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Correction to
A CYCLIC INEQUALITY AND A RELATED
EIGENVALUE PROBLEM

J. L. SEARCY AND B. A. TROESCH

Volume 81 (1979), 217-226

Professor P. Nowosad, Rio de Janeiro, has informed us that the
inequality S(z) > N/2 holds for N =12 [1]. Furthermore, our belief
that the inequality also holds for odd N < 23 has been stated, and
strongly supported by numerical evidence, in [2].

1. E. K. Godunova and V. I. Levin, A cyclic sum with 12 terms, Mathematical Notes
of the Academy of Sciences of the USSR, 19 (1976), 510-517. (translation), Consultants
Bureau, New York.

2. P. J. Bushell and A. H. Craven, On Shapiro’s cyclic inequality, Proc. Royal Soc.
Edinburgh, 75A, 26 (1975/76), 333-338.

Corrections to

CHARACTERIZATION OF A CLASS OF TORSION
FREE GRUOPS IN TERMS OF
ENDOMORPHISMS

E. F. CorRNELIUS, JR.

Volume 79 (1978), 341-355
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Corrections to

NONOPENNESS OF THE SET OF THOM-BOARDMAN
MAPS

LesLiE C. WILSON
Volume 84 (1979), 225-232

In [3] we showed that the set of Thom-Boardman maps is open
if the Morin (S,.,) singularities alone occur generically, and is not
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open if S, singularities occur generically. However, we neglected to
consider the S, singularities, ¢ = 2 (recall that the subscripts denote
corank, not kernel rank, and that S, means S, ..., with £ 1’s). In
fact, the set of Thom-Boardman maps is not open if the S,, singu-
larities occur generically, which occurs whenever n > p = 4. Thus
Theorem 1.1 of [3] should be stated: The Thom-Boardman maps form
an open subset of G(N, P) iff either 2p > 3n — 4 or p<4.

We will now indicate how the above claims are proved. Using
Proposition 3 of [2], it is easy to calculate that the codimension of
S.. (which Mather denotes >\ ?+“?; we assume n>p) is n — p + 4.
Thus S,, singularities occur generically iff n» > p = 4.

The 3-jet at 0 of

f(xb Tty xn) = (wly cety Lpoyy x?) + -+ x%t—2 + x'zn,—qxn
+ X,y + BT, + X05)

liesin S,,, N ¢S;,. That it lies in S, ,, follows from Mather’s algorithm
for computing the Thom-Boardman type (see the last definition on
p. 236 of [2]).. That 5% is transverse to S,, follows from the last
paragraph in [2].

For each k, z = j%f(0) lies in the closure of S,;. To see this,
note that the contact class of 2%y + @, Q@ a nondegenerate quadratic
form in other variables, lies in the closure of the contact class of
2 — y* + Q (consider the curve %y — ty* + Q). By Table 3 of [1],
the latter contact class lies in the closure of the contact class of
2 + y** + @, which lies in S,;,.

By the Transversal Extension Theorem of [3], there is a Thom-
Boardman map g with j*¢(0) = z. By Lemma 3.5 of [3], there are
maps ¢, wWhich converge to g in the Whitney C* topology such that
each ¢, has S,., singularities. The codimension of S, is n — » + k.
Thus, choosing k& > p, g, cannot be a Thom-Boardman map.
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