
PACIFIC JOURNAL OF MATHEMATICS
Vol. 85, No. 2, 1979

ARITHMETIC PROPERTIES OF THE
IDELE DISCRIMINANT

DONALD MAURER

A theorem of Hecke asserts that the discriminant bκ/P

of an extension of algebraic number fields K/F is a square
in in the absolute class group. In 1932 Herbrand con-
jectured the following related theorem and was able to
prove it for metacyclic extensions: If K/F is normal, then
bκ/F can be written in the form Ψ(θ), θeF; where ( i ) N l
(mod 53), 33 is the greatest divisor of 4 which is prime to
bκ/F9 and (ii) θ > 0 at each real prime υ except when K ®F Fυ

is a direct sum of copies of the complex field and (K: F) =
2(mod 4).

More recently, A. Frohlich gave a unified treatment of
these and related questions using the concept of an idele
discriminant. The purpose of this paper is to present a
generalization of these results with some connections with
the structure of the Galois group.

Our notation will be as follows. Let ^£F denote the finite prime
divisors of F. The ring of integers in F will be denoted by £> (or
DF), and for each υ e ^Fy έ?0 will be the integers of the completion
Fυ. Also, for aeFυ we write υ(a) for the order of a, so that if the
prime ideal ^βy of Oυ is generated by π09 then υ(πυ) = 1. If x is an
idele with ^-component xu, then we shall write x = (xυ), and υ(x) =
υ(xυ). If aeF* then, unless otherwise stated, (a) will denote the
principal idele defined by au—a. The idele group JF contains, as a
subgroup, the unit ideles UF consisting of those x such that xυ e Uυ,
the unit group in Fυ, for all υ. The idele discriminant d(K/F) de-
fined in [1] is an element of JF/UF. The classical ideal discriminant
is simply the ideal naturally determined by d(K/F).

1* The general theory* Throughout the paper, p will be a fixed
prime, and we shall assume that F contains ζp9 a primitive pth-root
of unity.

Our first results pertain to the case of cyclic ^-extensions K/F.
Let G denote the Galois group.

LEMMA 1.1. Let K/F be cyclic of degree p. Then there is an
element aeF such that K = F(a1/P) and a = 1 (modS3), where S3 is
the greatest divisor of (ζp — l)p which is relatively prime to the
discriminant bκ/F. Moreover, υ splits in K if and only if ae Fl.
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Proof. For each υe^F, let Kv = K(&FFυ\ then Kυ is algebra-
isomorphic to a direct product ΐ[ω/υKω of local field extensions Kω/Fu.
Similarly, if we let (Oκ\ .= Oκ ® 0 Oυf then (Oκ)υ = Π ^ ©«. Let
^ be the set of all υ which divide p (i.e., u(p) > 0) but do not
divide bκ/F. Then for each υe&>, Kυ is nonramified, and so Kυ has
a normal Oυ-integral basis {xg

υ)}geG By the strong approximation
theorem, it is then possible to find a normal F-basis {xg}g&G oί K
which is an ©^-integral basis of (Oκ)υ at each υ e &. Moreover, we
may also assume that Σ^eβ^ = l

Now for each character X:G -+C (the complex field) set θx =
ΣιgeσΆg)xg- It is well known that ax = ί j e ί 1 , and K = F(alp/) for
a nontrivial X. Fix such a %, and write a = aχ. We have

θz = 1 + Σ
9Φ1

But in the field Qp of the ^)th roots of unity over the rational field
we can write

X(g) -1 = cχ(ζp - 1) (cx integral in Qp) .

Hence θx = 1 + h'x(ζp - 1) with fc^ 6 K. It follows that a = 1 +
fex(Cp - l)p with Λχ e ί7. Moreover, if y e ^ , then hx e O0. Thus the
lemma is proved.

We continue to suppose that K/F is a cyclic ^-extension. For
u 6 ^f/F, let Ĝ  denote the ίth ramification group of a localization
KJFυ. We define the ramification number ru to be the smallest
integer n such that Gn is trivial. Clearly rυ is independent of ω.
Now L> is nonramified, tamely ramified, or wildly ramified according
as rυ = 0, ry = 1 or ry > 1 respectively. If (K: F) = p, then the
ramification numbers τυ give a complete description of ramification,
and υ(d(K/F)) = ru(p - 1).

The next lemma gives a partial determination of the ramification
numbers ry when (K: F) = p.

LEMMA 1.2. Suppose K = F(a1/P) with aeF. If υ is ramified
and υ(ά) Ξ£ 0 (modp), then r, — 1 or ^(ζ^ — l)p + 1.

Proof, Set s = L>(ζp — 1). If υ is tamely ramified, the lemma
is obvious. Therefore we may suppose that υ is wildly ramified; so
p divides the ramification number of o when extended to K, but
υ(a) Ξ£ 0 (modp). Then let a1/p = επl, where ω is the extension of
υ to K, πω a local prime, εeUω and (α, p) — 1. Now there is a
7e Uυ such that ζp = 1 — γτr;, and an element σ e Gal (KJFυ) such
that
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Since ττ; (r = n) is the highest power of πω which divides σ(πω) — πω,
it follows that

where Um = 1 + SβΓ Since (α, p) = 1, it is also true that

But σ(s)/e 6 Z7r, whence it follows that ζp — 1 — 7'π£8 belongs to

This completes the proof.
It is not possible to say much about rυ when υ(a) = 0 (modp).

A slight modification of the previous argument shows that rυtίsp.
However, if n is any integer in the range 0 < n ^ sp, then according
to [5] or [7], for a y eFυ with υ(y) = 1 — n, the roots of

xp — x — y = 0

generate a cyclic extension of degree p with rυ = w.
Let Z/JP be cyclic of degree p, then a divisior u 6 ̂ fF will be

called exceptional at K/F if the congruence u(a) cc = r,, (mod p) does
wo£ have a solution relatively prime to p. That is, L> is exceptional
if one, but not both, of υ(a) or r is congruent to O(modp). Suppose
υ(a) & O(modp), but rυ = O(modp). By Lemma 1.2 rυ = 0, and so
iζ,/.Fy is nonramified. Since a is a pth power in K, p must divide
o(a), a contradiction. Hence L> is exceptional if and only if it is
totally ramified, and υ(a) x == r (mod p) is τtoί solvable, i.e., ^(α) =
0(modp) but rυ ξέ 0(modp).

Now let JBΓ/JP be any finite Galois extension such that (JSΓ: ί7) is
divisible by p. In order to state the main theorem, it will be con-
venient to introduce two functions φκ/F and ψκ/F on ^ F . Suppose
K/F is a p-extension, and let T be a subfield such that (K: T) = p.
We define φκ/F(υ) = 0 unless y is totally ramified in Z/F, and K/T is
exceptional at the extension ω of y to T. In the latter case, φκ/F(υ)
is to be the least positive residue (modp) of — rω. This definition
is independent of the choice of T. For suppose that T also satisfies
the condition {K\ T) = p. We may suppose that υ is totally ramified.
The tower formula applied to the localization at υ gives (since υ is
totally ramified, we can identify ω and υ when convenient)

N{d{Kυ/Tυ)) = N'(d(KJTMmoάp) ,
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where N and N' are the obvious norm maps. Recalling that
ω(d(K/T)) == rω(p — 1), this congruence then implies φκ/F is well
defined.

Now we extend our definition to the general case by letting L
be the fixed field of a p-Sylow group Gp. We define φκ/F to be the
least nonnegative residue (mod p) of the expression (L: F)φκ/L(ω)/eL/F(υ),
where ω extends υ to L, and eL/F(υ) denotes the ramification index
of υ in L. Again, it can be verified that this definition is indepen-
dent of the choice of either L or ω. If K/F is finite Galois, we say
υ is exceptional at K/F if φκ/F(o) Φ 0. This extends the earlier
definition.

The function ψ is defined in a similar manner. If (K: F) = p,
then ψκ/F(o) = 1 for all exceptional υ. Otherwise ψκ/F(o) is the least
positive residue (modp), satisfying the congruence υ(a) ψκ/F(p) =
rυ(moάp), where K = F(α1/3)). In the general case, if Gp is cyclic,
let Γ be a subfield such that (K: T) = p and define ψκ/F(o) — ψκ/τ((*))>
where ω extends υ to T. If Gp is noncyclic, define ψκ/F(o) = 1 for
all υ. The definition is independent of T, ω or α. We can now
state the main theorem of this section.

THEOREM I.3.1 Let ζpeF, and suppose K/F is a finite Galois
extension whose group G contains a nontrivial p-Sylow group Gp.
Then there are ideles α, 6 and c in JF such that

d(K/F) ΞΞ apbc(moά U\) .

Moreover, the following conditions are satisfied for all υ e ^ F .
( i ) cυ = θ*{υ)(ψ = ψκ/F) for some θeF satisfying the congruence

θ ΞΞ l(mod 35), where 93 is the greatest divisor of (ζp — ϊ)p which is
prime to bκ/F.

(ii) If υ is exceptional, υ(c) = 0(mod p)
(iii) If Gp is noncyclic, then θ = 1. Moreover,

if K/F is a cyclic p-extension, a nonramfied υ prime to p splits in
K/F if and only if βe Up

υ.
(iv) bυ = πφ

0^\φ = φκ/F).

We do not deal with the infinite components of d(K/F), for when
p = 2 this is discussed in [1]; and for p > 2, Fυ — C for all infinite
υ, whence d{K/F)υ is trivial. The remainder of this section is devoted
to proving the theorem, while in the final section some consequences
are discussed. In particular, the case p = 2 is developed.

We first deal with ^-extensions, so let (K: F) = pm. If m = 1,
let K = F(a1/P), where a satisfies the congruence condition of Lemma

1 Results of a similar nature, although somewhat weaker, can be proved without
the restriction ζpQ.F.
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1.1. A field basis for K is then 1, 7, 72, •• ,7P~1 with 7 — a1/p.
Therefore d(K/F) will have a local representation at υ of the form

d(K/F)υ Ξ= (-iy<»-1)/2p»βlap-χmoά Ul) ,

for some βυ e Fu. Using the relation υ(d(K/F)) = ru(p — 1), this gives
the congruence 2υ(β0) = — ru + w(α)(mod p). Hence there is a function
ψKlF which satisfies the congruence equation 2φf = φ(modp). In
particular if p = 2, then ^ = 0 and so there are no exceptional primes.
Now if υ is exceptional, then our result implies that βυ = εfJπί'{0)

for some unit stf. On the other hand, if ι> is nonexceptional, then
υ(a)-ψ(υ) =Ξ rυ(modp). Therefore in the above representation for
d(K/F)υ we can replace a by a*lυ). Again, βu is of the form εjct'™.
Thus we obtain the global idele representation

d(K/F) Ξ= δpβ2zp-\moά UF) ,

where each component of β is given by βυ — eΊπ
φ

υ'
{υ\ and τυ = α^ίy).

Moreover, for all nonramified y, ae Ul if and only if υ splits in K.
This representation can be generalized to any cyclic ^-extension.

There is a sequence of subfields

F = ΩQ c Ωγ c β r c β r + 1 = ίΓ

with (Ωt: Qt_t) = p. For notational simplicity we set Γ = Ωr.
According to our previous arguments, we have the representation
d(K/T) s δl&τϊrKmoά U%). The tower formula gives d(K/F) =
δ^V^Xmod 17S ), where /5 = NT/F(βT) and τ = Nτ/F(ττ). By a
straightforward computation, βυ — εuπί'(υ\φp = ^ / F ) . Similarly, if we
define α = Nτ/F(aΓ), then rtt = a*{υ)(ψ = ^ / j P ) .

Suppose that u divides p but not bκ/F. Then an extension ω of
y to T also divides p but not bκ/τ; therefore in Oω, αΓ = 1 +
hω(ζp — l)p. Since TjF is normal, we have

Nω/υ{aτ) = Π (1 + σ(hω)(ζ, - 1)') ,

where σ runs through the elements of the Galois group of TJF0.
Hence it follows that a = 1 + h,£ζp — ΐ)p is in £)y.

Now we must show that if υ is nonramified in K, and prime
to p, then υ splits if and only if ae Up. Suppose that such a υ
does tioί split in if. Then αΓ ί Tξ. In general if Ut denotes the
unit group of (Ωt),,, we have (U^ UP) — p, so that the norm map
induces an isomorphism Ui+1/U?+1 = Ui/UP; hence a£ Up. Since there
are infinitely many primes which do not split in K/F, a cannot be
a pth power, and therefore (F(a1/P): F) — p.

Now a nonramified υ will split in K/F if and only if it splits
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in ΩJF, for if it splits in K, then the decomposition field contains
Ω19 whence υ also splits in ΩJF. Hence if v splits in Ω19 then it
splits in if and so also in F(a1/P); therefore F(a1/P) = Ωx. This proves
our assertion, and extends the representation of the idele discriminant
to arbitrary cyclic p-extensions.

Suppose now that K/F is a noncyclic p-extension. The Galois
group G must contain a proper noncyclic subgroup. For suppose a
maximal subgroup JV is cyclic. Let a be a generator of N and
choose b not in JV. Then p is the smallest positive integer m such
that bmeN. It follows that G is generated by a and 6. The sub-
group generated by ap and b is proper and noncyclic. By a simple
induction argument we conclude that G contains a subgroup H of
type (p, p).

Let L be the fixed field of H. Then there is a subfield KZD
Tz)L such that K = T(μ1/P) with μeL. As before, d(K/T) has a
representation of the form δlβlτl'1, where each component of ττ is
a power of μ. Since Nτ/L(μ) = μp, the tower formula gives for each
α> 6 ^fίL the representation d(K/L)ω Ξ= <?£/3̂ (mod Uϊ,), where /3ω =
£a>Ki'{a))(<f>' = ^/L) . The tower formula applied to KZDLZDF then
gives a representation of d(K/F) of the form dpβ2τp~\ with /3y =
εwπίf(y) and τy = 1 for all i; e ^ ^ .

This representation generalizes to arbitrary extensions K/F by
applying the tower formula to KZDLZDF, where L is the fixed field
of a p-Sylow subgroup of G. To obtain the theorem, we now take
bυ — πiι'J) and θ — (NL/F(a))p~\ or θ = 1 depending on whether Gp is
cyclic or noncyclic. If Gp is cyclic, then

υ(c) = -1r(υ) υ(NL/F((x))

where ω extends υ to L. For an exceptional υ, ω(a) Ξ O(modp). It
is therefore clear that

υ(c) Ξ 0(mod p) .

The proof of the theorem is now complete.

2* Applications* The purpose of this section is to consider
some consequences of Theorem 1.3. We first suppose that p = 2.
Then there is no restriction on the ground field F, since ζp= — 1
always belongs to F. Frohlich [1] defined the discriminant field Ω/F
of an extension K/F as a quadratic subfield (Ω = F possible) uniquely
characterized by the relation

d(K/F) J% = d(Ω/F) JJ. .
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Hence Ω — F(θ1/2). We use the properties of Ω to prove

THEOREM 2.1. The 2-Sylow groups of the Galois group G of an
even degree extension K/F are cyclic if and only if d{K/F)ξ J2

F/UF.

Proof. Suppose a 2-Sylow subgroup G2 is cyclic. Then G2 has
a normal 2-complement N so that G/N = G2. Let L be the fixed
field of N. Then the tower formula yields d{L/F)J), = d(Ω/F)J2

F,
so that by Frδhlich's characterization, Ω c L.

Now θ = l(mod F2) implies that almost all υ split in L, whence
G2 cannot be cyclic. The converse, of course, is contained in Theo-
rem 1.3.

REMARK. An independent proof is given in [2]. Also, a proof
when G is abelian appears in [6],

We now prove two further results for p — 2.

THEOREM 2.2. If K/F is normal and nonramified, and G con-
tains a noncyclic 2-Sylow group, then Όκ has an DJt-integral basis.

Proof. Immediate from Theorem 2.1 and Theorem 2.5 of [1],

THEOREM 2.3. If K/F is a Galois extension and d(K/F) $ J2

F/U2

F,
then G is solvable.

Proof. Since θ is not a square, the degree (K: F) must be even
since (Ω: F) — 2. Therefore by Theorem 2.1 the 2-Sylow groups are
cyclic. Hence any such subgroup G2 has a normal 2-complement N
with G/N = G2. Since both N and G2 are solvable, G is itself solvable.

For the remainder of the section, consider an arbitrary prime
p ^ 2. This now imposes a restriction on F. Moreover, if p > 2
then θ is not determined, up to a pth power, by d(K/F), as was the
case when p = 2. Hence the notion of a discriminant field does not
extend to an arbitrary prime. Also, the exceptional primes, which
play no role in the p = 2 theory, are now important. The results
for p > 2 are therefore not as strong as these obtained for p = 2.

However, we have the following generalization of Herbrand's
theorem.

THEOREM 2.4. Assuming the hypotheses of Theorem 1.3, then
bκ/F can be written as a product of ideals in the form 2lp%)(θ), where
θ ΞΞ I(mod33), and S3 is the greatest divisor of (ζp — 1)V prime to
bκ/F; 3) is divisible only by ramified primes and is characterized by
the relations
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'ΦKJF{V) if o is exceptional
( T * TP\

— Ό{Θ) — -—'•—- if υ is ramified, nonexceptional .

Proof. In the representation of Theorem 1.3, let the idele d be
defined by dυ = l at all infinite divisors, and dϋ=7rί(w)^1(ϋ)""1 at all υ e ̂ F .
Let SB be the ideal naturally determined by d; then u(3)) = φ(υ) +
o(θ)(ψ(υ) — 1). The computations are straightforward, using the
congruence relation at the end of the previous section.

Since ψ = 0 and ψ = 1 when p = 2, it is evident that, for L> G ̂ ^
at least, this result is consistent with Her band's theorem.

If the exceptional divisors are known, b can be determined from
d(K/F), for a consequence of the representation theorem is that for
an exceptional divisor υ, φκ/F(υ) = d(K/F)(moάp). In this case, the
next result gives a sufficient condition for Gp to be cyclic.

THEOREM 2.4. Under the hypotheses of Theorem 1.3, suppose
that

d(K/F) = αfδcΛmod ί/̂ ) ,

where b is as determined in Theorem 1.3. 2%ew Gp is cyclic if c10
U%JF. If K/F is a cyclic p-extension, then a necessary condition
for υ to split in K is that clυ e U\Fp

υ.

Proof. Let c be determined as in Theorem 1.3. Then c1 ΞΞ C
(mod U%JV

F). If Gp is noncyclic, then c = 1, whence cλe UFJF. Now
if K/F is a cyclic p-extension, then θ eF* if and only if υ splits in
K, whence cV) e U2

υFl if υ splits.
The results of this section show how d(K/F) can be used to

obtain structural information about the Galois group of K/F, or in
the case of cyclic ^-extensions, the splitting of primes.
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