(aδg), h) =
(Vτ(g)a, h) where Vτ(g) &Sf{A, %lA) and l(Vτ(g)a, h)eL~(G, A): we
recover the function Vτ of Theorems 6 and 9. Of course,

{T{aδg*bδg>) = T(aδs)*bdg, + aδ,

Wτ(gg', aσ(g)b) = FΓto)α*&δ9, + aδg*Vτ(g')b .

Conversely, let
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(67) (g,a)eG x A > F(g, a) e%ϊA

a mapping, linear on A, such that (F(g, α), K) eL°°(G, A), ||.FH =
sup, β l i l f f β β \\F(g, «)| |1<oo and i ^ # ' , aσ(g)b) = F(g, a)*bδg,+ aδβ*F(g', b).
Then there exists V(g) e£f(A, %*L>A) such that (F(g, α), fe> =
and JP7 extends from ί? x A to 31 by

(68) (F(aφ), h) = \φ(g){F{g, o),

and continuous extension. Then FeZ\% ££*A) because

2f h) = (FiaφJiu), <σ(u)bφ2(v), h{uv)))

)(u), (σ(u)bφ2(v), h(uv)))dg

, <σ(u)bdw(v), h(uv)))dwdg

, a)*bδw, h)dwdg

where we used Fubini's theorem to interchange the measures defined
by F(g, a) and φ2, while on the other hand,

), h) = (aφ.iu), (uF(bφ2)(v), h(uv)))

= a\φ1(u)σ(u)(F(bφ2)(v)9 σ(u~1)h(uv)}du

= a\φ1(u)σ(u)\φ2(w)(F(b, w)(y)9 σ(u"1)h(uv)}dwdu

= α\9i(^) l ^ ^ C ^ i w)(v), h(uv))dwdu

= l ^ ^ l ^ ^ i ^ C ^ ^ , w)(v), h(uv))dudw

(v), h{uv)))dgdw

thanks, once again, to Fubini's theorem which is valid if we take
for instance ^ and <p2 with compact support. So, if we add the
two preceding results,

aφ1*F(bφ2)f h)

g, a)*bδw + αδ,*i^(6, w\ h)dwdg
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, aσ(g)b), h)dwdg

', aσ(g)b, h)dw'dg

<pί(g)<p,(9-1W)aσ(g)bdgλj, h

= (F(aφ1*bφ,), h) .

= (F (^<

Of course the preceding discussion can be adapted to TeZ\% 1* A").
Let us now consider the three functions on G with value in

(69)

for

X\g) = T(a$t)*Bt-x = T(aδ0) - ad^

«X(g) = δg*f(σ(g-\aδΰ)*δg-ί, aeA

H*L

 Λ).

^), aeA

LEMMA 2. For any heW and aeA, the three functions (X(g), h),
{la(g), K) and (aΊ(g), h} are in the space X2 (see paragraph 7).

Proof. These t h r e e functions a r e bounded by || T\\ \\h\\m and

| | !Γ|| 11Λ. 11 oo | α | respectively. Moreover,

<X%) - l\g'), h) ^ I (T(aδg) - T{aδg,),

+ \(T(aδe,),g-\h-g'-\h)\

^ \<T(aδg) - T(aδg,), g-\h}\ + || Γ||

g 2ε + \(T(aδg*eaXβ) - T(aδg,*eaXP)) I

α| \\g~\h - g'~Kh\U

\a\ \\g~Kh - g'~\h\\«,

for a and β large enough, and less than 4e for g' in a suitable
neighborhood of g. The proof for X(g) and aX(g) would be similar.

PROPOSITION 10. Let us assume there exists a σ-left invariant
A (resp. A")-mean on X2 (for instance G ameanable). The formulas

(70)

KμL, h) = M{(X(g), h)}

(μl, h) = M{(X\g), K)}

X'μL, h) = M{<rX(g), h}}

define μL, μ\ and aμL as elements of %t A (resp. 3£* 4") related by

[μl = T(aδ0) + aδo*μL = μL*aδt + aμL

L = T(aδ0) + aδa*μL - μL*aδ0 = T(aδ0) + AβL(aδ,) .
(71)

Proof. The right hand sides of formulas (70) have a meaning
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by Lemma 2. They are A-right linear in h and if (ft<) is a finite
family in K(G, A) with support Λtn support Λ/ = 0 for i ^ i and

HΣiλill-sSlf then

h)} I ̂  Σ sup I (X(g), Λ4> | ^ sup
< < Ϊ g

which proves that /ί£ e 3es A (resp. Ϊ*-L") with HjuJL^ || Γ||. In the
same way μ\ and aμLe%2 A (resp. ϊ*-^") with norm less than
| |Γ | | \a\. Formulas (71) comes from the equality between

ΐ(aδt)*δ,-i = f(aδo*δg)*δg-1 = T(aδ0) +

and

= f(δg)*δg-i*aδ0

THEOREM 16. Lei Γe^XSί, XJ"4) (or ZXSί, X* 4")) cmd Mao-left
invariant A (or A")-mean or X2 (this is the case if G is ameanable).
Then

(72)

and

T(aδg) = f(aδo)*δg - aδ»*ΔμL(δg) = -ΔμL(aδg) + aμL*δg

T(δg) = -i]5z(S,)

0) = -ΔμL(aδ) + ψL

[T(aφ) = T(aδo)*φ - aδo*άμL(φ) = -AμL(aψ) + aμL*φ

\T(φ) = - ^ ( 9 , ) .

Moreover,

(74) σ(g)a!μL(δg) - T(σ(g)aδQ)*δg = JμL(δg)*aδ0 - δg*T(aδ0)

or, equivalently

(75) σ(g)aμL*δg - ία*
β/£L .

If f restricted to A is inner, (i.e., is a coboundary), then T is
inner.

Conversely, if teZ\A,H*L'Λ) (or Z\A,^'A")) and μLe%i>A (or
3L*'A) are related according to (74) or (75) where aμL is defined by
(71), then formulas (72) and (73) define an element T of Z\% %t>A)
(or Z\$l, X*'4")). If t is inner then T is inner.

Finally, if T(Sl)c3ϊ, i.e., if T is a derivation on Sϊ, then T(A)a
MX(G, A) and μLe%*'A Π Mt(G, M(A)), and conversely.
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Proof.

{aδg*μL,K) = a(δg*μL, h) = a(gμL, h.g)

= aσ{g){μL, σig^h.g) = aσ(g)M{(X(u),

So Γ(αδJ = μl*8g - α ^ * ^ which gives (72) with the help of (71).

Formulas (73) are then coming from (T(aφ), h) — \φ(g)(T(aδg),h)dg.

We obtain formula (74) from the equality between

T(σ(g)aδg) = T(σ(g)aδo*δg) = f (σ(g)aδo)*δg + σ(g)aδo*T(δg)

and

T(σ(g)aδg) = ΐ(δ,*aδ0) - δg*T(aδ0) + T(δo)*aδo

equality which gives also (75) with the help of (71).

If Γ(αδ0) = — Jμ'(aδ0), then f + Δμ' is zero on A and the cor-

responding "μ'L is zero, so f + Δμ' — —Δμ'L or T — —Δ(μ' + μ'L).

Conversely, given t and μL, let T(aδg) = t(aδo)*δg — aδo*ΔμL(δg).

Then

f(aδg*bδg,) = f(aσ(g)bδgg,)

= t{aσ(g)bδQ)*δgg, - aσ(g)bδ,*ϊμL{δgg.)

= t{aδo*σ{g)bδo)*δgg, - aδsbδ^jμάδ,,.)

= t(aδo)*σ(g)bδsg, + ado*t(σ(g)bδo)*δgg, - aδg*bδg-ι*Δμt(δgg,)

= t(aδo)*δg*bδg, + aδg*δg-ι*t(σ(g)bδ0)*δgg, - aδg*bδg-ι*IμL(δg)*δg,

— aδg*bδg-i*δg*ΔμL(δg,)

= t(aδo)*δg*bδgr — aδg*bδg-i*ΔμL(δg)*δg,

+ aδg*{δ,-ι*t(<r(9)bδ0)*δgs, - bδQ*7μL(δg,)}

= {t(aδo)*δg*bδg, - aσ(g)bδo*ΔμL(δg)*δg,

+ aδg*{δg-i*t(σ(g)bδ0)*δBg, - bδo*ΔμL(δg,)}

which, thanks to (74), gives

« δδ,/+ aδg*T(bδg,) .

Finally, if Γ(α?>) e St for any α, 9?, this is equivalent to f(aδo)*<p,

aδo*μL*<ρ and α^*^£ be in 9ί for any α and ??. The last condition
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means that μLeX*-A instead of %£*. If μLe%t'A and φeL\G), it
is easy to see that μL*φeL\G, ML(A)). If φ = £*, the characteristic
function of some Borel BeB(G), the first condition reads {Γ(αδ0)*
φ}(g) = TiaδoXgB"1) e A or else Γ(α<50) eikfx(G, A). The second condi-
tion reads aμL{g~ιB) e A, which means that ^eikf^G, M(A)).

If G is discrete, this result is very close to ([17, Theorem 1]).

DEFINITION. TeZ\% XJ>A) ,will be called special if f ( 4 ) c i ,
i.e., Γ(αS0) = ί(α)δ0 where ί is a derivation on A.

THEOREM 17. Let TeZ\SΆ,Tίt'A) be special. Then T is equiva-
lent to the couple (t, μL) where t is a derivation on A and μL an
element of H*L>A related by (74) or (75) {where T(aδ0) =t(a)δ0). If t
is inner, then T is inner. Finally Γ(Sί)c9ί, i.e., T is a special
derivation on SI, if μLe%*'A Γ\ M^G, M(A)) and conversely. If
TeZ\SΆf lί*>Λ") is special, μLe%*'A" and conversely.

Proof. It is an adaptation of Theorem 16, noticing that condi-
tion T(α<?0) e Mi(G, A) is now automatic.

THEOREM 18. If T is such that δg*f(σ(g-1)aδ0)*δg-ι = T(aδQ)
(which, in the case of a special T means that t(σ(g)a) = (o(g)t(a)),

then aμL = T(aδ0) or, equivalently, ado*μL = μL*ad0 (i.e., ΛμL(ad0) — 0),
and conversely.

Proof. It is a straightforward application of Theorem 16.

2nd part: The "dua l " structure and crossed homomorphisms •
All what has been done in the first part can be adapted to the
"dual" structure. An element T of Z\% ϋtfA) is now an affine and
continuous application from Sί to Tίt'A such that

(76) T(Λ*/2) = T(fd*A + Γ(Λ) .

Theorem 15 works in exactly the same way, proving the
uniqueness of feZ\1ίi'Af1Lt'A) with

(77) ϊ(μL*»L) = T(μL)*vL + f(vL) .

Substituting to the affine application T the linear one T^ — T —
Γ(0), we can repeat all what has been done in the preceding part,
the only change being a new definition of al(g):

(78)

and the use of a left invariant mean instead of σ-left invariant one,
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so that now

(79) \ μ l = ^aδo) + μL=z μL*aδ« + aμL

\aμL = T(aδ0) + μL - μL*aδ0 =

and we obtain the equivalent of Theorem 16:

THEOREM 16b i s. Leέ ΓeZ^Sί, *l'A) (or Z\W, £*•*")) and M a
left invariant A (or A")-mean on X2 (this is the case if G is
ameanable). Then

(80)

and

(81)

Moreover

T(aδg) = T(aδo)*δg - ΔμL(δg) = - ΔμL(aδg) + aμL*δg

f(δg) - -JμL(δ.)

f(aδ0) = - ΔμL(aδo) + aμL

T(aφ) =

T(φ) -

AμL(δg) -(82)

or, equivalently,

(83)

- ΔμL(φ) = - AμL(aφ) + aμL*φ

0 ) * ^ = ΔμL(δ9)*aδQ - T(aδ0)

σ{9)aμL*δg = aμL .

If f restricted to A is inner (i.e., is a coboundary), then T is
inner.

Conversely, if t eZ\A, %ϊ>A) (or Z\A,li*>A")) and μLe%t>Λ (or
X*"1") are related according to (82) or (83), then formulas (80) and
(81) define an element TeZ\% H1>A) (or Z\%, X* Λ")). If t is inner
then T is inner.

Finally, if T(A)cSί, i.e., if T is crossed homomorphism on 9ί,
T(A) c MX(G, A) and μL e % and conversely.

DEFINITION. T e Z\% Tί*L>A) will be called special if T(A) c A,
i.e., f(aδ0) = t(a)δ0 where t is a crossed homomorphism on A.

THEOREM 17bis. Let TeZ\%Tίt>A) be special. Then T is equiv-
alent to the couple (t, μL) where t is a crossed homomorphism on A
and μL an element of 3£J>A related by (82) or (83). If t is inner,
then T is inner. Finally T(9I)c:2ϊ i.e., T is a special crossed
homomorphism on 3ί if μLeSΪ and conversely. If TeZ\Wί, *"*") is
special, μLeH*yA" and conversely.
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The equivalent of Theorem 18 gives now rather trivial results.

THEOREM 18b i s. If T is such that Tiσig'^aδ^dg-i = T(aδ0)
(which in the case of a special crossed homomorphism means that
t(P(9)a>)δg — t(a)δOf i.e., t = 0) then aμL = T(aδ0) or, equivalently, μL =
A*L*αδ0 for any a, i.e., μL — 0, αm£ conversely.
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