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A SHAPE FIBRATION WITH FIBERS OF
DIFFERENT SHAPE

JAMES KEESLING AND SIBE MARDESIC*

Let E and B be metric continua. Let p:E~>B be a
shape fibration in the sense of Mardesic and Rushing. If
B is arcwise connected, then all the fibers of p have the
same shape. This is also true if B is connected by shape
paths in the sense of Krasinkiewicz and Mine. It had been
asked whether that this would be true without any assumptions
other than B being a continuum. In this paper an example
is given of a shape fibration p: E ~* B with E and B metric
continua such that p has fibers of different shape.

l Introductions. Let E — (En, hn) and B = (Bn, qn) be inverse
sequences of metric compaeta. A level map piE-^B^ is a sequence
of maps pn: En -» Bn such that for each n the following diagram
commutes.

If each pn is a fibration, we say that p is a level map of fibratίons.
Each level map P'-E-^B^ induces a map p: E —> B between the in-
verse limits E = lim E and B — lim B.

It is well-known that all the fibers of a fibration p: E —> B have
the same homotopy type provided B is path wise connected. If
p: E —> B is induced by a level map of fibrations (or more generally
by a shape fibration in the sense of S. Mardesic and T. B. Rushing
([8] and [7])), and if B is pathwise connected, then any two fibers
have the same shape. This is actually true more generally when B
is connected by shape paths in the sense of J. Krasinkiewicz and
P. Mine [6]. In this paper we show that one cannot strengthen
this by assuming only that B is connected. More precisely we prove
the following theorem.

THEOREM 1. There exist continua E and B and a map p: E-^B
induced by a level map of fibrations {pn} such that p admits two
fibers of different shape.

From the construction proving Theorem 1 we actually have that
each pn: En —> Bn is a fiber bundle. Moreover, for each n Bn — S1
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and En — M is a closed 3-manifold, all the p%'s are the same, and
all the fibers of each pn are homeomorphic to the 2-torus T2. The
space B is the dyadic solenoid.

Before proving Theorem 1 we first discuss some implications of
it and its proof.

COROLLARY 1. There exists a shape fibration p:E—>B with
connected base-space B such that p has two fibers of different shape.

Corollary 1 follows immediately from Theorem 1 and answers a
question posed in [8].

REMARK 1. One might at first assume that connectedness in
shape theory is the natural analogue of path connectedness in
homotopy theory. There are many instances when this is true, but
not in general. Connectedness by shape paths (which is equivalent
to pointed 1-movability [6]) seems to be the more accurate analogue.
Theorem 1 and Corollary 1 support this thesis. Another argument
supporting this thesis is the example by the first author of a metric
continuum whose shape groups and homotopy pro-groups depend on
the choice of base point [4]. Neither the example proving Theorem
1 in this paper nor the example in [4] can exist if the space is con-
nected by shape paths.

REMARK 2. Recently M. Jani [1] has defined a notion of fiber
shape equivalence of shape fibrations. He has shown that the pull-
backs of a shape fibration by strongly shape equivalent maps are
fiber shape equivalent shape fibrations. Now any two maps of a
point into a continuum B are shape equivalent (but not necessarily
strongly shape equivalent). However, the pull-backs in this case
are just the fibers over the two image points. Consequently, Corol-
lary 1 shows that one cannot strengthen Jani's result by replacing
strong shape equivalence by shape equivalence.

REMARK 3. In a recent paper [7] the second author has in-
troduced a new equivalence relation between metric compacta called
S-type. It was easy to show that shape equivalent compacta have
the same S-type and it was asked whether there were S-equivalent
compacta of different shape. In [7] it was shown that for shape
fibrations over connected spaces, the fibers have the same S-type.
Consequently our theorem also has the following corollary.

COROLLARY 2. There exist two 2-torus-like metric continua
which have the same S-type, but which have different shape.
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In the proof of Theorem 1, it is shown that the two fibers of
different shape actually have different 1-dimensional Cech cohomology
groups. Thus we have the following corollary.

COROLLARY 3. The Cech cohomology groups with integer coef-
ficients are not invariants of S-type.

REMARK 4. The fibers in our example are compact connected
abelian topological groups. This was a definite aid in developing
the example. The basic theory of shape for such groups was de-
veloped by the first author in [2]. Some other applications of the
theory are given in [3] and [5].

2* Integral matrices and maps between tori* In the con-
struction of the example p: E —> B establishing Theorem 1 we shall
be considering maps of the 2-torus T2 into Γ2. In this section we
review briefly some facts concerning maps from the w-torus Tn

into Γ\
We think of S1 as the multiplicative group of complex numbers

of norm one. Then Tn — S1 x x S1 becomes a compact connected
abelian topological group. From [9] every continuous maps /: Tn —> Tn

is homotopic to a unique continuous homomorphism. Every homo-
morphism /: Tn —> Tn can be represented by an n x n matrix with
integer entries in the following manner. Let e: R-+ Sι be the
standard covering may defined by e(t) = e2πίt. Then en = e x x e:
Rn —> Tn is a homomorphism of topological groups. Every homo-
morphism /: Tn —> Tn lifts to a unique homomorphism /: Rn -> Rn so
that the following diagram commutes.

( 1 )

y % f

It follows that /(ker en) c ker e\ But ker en = Zn and thus g = f\Zn

is a homomorphism from Zn to Zn. We associate with / the unique
n x n matrix M such that (yl9 , yn) = g(xlf •••,»») implies that

( 2 )

Clearly M is an integral matrix. Conversely, if M is any in-
tegral n x n matrix we obtain by (2) a continuous homomorphism
/: Rn -> Rn. Because M is integral f(Zn) c Zn. Therefore / defines
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a homomorphism / on Tn to Tn so that (1) commutes. The homo-
morphism / is unique.

Note that /: Tn —• Tn is an isomorphism if and only if the as-
sociated matrix M has det Λf=±l. Actually |det M\ is the number
of points in each point inverse set of / if det M Φ 0, but we shall
not use this fact.

3* The construction of p. Let g: T2 —> T2 be the continuous
map determined by the integral matrix (i i ) Since the deter-
minant of this matrix is one, g is a homomorphism. Consider T2xR
and define an action of the group Z on T2 x R by n(x, t) = (gn(x),
t — n). Let M be the quotient space of this action and let r: T2xR —>M
be the quotient map. Then r is a covering map and M is a closed
3-manifold. Note that M = r(T2x[0, 1]). Note also that M can also
be described as the mapping torus of g: T2 -* T2. Let π: T2xR->R
denote projection onto the second coordinate and let e: R-> Sι denote
the exponential map t-*e2πίt. Then there is a unique map s: M^ S1

such that the following diagram commutes.

( 1 )

Indeed, if r(x, t) = r(x\ t'), then there is an n in Z such that
(x'f t') = (gn(x), t - n). Hence, eπ(x', t') = eπ(gn(x), t - n) = e(t - n) =
e(t) — eπ(x, t). Clearly, s is a fiber bundle and thus a fibration.

Similarly, let 2: R —> R denote multiplication by 2. Then there
is a unique map q: S1 -> S1 such that the following diagram com-
mutes.

( 2 ) • i , i
Of course, q is just z2 on the complex numbers of norm one.

Now let /: T2 —> T2 be the continuous map induced by the matrix

(o 2 r ^ e c ^ m *kat there exists a unique map h:M-+M such

that the following diagram commutes.

T2xR ^^- T2 x R

( 3 ) r { | r

M Jϊ- M
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Moreover, h makes the following diagram commutative also.

MJ-M

( 4 ) s

The last claim follows from the preceeding one because r is onto
and for (x, t) in T2 x R we have by (1), (2), and (3) the following
equalities.

qsr(x, t) = qeπ(x, t) = e(2t) = eπ(f(x), 2t)

= sr(f(x), 2ί) - 8r(fx2)(x, t) = shr(x, t) .

In order to prove the existence of h we have to show that:

( 6 ) r(x, t) - r(x', tf)

implies that

( 7 ) r(f x 2)(x, t) = r(f x 2)(x', t') .

Now (6) implies that there is an n in Z such that xf — gn(x) and
V = ί -n. But then r(/x2)(α?', t') - r(fgn(x), 2ί - 2n). It thus suf-
fices to show that:

( 8 ) fg» = g**f

because then one has:

( 9 ) r(fx2)(x', t') = r(fgn(x), 2ί - 2n)

= r{f{x\ 2ί)

= r(/x2)(s, ί) .

The third equality in (9) holds because 2n(f(x)9 2t) = (g2nf(x), 2ί -
Thus we need to establish (8) to verify that h is well-defined. But
(8) is verified by the following matrix calculation.

0Ψ°Y = (10)(1 ° W x °
0 2/\l 1/ \0 2J\n 1/ \2n 2

1 0\2B ίl 0\ _ / 1 0W1 ON _ / 1 0

1 lj \0 2/ ~ \2n lj\0 2/ ~ \2w 2

Thus the matrices associated with fgn and g2"/ are the same and the
maps fg* and g2nf must coincide. Thus h is well-defined.

We now define the inverse sequences E =• {En, hn) and B=(Bn, qn)
and the level map of fibrations p = (pj. We let En = M for all n
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and hn = h for all n. We let Bn = Sι for all n and qn = q for all n.
The we let pn = s for all n. Then p = (p j is a level map by (4)
and since each pn is a fibration, p is a level map of fibrations.
Finally, we let E = lim E, B = lim J3, and p = lim p. The example

has now been completely described. We need to show now that the
example has the desired properties to prove Theorem 1 and its
corollaries.

We observe that B is clearly the dyadic solenoid. Moreover, all
the fibers of pn are 2-tori from (1). This implies that the fibers
of p are inverse limits of 2-tori and are thus 2-torus-like continua.
In [3] it is shown that the shape of a torus-like continuum is de-
termined by its 1-dimensional Cech cohomology group. The only
way two fibers F and Ff of p can have different shape is if H\F)
and H1^') are groups which are not isomorphic. In the next sec-
tion of the paper we exhibit the fibers F and F'. Then in § 5 we
show that the fibers F and Fr are not shape equivalent by showing
that H\F) and Hι{F') are not isomorphic groups.

4* Choosing the fibers F and F\ In this section we show
how to choose the fibers F and Ff of p. For the construction of
F and Fr we need two lemmas.

LEMMA 1. Let sn: T2 —> T2 be a sequence of maps such that for
each n sn = / or sn = gf. Then there is a point b in B such that
the fiber Fb = p~\b) is homeomorphic to the inverse limit of the
inverse sequence (Γ2, sn).

Proof. We shall define points bn in B% and homeomorphisms μn

so that

(1) ? (6 +i) = 6

and so that the following diagram commutes:

T2 Sl T2 Sz > T2 SB

( 2 ) J

where Fi = pϊ\bz). Then letting b = lim (bn) and Fb = lim (Fn, K)

we will have the desired fiber. We will define bn9 Fn, and the homeo-
morphisms μn by induction on n.

The points bn and the homeomorphism μn: T2 —> F% will be de-
fined by the formulas
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( 3 ) δ. = β(O

and

( 4 ) μΛx) = r(x, tn) for x in Γ

where tn is in R and will depend only on n.
Note that by (1) of § 3

( 5 ) P A W = sr(x9 tn) = eπ(x, ί J = e(tn) = bn

so that μn does map T2 into Fn = Vn\bn). Moreover, /*n will be a
homeomorphism. Indeed, let y be in 1<V Then there is an (a?, t) in
T2xR such that r(#, t) — y because r is onto. Then by (1) of §3,
e(t) = eττ(#, ί) = sr(x, t) = s(y) = 6W. Now there is a unique m in Z
such that r(gm(x), t — m) = r(x, ί) = y and t — m = tn. Thus α?' =
grw(^)6 Γ 2 is the only point such that μ%(x') = y.

We now show how to choose tn in R. We start the induction
by putting t± = 0. Now assume that £x, ••-,** have been defined so
that (1) holds for n = 1, 2, , fc — 1 and the diagram (2) holds as
far as it has been defined. We have to define tk+1 anp verify (1) for
n = k and verify the commutativity of the following diagram.

/TT2 k IJ12

We distinguish two cases.

Case (i): Let sk = f.
In this case we put tk+1 = Jifc. Then for bk+1 = e(ίfc+1) we have

by § 3 (2):

τ) - qe ( A 4 ) - e2(-|- ίA) - β(ίA) - bk .

Also, by §3 (3) we have:

( 8 ) hkμk+1(x) - hr(x, tk+1) = ftr (a?, y ίA) - r ( / x 2)(α?, -»

= r(f(x), tk) = ^(/(^)) - /IΛ(&)

as required by (6).

Case (ii): Let s& = gf.
In this case we put tk+1 = l/2(ίt + 1). Then we have:
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i) = Qke(tk+1) - qe ( i -( ί t + 1)) - e(tk

( 9 ) V 2 /

- e(tk) = δA .

Furthermore,

(10) hkμk+1(x) = Λr(α, ίfc+1) = ftr (#, —(tk +

- r(/x 2)(x, ±-(tk + 1)) - r(f(x), tk

Now by definition of r,

(11) r(/(&), ί* + 1) = r(flf/(αj), tk) =

as required by (6). This completes the proof.

We now define the fibers F and F' using Lemma 1 so as to
obtain the following lemma.

LEMMA 2. Let 1 <; n1 < n2 < nz < be a sequence of integers.
Then there exist points b and b' in B such that the fiber F = p~\b)
is homeomorphic to the limit of the inverse sequence of 2-tori T2

with all bonding maps equal to f and the fiber Ff = 3>"1(&0 is homeo-
morphic to the limit of the inverse sequence of 2-tori where one has
first nt bonding maps gf, then n2 bonding maps /, then n3 bonding
maps gf, etc.

This is an immediate application of Lemma 1. Lemma 2 now
defines the fibers F and F' which we claim are not shape equivalent.
In the next two sections we show that H\F) and H\Ff) are not
isomorphic which will prove our claim.

5. Cohomology of the fibers F and F\ Let H1 denote the
v

first Cech cohomology groups with coefficient group Z. Recall that
there are natural isomorphisms H\T2) ^ Ή.om(H1(Tz)f Z) (from the
Universal Coefficient Theorem for cohomology) and H^T^^π^T^^Z2

(since πλ(T2) is abelian). Thus one can identify H\T2) with Z2.
Now if one has a homomorphism /: T2 -+ T2 represented by the
matrix A, then that homomorphism induces a homomorphism on
H\T2) = Z2->Z2 = H\T2). The induced homomorphism we can take
to be represented by the transpose A! of the matrix A if we make
the following choice of basis for H\T2). Let {elf e2} be the basis
for π^T2) corresponding to the basis in Z2 by which the matrix A
was identified with /. Let {e[, e[} be the basis in H^T2) under the
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natural transformation between π^T2) and H^T2). Then let {e[\ e'2
r}cz

H o m i e r 2 ) , Z) be defined by eΓOί) = δiS where δi3- is the Kronecker
delta. Then {e['f e['} is a basis for HomCHiCΓ1), Z). The image of
this basis in H\T2) will be the required basis and with that basis
f*\H\T2)->H\T2) will be associated with the integral matrix A'.
These facts together with the continuity of the Cech cohomology
groups implies that H\F) is the direct limit of the direct sequence
of groups:

(1) £2_^ Z 2 _^ Z 2_^U.. .

where all the qt'a are given by the matr ix^ Λ

Clearly the direct limit of this direct sequence of groups is iso-

morphic to Z 0 Q{2) where Q(2) = {m/2n \m,neZ,n^0}. Thus all

that remains to be proved is that H\F') is not isomorphic to ZφQ { 2 ).

Now the matrix representing gf is (* o) Taking this fact together

with the definition of Ff into account, it will suffice to prove the

following lemma.

LEMMA 3. Let 1 ̂  nx < n2 < nz < be a sequence of integers
and let

(3) G o ^ G i ^ G 2 _ ί ^ . . .

be a direct sequence of groups such that <?* = Z% for all i such that
the first nλ bonding homomorphisms are given by matrix

( 4 )

the next nz bonding homomorphisms are given by

ίl 0\

the next nz bonding homomorphisms are given by H, etc. Then
the direct limit is a group G which is not isomorphic to

In § 6 we prove Lemma 3 and thus complete the proof of
Theorem 1.

6. Algebraic lemmas. We shall prove Lemma 3. That is, we
shall show that the G in Lemma 3 cannot be isomorphic to Z @Q(2).
This will be shown by showing that G has a certain property a,
which is invariant under group isomorphism, which is not possessed
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We say that an abelian group A has property a provided there
exists a monomorphism μ: A-+R2 and a sequence of elements at in
A such that lim μ(a%) = 0 and such that any two of the elements
μ{a%) are linearly independent in R2. Clearly, if A has property a
and A = A', then A' also has property a. Thus Lemma 3 will fol-
low from the next two lemmas.

LEMMA 4. The group G described in Lemma 3 has property a.

LEMMA 5. The group Z © Q ( 2 ) fails to have property α.

Proof of Lemma 4. We shall first define by induction a
sequence of monomorphisms μt: Z

2 —> R2 such that μ0 is the inclusion
Go = Z2(zR2 and such that the following diagram commutes:

C Ql > C h<ί C qz >

(i) J° J^~J
1 1 1

R2 > R2 — > # 2 > . .
id id

Let us assume that μi_1 has already been defined. Since det F=
det H = 2 Φ 0, qt is a monomorphism. Thus the subgroup q^G^ of
Gt is a free abelian group of rank 2. Thus there is a basis {αx, α2}
of Z 2 = Gi and integers nlf n2 ^ 1 such that {^αi, ̂ 2α2} is a basis for
Qi(Gi-i) Since &: G€_! -» qt(Gt_J is an isomorphism, there exists also
a basis {βx, e2} of Gt_x such that

( 2 ) qj^i) — nλax and ^i(β2) = n2a2 .

Since JS2 is a divisible group one can find elements b19 b2 in R2 such
that

( 3 ) nA = μ^e,) and n2b2 = /i^^^) .

Now define ^ : G, = Z 2 -> R2 by putting

( 4 ) ^ ( α j = &! and μt(a2) = b2 .

Clearly, μMe,) = μ^n.a,) = n.μ^) = nA = μ^e,). Similarly,
P&iifid = μi-i{e2), so that induced μ^ = μ^. Now we show that μi

is a monomorphism. If &x, k2 are in Z and μ^k^ + A2α2) = 0, then
it follows that kxbx + k2b2 = 0 and therefore μi-^njc^ + nfc2e2) —
n&JJcJ)! + &262) = 0. Since / i ^ is a monomorphism, we conclude that
njcfo + n^ea = 0. However, {e19 e2} is a basis for i/2 so that njc^
n,k2 = 0. Thus k, = k2 = 0.
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It can be readily seen that the monomorphisms μt induce an
isomorphism μ of the direct limit G of (Gif qt) onto the subgroup

We now consider the points at in Gni+...+n. = Z2 defined as
follows.

( 5 ) a = l
\(0, 1) i even .

Let

( 6 ) b, = μni+...+ni(at) , δ0 = (0, 1) .

We shall show that

(7) 6i+1 = 2-*+ (64 + (-l) '( l ,0)).

First assume that i is even. Then the homomorphism
9»1+...+nt+1

o' o? 1+...+ <+i is given by the matrix Hn^κ Since

( 8 )

(1) implies that

( 9 ) 2 '+i61+1 = ^ ι + . . . + . f + t 2 .+i(

= μnι+...+Λi{l, 1) .

Since

it follows that

^+..-+.,(1, 1) = (1, 0) + jκ»ι+...+Λ<(0, 1)
( } = (i, o) + bt.

Now (9) and (11) yield (7) for even ί.
Using the fact that

(12) F"*+i ί ) = 2"'+i ί

one can verify (7) for odd i in a similar way.
Let bi = (xif yd and let sk = Σ*=i nn- From the recursive formula

(7) it is easy to derive the formulas.

(13) x, = 2- * ( l + Σ ( - l)y2'
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(14) y, = 2~*< .

Now we shall show that bn and bm are linearly independent in
R2 for n < m. Indeed, assume that

(15) Xbn + μbm = 0 n < m .

Then (14) yields

(16) λ2""'» + μ2~s™ = 0 .

The analogous relation for the first coordinates simplifies using
(16) to the following.

(17)

Now

(18)

The

X2-.

(16) and

number

3 = 1

(17)

- W + Aώ-

yields:

Aώ-Σ(-iy:

3=1

2S^ = 0

Σ! ( ) ( ( ) Σ, ( y )
j=n j=n+l

is φQ because the expression in the parentheses is an odd number.
Consequently, (18) yields μ = 0. Then (16) yields λ = 0.

Finally, to show that lim bt = 0 it suffices to show that

(19) | δ , | ^ 2 2- <.

This holds for i = 1 because δx = 2"Λl(l, 1).
If we assume (19) for ί, then by (7)

This completes the proof of Lemma 4.

Proof of Lemma 5. Let κ ^ © Q ί 2 ) ^ R2 be any monomorphism.
One readily sees that u extends to a linear map v: R2 —> i?2. There-
fore v(0 x R) is a straight line LaR2 through 0. Also, v(n x R),
ne Z, all coincide with L or are straight lines parallel to L such
that the distance between any two consecutive lines is the same
number r > 0. The first case is trivial. In the second case let U
denote the open disc around 0 of radius r, then 17n ^ φ Q ( 2 1 ) c L .
Consequently, all pairs of points of u(Z 0 Q(2>) which are close
enough to 0 must be linearly dependent. Hence the group Z 0 Q(2)

fails to have property a.
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This completes the proof of Lemma 5 and thus completes the
proof of Theorem 1.

Added in proof. K. R. Goodearl and T. B. Rushing have recently
shown that there are uncountably many fibers of different shape
type in the example of the paper. Details are in "Direct limit groups
and the Keesling-Mardesic shape fibration" (to appear in Pacific J.
Math.).
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