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ARITHMETIC PROPERTIES OF THE
IDELE DISCRIMINANT

DONALD MAURER

A theorem of Hecke asserts that the discriminant b,/
of an extension of algebraic number fields K/F' is a square
in in the absolute class group. In 1932 Herbrand con-
jectured the following related theorem and was able to
prove it for metacyclic extensions: If K/F is normal, then
bz, can be written in the form 2%(§), dc F'; where (i) 6 =1
(mod B), B is the greatest divisor of 4 which is prime to
Oz/7, and (ii) § > 0 at each real prime v except when K ®; F,
is a direct sum of copies of the complex field and (K: F') =
2(mod 4).

More recently, A. Frohlich gave a unified treatment of
these and related questions using the concept of an idéle
discriminant. The purpose of this paper is to present a
generalization of these results with some connections with
the structure of the Galois group.

Our notation will be as follows. Let _#; denote the finite prime
divisors of F. The ring of integers in F will be denoted by O (or
Or), and for each ve _#;, 7, will be the integers of the completion
F,. Also, for a e F, we write v(a) for the order of «, so that if the
prime ideal B, of O, is generated by x,, then v(z,) =1. If z is an
idéle with v-component z,, then we shall write z = (x,), and v(x) =
v(x,). If aeF* then, unless otherwise stated, (@) will denote the
principal id€le defined by a,=a. The idele group J, contains, as a
subgroup, the unit idéles U, consisting of those « such that z,e U,
the unit group in F,, for all v. The idéle discriminant d(K/F') de-
fined in [1] is an element of J,/U%. The classical ideal discriminant
is simply the ideal naturally determined by d(K/F').

1. The general theory. Throughout the paper, p will be a fixed
prime, and we shall assume that F' contains {,, a primitive pth-root
of unity.

Our first results pertain to the case of cyclic p-extensions K/F.
Let G denote the Galois group.

LEMMA 1.1. Let K/F be cyclic of degree p. Then there is an
element ac F such that K = F(a¥?) and a = 1 (mod B), where B is
the greatest divisor of ({, — 1)? which is relatively prime to the
discriminant dg,r. Moreover, v splits in K if and only if aec F?.
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Proof. For each ve_ 4, let K, = K@, F,; then K, is algebra-
isomorphic to a direct product TJ,,, K, of local field extensions K,/F,.
Similarly, if we let (D), = Ox @:9D,, then (Og), = [1o Ou. Let
Z be the set of all v which divide » (i.e., v(p) > 0) but do not
divide dg,». Then for each ve & K, is nonramified, and so K, has
a normal O,-integral basis {z;'},.,. By the strong approximation
theorem, it is then possible to find a normal F-basis {x,},.¢ of K
which is an O,-integral basis of (D), at each ve & Moreover, we
may also assume that >, .2, = 1.

Now for each character X: G — C (the complex field) set 6, =
Seea X(@)x,. It is well known that a; = 6¢ F, and K = F(a') for
a nontrivial X. Fix such a X, and write @ = a;,. We have

b =1+ 3 (Ug) - D, -

But in the field Q, of the pth roots of unity over the rational field
we can write

Xg) —1=c(C, — 1) (cx integral in @Q,) .

Hence ¢, =1+ hi({, —1) with A,e K. It follows that a =1+
hy(, — 1)? with h, e F. Moreover, if ve .2, then h;€O,. Thus the
lemma is proved.

We continue to suppose that K/F is a cyclic p-extension. For
ve _, let G, denote the 4th ramification group of a localization
K,/ F,. We define the ramification number 7, to be the smallest
integer n such that G, is trivial. Clearly », is independent of .
Now v is nonramified, tamely ramified, or wildly ramified according
as r,=0, r,=1 or »,>1 respectively. If (K:F) = p, then the
ramification numbers », give a complete description of ramification,
and v(d(K/F)) = r,(p — 1).

The next lemma gives a partial determination of the ramification
numbers r, when (K: F') = p.

LEMMA 1.2. Suppose K = F(a'?) with ac F. If v is ramified
and v(a) £ 0 (mod p), then », =1 or v({, — L)p + 1.

Proof. Set s =v(, —1). If v is tamely ramified, the lemma
is obvious. Therefore we may suppose that v is wildly ramified; so
p divides the ramification number of v when extended to K, but
v(a) = 0 (mod p). Then let a¥? = en?, where @ is the extension of
v to K, w, a local prime, ee U, and (a, p) =1. Now there is a
ve U, such that {, =1 — vz, and an element o€ Gal (K,/F,) such
that
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G, = @) _ (om0

av? T, €

Since 7}, (» = 7,) is the highest power of z, which divides o(z,) — 7.,
it follows that

MGU — U,
ﬂm r—1 r g

where U, =1+ Pr. Since (@, p) = 1, it is also true that

(2(_’?.1) eU,, —U..

Mo

But o(¢)/ee U,, whence it follows that {, =1 — ¥'z2" Dbelongs to
U,.,—U.,.
This completes the proof.

It is not possible to say much about 7, when v(a) = 0 (mod p).
A slight modification of the previous argument shows that r, < sp.
However, if n is any integer in the range 0 < n < sp, then according
to [5] or [7], for a ye F, with v(y) =1 — n, the roots of

?—-—x—y=0

generate a cyclic extension of dezgree p with », = n.

Let K/F be cyclic of degree p, then a divisior ve _ will be
called exceptional at K/F if the congruence v(a) -z = 7, (mod p) does
not have a solution relatively prime to p. That is, v is exceptional
if one, but not both, of v(a) or » is congruent to O(mod »). Suppose
(@) # 0(mod p), but », = 0(mod p). By Lemma 1.2 7, =0, and so
K,/F, is nonramified. Since a is a pth power in K, p must divide
v(c), a contradiction. Hence v is exceptional if and only if it is
totally ramified, and v(a)-2 = r (mod p) is not solvable, i.e., v(a) =
O(mod p) but 7, = 0(mod p).

Now let K/F be any finite Galois extension such that (K: F) is
divisible by ». In order to state the main theorem, it will be con-
venient to introduce two functions ¢, and g on _~. Suppose
K/F is a p-extension, and let T be a subfield such that (K: T) = p.
We define ¢.,»(v) = 0 unless v is totally ramified in K/F, and K/T is
exceptional at the extension @ of v to T. In the latter case, ¢z, (V)
is to be the least positive residue (mod p) of —7,. This definition
is independent of the choice of 7. For suppose that 7" also satisfies
the condition (K: T") = p. We may suppose that v is totally ramified.
The tower formula applied to the localization at v gives (since v is
totally ramified, we can identify @ and v when convenient)

N(d(K,/T.)) = N'(d(K,/T:))(mod p) ,
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where N and N’ are the obvious norm maps. Recalling that
o(d(K/T)) = r,(p — 1), this congruence then implies ¢, is well
defined.

Now we extend our definition to the general case by letting L
be the fixed field of a p-Sylow group G,. We define ¢,» to be the
least nonnegative residue (mod p) of the expression (L: F')¢x,.(®)/eLx(),
where @ extends v to L, and e;,(v) denotes the ramification index
of v in L. Again, it can be verified that this definition is indepen-
dent of the choice of either L or w. If K/F' is finite Galois, we say
v is exceptional at K/F if ¢,-(v) 0. This extends the earlier
definition.

The function + is defined in a similar manner. If (K: F) = p,
then +rg,»(v) = 1 for all exceptional v. Otherwise g, »(v) is the least
positive residue (mod p), satisfying the congruence v(@)-:qrg,(V) =
r,(mod p), where K = F(a'?). In the general case, if G, is cyclic,
let T be a subfield such that (K: T') = p and define g, -() = Yg/r(®),
where @ extends v to T. If G, is noncyclic, define yrg,-(v) =1 for
all . The definition is independent of T, @w or @. We can now
state the main theorem of this section.

THEOREM 1.3.! Let {,e F, and suppose K/F is a finite Galois
extension whose group G contains a nontrivial p-Sylow group G,.
Then there are idéles a, b and ¢ in J, such that

d(K/F) = a”bc(mod U%) .

Moreover, the following conditions are satisfied for all ve _#;.

(i) e, = 0"y = Arg,r) for some 6 € F' satisfying the congruence
0 = 1(mod B), where B is the greatest divisor of ({, — 1) which 1is
prime to dg,p.

(ii) If v is exceptional, v(c) = 0(mod p)

(iii) If G, is moncyclic, then 6 = 1. Moreover,
if K|F is a cyclic p-extension, a nonramfied v prime to p splits in
K|F if and only if 60 U?L.

(iv) b, = wi"¢ = bx/s)-

We do not deal with the infinite components of d(K/F'), for when
p = 2 this is discussed in [1]; and for p > 2, F, = C for all infinite
v, whence d(K/F), is trivial. The remainder of this section is devoted
to proving the theorem, while in the final section some consequences
are discussed. In particular, the case p = 2 is developed.

We first deal with p-extensions, so let (K: F)=p" If m =1,
let K = F(a'?), where a satisfies the congruence condition of Lemma

! Results of a similar nature, although somewhat weaker, can be proved without
the restriction {,€ F.
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1.1. A field basis for K is then 1,7v,7% ---, 7' with v = o'~
Therefore d(K/F') will have a local representation at v of the form

d(K[F), = (= 1y pgiar(mod U3,

for some B,¢ F,. Using the relation v(d(K/F')) = r.(p — 1), this gives
the congruence 20(B3,) = —7r, + v(a)(mod »). Hence there is a function
ox,» Which satisfies the congruence equation 2¢’ = ¢(mod p). In
particular if » = 2, then ¢ = 0 and so there are no exceptional primes.
Now if v is exceptional, then our result implies that B, = ez¥®
for some unit ¢,. On the other hand, if v is nonexceptional, then
v(a) - () = r,(mod p). Therefore in the above representation for
d(K/F), we can replace a by a¥*. Again, B, is of the form ¢ z¢'®,
Thus we obtain the global idéle representation

d(K/F) = ¢*B*z*(mod U%) ,

where each component of @ is given by B8, = &7, and 7, = a¥®.
Moreover, for all nonramified v, a« e U? if and only if v splits in K.

This representation can be generalized to any cyclic p-extension.
There is a sequence of subfields

F=02cQ . ---c2,c2,,=K

with (2,:92,.,) = p. For notational simplicity we set T =2,.
According to our previous arguments, we have the representation
d(K/T) = 038373 (mod U%). The tower formula gives d(K/F) =
60*G? Y(mod U%), where B = Np(8r) and 7 = Ny(ty). By a
straightforward computation, B, = &,7¢'“ (¢’ = ¢x,»). Similarly, if we
define @ = Ny (ar), then 7, = a¥“ (Y = Pg/p).

Suppose that v divides p but not dg,». Then an extension @ of
v to T also divides p but not bdg,; therefore in O, a,=1+
ho(C, — 1)*. Since T/F is normal, we have

Nowlar) =11 @ + o), — 1)) ,

where ¢ runs through the elements of the Galois group of T,/F..
Hence it follows that « =1 + h,({, — 1)” is in O,.

Now we must show that if v is nonramified in K, and prime
to p, then v splits if and only if @€ U?. Suppose that such a v
does mot split in K. Then a,¢ T?. In general if U, denotes the
unit group of (2,),, we have (U, U}) = p, so that the norm map
induces an isomorphism U,.,/U?,, = U,/U?; hence a ¢ U?. Since there
are infinitely many primes which do not split in K/F, a cannot be
a pth power, and therefore (F(a'?): F') = p.

Now a nonramified v will split in K/F if and only if it splits
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in 2,/F, for if it splits in K, then the decomposition field contains
£2,, whence v also splits in £2,/F. Hence if v splits in £,, then it
splits in K and so also in F(a'?); therefore F(a“?) = 2,. This proves
our assertion, and extends the representation of the idéle diseriminant
to arbitrary cyclic p-extensions.

Suppose now that K/F is a noncyclic p-extension. The Galois
group G must contain a proper noncyclic subgroup. For suppose a
maximal subgroup N is cyclic. Let o be a generator of N and
choose b not in N. Then p is the smallest positive integer m such
that b e N. It follows that G is generated by a and b. The sub-
group generated by a” and b is proper and noncyclic. By a simple
induction argument we conclude that G contains a subgroup H of
type (p, »).

Let L be the fixed field of H. Then there is a subfield KD
T>oL such that K = T(¢'?) with e L. As before, d(K/T) has a
representation of the form 6282727, where each component of 7, is
a power of p. Since Ny, (¢) = p*, the tower formula gives for each
w € _#;, the representation d(K/L), = 628%(mod U?%), where g, =
e,y (4" = ¢%,.). The tower formula applied to KDL DF then
gives a representation of d(K/F) of the form 06°8*c?™, with B, =
e and 7, =1 for all ve .

This representation generalizes to arbitrary extensions K/F' by
applying the tower formula to Ko L D F, where L is the fixed field
of a p-Sylow subgroup of G. To obtain the theorem, we now take
b, =x{” and 6 = (N, (@)*?, or 8§ =1 depending on whether G, is
cyclic or noncyelic. If G, is cyclic, then

v(e) = —p(V) - V(N ()

= LB (@) - w(e))(mod p)
err(V)
where @ extends v to L. For an exceptional v, w(a) = 0(mod p). It
is therefore clear that

v(e) = 0(mod p) .

The proof of the theorem is now complete.

2. Applications. The purpose of this section is to consider
some consequences of Theorem 1.3. We first suppose that p = 2.
Then there is no restriction on the ground field F, since {, = —1
always belongs to F. Frohlich [1] defined the discriminant field Q/F
of an extension K/F as a quadratic subfield (2 = F' possible) uniquely
characterized by the relation

A K/F) - J% =dQ/F)-J% .
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Hence 2 = F(6*%). We use the properties of 2 to prove

THEOREM 2.1. The 2-Sylow groups of the Galois group G of an
even degree extension K/F are cyclic if and only +f d(K/F)e J%/U%.

Proof. Suppose a 2-Sylow subgroup G, is cyeclic. Then G, has
a normal 2-complement N so that G/N = G,. Let L be the fixed
field of N. Then the tower formula yields d(L/F)J3% = d(Q/F)J?%,
so that by Frohlich’s characterization, 2 c L.

Now ¢ = 1(mod F'*) implies that almost all v split in L, whence
G, cannot be cyclic. The converse, of course, is contained in Theo-
rem 1.3.

REMARK. An independent proof is given in [2]. Also, a proof
when G is abelian appears in [6].
We now prove two further results for »p = 2.

THEOREM 2.2. If K/F is normal and nonramified, and G con-
tains a noncyclic 2-Sylow group, then O, has an O,-integral basis.

Proof. Immediate from Theorem 2.1 and Theorem 2.5 of [1].

THEOREM 2.3. If K/F is a Galois extension and d(K/F)¢ J3/U%,
then G s solvable.

Proof. Since 6 is not a square, the degree (K: F') must be even
since (2: F') = 2. Therefore by Theorem 2.1 the 2-Sylow groups are
cyclic. Hence any such subgroup G, has a normal 2-complement N
with G/N = G,. Since both N and G, are solvable, G is itself solvable.

For the remainder of the section, consider an arbitrary prime
p = 2. This now imposes a restriction on F. Moreover, if p > 2
then 6 is not determined, up to a pth power, by d(K/F'), as was the
case when p = 2. Hence the notion of a discriminant field does not
extend to an arbitrary prime. Also, the exceptional primes, which
play no role in the p = 2 theory, are now important. The results
for p > 2 are therefore not as strong as these obtained for p = 2.

However, we have the following generalization of Herbrand’s
theorem.

THEOREM 2.4. Assuming the hypotheses of Theorem 1.3, then
Dk/r cam be written as a product of tdeals in the form A*D(H), where
0 = L(mod B), and B is the greatest divisor of (L, — 1), prime to
Dr/i; D 18 divisible only by ramified primes and is characterized by
the relations
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Gx/n(V) if v is exceptional

_ (L F)
2 er/r(V)

(D) = if v is ramified, nonexceptional .

Proof. In the representation of Theorem 1.3, let the idéle d be
defined by d,~1 at all infinite divisors, and d,=nf¢¥** at all v e _#;.
Let ® be the ideal naturally determined by d; then v(D) = ¢(v) +
(@) (@) —1). The computations are straightforward, using the
congruence relation at the end of the previous section.

Since ¢ = 0 and +» = 1 when p = 2, it is evident that, for ve_
at least, this result is consistent with Herband’s theorem.

If the exceptional divisors are known, b can be determined from
d(K/F'), for a consequence of the representation theorem is that for
an exceptional divisor v, ¢y, (V) = d(K/F)(mod p). In this case, the
next result gives a sufficient condition for G, to be cyclic.

THEOREM 2.4. Under the hypotheses of Theorem 1.8, suppose
that

d(K/F) = a?be,(mod U%) ,

where b is as determined in Theorem 1.3. Then G, is cyclic if ¢, ¢
2J2. If K/F is a cyclic p-extension, then a mecessary condition
for v to split in K 1is that ¢, € U3F'?.

Proof. Let ¢ be determined as in Theorem 1.8. Then ¢, =¢
(mod U3J%). If G, is noncyclic, then ¢ = 1, whence ¢,€ U%J%. Now
if K/F is a cyclic p-extension, then 6 ¢ F? if and only if v splits in
K, whence ¢,,€ U2F? if v splits.

The results of this section show how d(K/F) can be used to
obtain structural information about the Galois group of K/F, or in
the case of cyclic p-extensions, the splitting of primes.
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