ERRATA

Correction to

A CYCLIC INEQUALITY AND A RELATED EIGENVALUE PROBLEM

J. L. SEARCY AND B. A. TROESCH

Volume 81 (1979), 217-226

Professor P. Nowosad, Rio de Janeiro, has informed us that the inequality $S(\underline{x}) \geqslant N/2$ holds for N=12 [1]. Furthermore, our belief that the inequality also holds for odd $N \leq 23$ has been stated, and strongly supported by numerical evidence, in [2].

- 1. E. K. Godunova and V. I. Levin, *A cyclic sum with* 12 terms, Mathematical Notes of the Academy of Sciences of the USSR, **19** (1976), 510-517. (translation), Consultants Bureau, New York.
- 2. P. J. Bushell and A. H. Craven, On Shapiro's cyclic inequality, Proc. Royal Soc. Edinburgh, 75A, 26 (1975/76), 333-338.

Corrections to

CHARACTERIZATION OF A CLASS OF TORSION FREE GRUOPS IN TERMS OF ENDOMORPHISMS

E. F. CORNELIUS, JR.

Volume 79 (1978), 341-355

Received February 5, 1974 and in revised form June 7, 1978.

Corrections to

NONOPENNESS OF THE SET OF THOM-BOARDMAN MAPS

LESLIE C. WILSON

Volume 84 (1979), 225-232

In [3] we showed that the set of Thom-Boardman maps is open if the Morin $(S_{1:k})$ singularities alone occur generically, and is not

open if S_2 singularities occur generically. However, we neglected to consider the $S_{1,i}$ singularities, $i \geq 2$ (recall that the subscripts denote corank, not kernel rank, and that $S_{1:k}$ means $S_{1,1,\dots,1}$ with k 1's). In fact, the set of Thom-Boardman maps is not open if the $S_{1,2}$ singularities occur generically, which occurs whenever $n > p \geq 4$. Thus Theorem 1.1 of [3] should be stated: The Thom-Boardman maps form an open subset of C(N, P) iff either 2p > 3n - 4 or p < 4.

We will now indicate how the above claims are proved. Using Proposition 3 of [2], it is easy to calculate that the codimension of $S_{1,2}$ (which Mather denotes $\sum_{n-p+1,2}$; we assume n>p) is n-p+4. Thus $S_{1,2}$ singularities occur generically iff $n>p \ge 4$.

The 3-jet at 0 of

$$f(x_1, \dots, x_n) = (x_1, \dots, x_{p-1}, x_p^2 + \dots + x_{n-2}^2 + x_{n-1}^2 x_n + x_1 x_{n-1} + x_2 x_n + x_3 x_n^2)$$

lies in $S_{1,2,0} \cap {}_tS_{1,2}$. That it lies in $S_{1,2,0}$ follows from Mather's algorithm for computing the Thom-Boardman type (see the last definition on p. 236 of [2]). That j^2f is transverse to $S_{1,2}$ follows from the last paragraph in [2].

For each k, $z=j^kf(0)$ lies in the closure of $S_{1:k}$. To see this, note that the contact class of x^2y+Q , Q a nondegenerate quadratic form in other variables, lies in the closure of the contact class of x^2y-y^k+Q (consider the curve x^2y-ty^k+Q). By Table 3 of [1], the latter contact class lies in the closure of the contact class of $x^2+y^{k+1}+Q$, which lies in $S_{1:k}$.

By the Transversal Extension Theorem of [3], there is a Thom-Boardman map g with $j^kg(0)=z$. By Lemma 3.5 of [3], there are maps g_m which converge to g in the Whitney C^{∞} topology such that each g_m has $S_{1;k}$ singularities. The codimension of $S_{1;k}$ is n-p+k. Thus, choosing k>p, g_m cannot be a Thom-Boardman map.

REFERENCES

- 1. J. Callahan, Singularities and plane maps II: sketching catastrophes, Amer. Math. Monthly, 84 (1977), 765-803.
- 2. J. Mather, On Thom-Boardman Singularities, Dynamical Systems, Academic Press, New York, 1973.
- 3. L. Wilson, Non-openness of the set of Thom-Boardman maps, Pacific J. Math.