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Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

A notion of ‘““differential valuation’’ is defined for ordinary
differential fields of characteristic zero by postulating for
a given valuation of the field a natural analogue of the
elementary L’Hospital’s rule. Such valuations occur impli-
citly in classical analysis, for example in Hardy’s orders
of infinity and in the study of singular points of systems
of ordinary differential equations. The fundamental pro-
perties of differential valuations are worked out in this
paper, numerous examples are discussed, and it is shown
that a differential valuation can always be extended to an
algebraic extension field. Applications are anticipated to
the study of singularities of algebraic differential equations.

In the following, & will denote an ordinary differential field of
characteristic zero, ’ its derivation, and C its subfield of constants.

THEOREM 1. Let k be a differential field of characteristic zero
with subfield of constants C, v a valuation of k that induces the
trivial valuation on C, and let 0 and m be respectively the valuation
ring of v and its maximal ideal. Then the following statements
are equivalent:

(1) If aeo, bem, b+ 0, then a'b/b' cm.

(2) If a,bek* and 0 < v(a) =< v(b), then (b/a — b'[a’) em.

(3) If a,bek™ and v(a) < v() <0, then (b/a — b'/a’) e m.

(4) If aco, bek* 1/bem, then a'b/b’' e m.

First note that bem if and only if () > 0. Also, C N m = {0},
so that if bem and b = 0, then b’ = 0.

Proof that (1) = (2). Under the assumptions of (2) we can write
b = ac, with cepo. Since acm we get

b b c ac+ac _  ca
— T Sy v T = T

a o a a
and by (1) this last quantity is is m.

Proof that (2) = (8). Under the assumptions of (3), if we write
a=1/a, B=1/b, we get 0<v(B)=Zv(a), so that 0<v(a)<v(a?/B). Hence
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which is in m, by (2).

Proof that (3)=(4). Making the assumptions of (4) and also
replacing @ by a + 1 if necessary to reduce to the special case in
which « is a unit in o, we have »(b) = v(ab) < 0, so that (ab)/b —
(ab)'/b’ em, giving a'b/b’ e m.

Proof that (4) = (1). This follows immediately from the identity
b/b" = —(1/b)/(1/b)".

The picture to bear in mind, to be more fully explained below
in Examples 1 and 2, is that in which % consists of differentiable
real or complex valued functions on some domain in C, which is R
or C, as the case may be, differentiation meaning differentiation with
respect to the given variable of C, with the condition that as the
variable approaches a certain fixed limit, finite or infinite, each function
in k& approaches a limit, which is either in C or the symbol oo, and
o is the set of all functions in % whose limits are in C. Then (2)
and (3) are simply the usual 0/0 and oo/ versions of L’Hospital’s
rule. In a slight variant of this rule, if @, bek* both have limit 0
or limit c (i.e., v(a), v(b) are either both positive or both negative)
and if one of the two quantities b/a, b’/a’ has limit oo, then so does
the other; this extra bit of L’Hospital’s rule comes from (2) and (3)
with a and b interchanged.

COROLLARY 1. Under the same assumptions as in the theorem,
each of the statements (1), (2), (3), (4) t1mplies

(5) If a,bek* and v(a), v(b) # 0, then v(a) < v(b) if and only
if v(a') < v(b).
Conversely, under the same assumptions, if o= C + m, then (5)
implies (1), (2), (8), (4).

For the proof, instead of (5) consider the equivalent statement

(5" If a,bek* and wv(a), v(b) = 0, then (v(a) = v(b)) = (v(a’) =
v(b") and (v(a) < v(b)) = (v(a') < v(b")).
We first show that any of the equivalent statements (1), (2), (3), (4)
implies (5’). Statement (5') is implied by (2) if 0 < v(a) < v(b) and
it is implied by (3) if v(a) < v(b) < 0. In the remaining case v(a) <
0 < v(b), use v((1/a)) = v(—a'/a®) = v(a') — 2v(a) > v(a’) and v((1/b)") =
(") — 20(0) < o). If v(/a) < v(), then (2) implies that »(%') =
v((L/a)) > v(a). If v(1/a) > v(b), we have v(a) < v(1/b) < 0, so that
(3) implies v(a’) < v((1/d)") < »(b"). Thus (1), (2), (3), (4) each imply
(5"). Conversely, assume (5') and suppose first that a, bem, a, b == 0.
Then 0 < v(b) < v(ab), whence v(b') < v((ab)’). But also v(b’) < v(b'a),
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so that »(b") <v((ab)’ — b'a) = v(a'b). Hence v(a’d/b’) >0, or a’b/b’ € m.
This last conclusion also holds if instead of assuming aem we just
suppose a €0, provided o = C 4+ m, and hence statement (1) holds.

In the context of Theorem 1, statements (1) and (4) say that
v(a'b/b’) > 0, or v(a') > v(b'/b). This implies that the subset {v(a’):
aco, a¢ C} of the value group v(k*) is bounded from below and the
subset {v(d'/b): bek*, v(b) # 0} is bounded from above. The next
result says that the set {v(a'):ack, a& C} is bounded neither from
above nor from below.

COROLLARY 2. In the context of the theorem and its various
equivalent conditions, if v is nonitrivial thenm for any a €k™ there
exist x, y € k* such that v(x') > v(a) > v(¥').

Fix some beo, b¢ C. Then for any y e€k* such that v(y) + 0 we
have b'y/y' em, or v(d'y/y') > 0, or v(y") < v(b'y). If we choose yek
such that v(y) < v(a/b’), v(y) = 0, then »(y’) < v(a), as desired. To
get our desired x, assume, as we may, that v(a) # 0, and note that
if uek*, v(u) >0, then v(u'a/a’) >0, or v(u') > v(a’'/a). Therefore
() = v@uu’) = v(u) + v(’) > v(u) + v(a'/a). If we take x = u?
with v(u) > max{0, v(a*/a')}, then we get v(x') > v(a).

DEFINITION. Let k& be a differential field of characteristic zero,
Cits subfield of constants. A differential valuation of k is a valuation
v of k that is trivial on C and such that if o and m are respectively
its valuation ring and maximal ideal, then o = C + m and (a€p, be
m, b = 0) = (a’b/d’ e m).

Thus a valuation v on the differential field £ with constant subfield
C is a differential valuation of %k if the equivalent conditions of
Theorem 1 hold and the natural embedding of C into the residue
class field o/m is surjective.

ExAmMPLE 1. Here k is an arbitrary Hardy field (ef. [1, p. 107])
containing the real numbers R. We recall that a Hardy field is a
set of germs of differentiable real-valued functions on neighborhoods
of 4+ in R that is closed under differentiation and form a field
with respect to the usual germ addition and multiplication. Any
nonzero element of % has a reciprocal, hence only a finite number of
zeros, therefore is ultimately of constant sign. The same being true
of the derivative of any nonconstant element of k, each element of
k is ultimately monotonic. Thus for each f ek, lim, ., f(z) exists
as an element of R or as one of the symbols + o or —o. The
differential field structure of % is given and its valuation is that
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associated with the place f +— lim,_ ., f(x) (identifying + o and — ),
whose valuation ring consists of all f ek having finite limit at + .
That this valuation is a differential valuation of k& follows from
L’Hospital’s rule.

Essentially the same theory holds for germs of real-valued differ-
entiable functions on deleted right (or left) sided neighborhoods in
R of any given point of BR. For example, we can consider differential
fields of functions on neighborhoods of 0+ in R; in this case by a
switch in variable from x to 1/ we get the previous theory, but
with another differentiation operation, the two differentiations differing
only by the nonvanishing factor —1/a%

We remark in passing that many specific examples of Hardy fields
may be obtained by starting with the field of rational functions R(x)
and constructing a chain of extension fields, each extension field being
obtained from its predecessor by the adjunction of the exponential,
or of the logarithm of the absolute value, of an element of the
predecessor field.

ExAMPLE 2. Let %k be a field of germs of differentiable complex-
valued functions on neighborhoods of +oc in R. Suppose that &k
contains C, is closed under differentiation, and that the following
condition is satisfied:

(A) For each fek,lim,. ., f(t) exists, as an element of C U {o}.

As in Example 1, we have a valuation of & whose valuation ring
is the set of all elements f of k such that lim,.,. f(¢) is finite.
Suppose that the following condition also holds:

(B) For each f ek such that lim,. ... f@t) = 0, there exists Me R
such that for any sufficiently large ¢, t,e€ R with ¢, < ¢,, we have

[r@ia < Mif@) - £ -

Then our valuation of % is a differential valuation. To verify this,
we must show that if f, g€k are such that f(¢f) and ¢(¢) approach
0as t— +c and ¢’ = 0, then f(¢)/g(t) and f'(t)/9’(t) have the same
limits as ¢ — +co. It suffices to prove this statement when f’(¢)/9'(t)
has a finite limit ¢, and indeed, upon replacing f by f — cg, it suffices
to prove that

(f,9¢ek, g’ #0, and f(t), 9(t), f'(t)/g’(t) all approach 0 as
t —— + c0) = (f(t)/9(t) approaches 0 as { — + o).

To prove this last statement, suppose the contrary, so that there
exists a > 0 such that |f(¢)/g(t)| > a for ¢ sufficiently large. Let
M > 0 be associated with g by the property of (B). Let T, >0 be
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such that fF(), g@&), f'(t), ¢'(t) are all defined, with g¢(¢), ¢’(¢) 0 and
|f'@®))g'®)| < a/M for all t = T,, such that | f(T,)/9(T,)| > @, and such

that for any T, > T, we have S lg' @) dt = M|g(T,) — g(Ty|. Since

| F(T)/9(Ty)| > a and f(¢), g(t) approach 0 as £ — + <o, we can choose
T, > T, such that |(f(T) — f(T))/(9(T,) — 9(Ty))| > a. For each re
[T, T.] we have lim, . (f(t) — f(2)/(9(t) — 9(z)) = f'(z)/9'(z), so that
for |t — 7| sufficiently small we have | f(t) — f(7)| < (a/M)|g(t) — 9(7)|.
Since [T, T.] is compact, we can find ¢, ¢, ---, ¢, such that T, =
t, <t < -+ <t,=T, and such that for each 1 =1, ---, » we have
[ f(tm) — f(E)] = (a/M)|g(tiy) — 9(t)]. Then

alg(T) = 9(T)| < |F(T) = ST = |3 (Ft) — £(E)
= 317t — F@)] = 3 @M gt — gt
=@m3 || s
< @) | 19/®)1dt < alo(T) — o(T)]

a contradiction. This completes the proof that under conditions (A)
and (B) our valuation of & is a differential valuation.

Some remarks on the practical utility of (A) and (B) are in order.
First, condition (A) is easily shown to be satisfied when there exist
Sy fo o+ in k* such that & = C(f, f,, -++) and for any nonconstant
power product f of f, f, --- we have lim,,., f(t) either 0 or oo.
Second, condition (B) may be difficult to verify in a practical example,
but there is a useful alternate condition, going back to (1) of Theorem
1, which is necessary and sufficient for our valuation of % to be a
differential valuation: if f, f,, --- are as in the above test for (A),
then for any nonconstant power produets f and g of f,, f; -+ that
approach 0 as ¢t — + o, also f'g/g’ approaches 0 as t— + . (This
last condition is clearly necessary, and its sufficiency is easily checked
by a direct computation that also occurs in the proof of Theorem 2
below. Indeed the sufficiency of this last condition is the special
case of Theorem 2 in which the items K, k, &, C, T occurring there
are the present %, C, C, C and multiplicative group generated by C*
and f,, fe ---.) Specific cases where this procedure is applicable are
provided below at the end of Example 10 and in Example 18.

Example 2 is applicable to the circumstance in which we have
a field & of meromorphic functions at some point z,€C, with &k con-
taining C and closed under differentiation, and there is a continuously
differentiable path ~:[0, 1] — C from z, = v(0) to 2z, = v(1) such that
each element of % can be analytically continued along v from z, up
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to any point v(t), 0 < ¢ < 1, and approaches a limit, either in C or
the symbol <, as z-—z, along v, and an appropriate analogue of (B)
holds for the restriction to the path v of the continuations of the
elements of k. As a matter of fact, the differential valuation of &
that is thus obtained does not depend on v, any path with the same
endpoints and sufficiently close to v in a suitable sense giving the
same differential valuation, at least in the case where %k is finitely
generated over C. This example and numerous special cases lead one
to believe that the proper way of dealing with the never-precisely-
defined classical notion of “singularity of a system of ordinary
differential equations” is through differential valuations.

ExampLE 3. If C is a field of characteristic zero and z an
indeterminate, the formal power series field C((z)) is a differential
field under the usual derivation (which is trivial on C, continuous in
the topology of C((z)), and has 2z’ = 1), and the usual valuation of
C((z)) (trivial on C, continuous, and discrete) is a differential valuation
of C((2)).

In the special case of the preceding Example 2 in which v is the
constant path v(t) = z, = 0, power series expansion in powers of z
gives an embedding of differential fields k c C((z)). If f, fo€k and
v(f) = v(f.) # 0, then lim, ., fi(2)/fu(2) = lim, , f/(2)/fi(2) is simply the
ratio of leading coefficients.

ExAMPLE 4. Let us see how certain classical computations go
through in a perfectly general differential field k¥ with differential
valuation ». Suppose that x, y e k* and that y is an exponential of
x, so that y'/y = a’. Suppose that v(x) =0. Then since v(x'y/y’) =0
we must have w»(y) =0. Choosing =z, ¥,€C so that v(x — ;) > 0,
vy — y,) >0, we have y, = 0. Induction on = using L’Hospital’s
rule shows that for each n =0

y—yo<1+————””"“°+ +————(””“””°)")
1! n!

(@ — @)™+

is in the wvaluation ring of v and has residue class field image
Yo/(n + 1)!. Thus the partial sums of the series y,exp(x — x,) give
finer and finer approximations to y, in the usual sense of asymptotic
developments. If k = C(x, y) we can even embed k in the formal
power series field C((x — x,)) so that we have actual equality y =

Yo XP(X — ).

EXAMPLE 5. Let k be a differential field, v a differential valuation
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of k, and ack*. Then k has another differential field structure, with
the same subfield of constants, in which the new derivative of any
wek is au’. The old v is a differential valuation of the new dif-
ferential field.

ExAMPLE 6. Let C be any field of characteristic zero, & a finite
extension field of C of transcendence degree one such that C is
algebraically closed in k. Fix a nonzero C-derivation ’ of k. Then
k is a differential field and C its subfield of constants. Let v be the
valuation of % associated with any place of k& over C that is rational
over C. Then v is a differential valuation of k. To see this, note
that the C-derivations of k& form a vector space over k of dimension
one, so by Example 5 we may replace ' by d/dt, where ¢ is a unifor-
mizing variable for the place in question, i.e., tek and v(t) = 1 (if
v(k*) is normalized to be Z). Then we have a natural embedding of
differential fields & < C((t)) preserving the valuation and the derivation,
that is we have a differential subfield of the field of Example 3.

ExampLE 7. Consider the nonconvergent formal power series
y =S5 ,n!x2"c R((x)). This satisfies the differential equation
oy + (@ —Ly=-1,

so that the subfield R(x, y) of R((z)) is a differential subfield, and
we have a differential valuation on this subfield induced by the
differential valuation of R((x)) of Example 8. To interpret this,
note that the differential equation has the real-variable solutions

?

1 S e dux
xel/x €
taking the arbitrary constant of integration into the integral sign.
We have the formal identity

1 Se””dx

xe'® z =1+1lz+212*+ -+ +nla"

——i— S(n + Dlx"e'"dx .

1/2
As 2 — 0+ we have a2"¢"* — + oo for all Ne Z. Interpreting Sabove

to mean x, for some fixed a >0, we get a solution of the differential

equation on the real interval (0, + o) which has the given series

© ,n! a" as an asymptotic expansion at 0+. Any other solution
of the differential equation on (0, + o) differs from the present
solution by a constant multiple of 1/(x¢"%) and has the same asymptotic
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expansion. On the other hand, as # —0— we have ¢"*/x¥ — 0 for
all NeZ. It turns out that the differential equation has precisely
one solution on the interval (— o, 0) which has a finite limit at

0— and this solution is obtained by interpreting \ to mean ’ . This
o
solution has the given asymptotic expansion Y3 n! 2" at 0—.

ExAampLE 8. In [2], Kolchin defines a valued differential field
to be a differential field & with a valuation v such that the set
{v(a'/a): @ € k*, v(a) + 0} is bounded from above and from below, and
he uses such fields to prove an important diophantine result. If %
is a differential field with a differential valuation v, then the set
{v(a’/a): a € k*, v(a) # 0} is bounded from above, by (1) and (4). It
will be seen as a consequence of Theorem 4 that this set is in fact
finite, therefore a fortiori bounded, if I" @, Q is a finite dimensional
vector space over Q, I' being the value group v(k*), a case that
includes all the most useful examples. On the other hand, for a
general differential field & with differential valuation v the set
{v(e'/a): a € k*, v(a) # 0} need not be bounded from below: a counter-
example is the Hardy field ¥ = R(zx, exp z, exp(exp &), ---), as = —
+ co. There are also valued differential fields for which the valuation
is not a differential valuation in the present sense: an example is the
differential field of meromorphic functions on C given by k =
C(z, ~(2), /(z)), where 2z is the complex wvariable, 2’ = 1, /4(2)
is the Weierstrass -function corresponding to some given period

lattice in C, with valuation ring the set of all elements of % of the
form

a + a2t + agt A+ -
1+b27 + b2+ -

’

where a,, a, @,, ---, b, b, --- are in the differential subfield C(~(z),
/'(2)) of k and a,(0) # .

EXAMPLE 9. There is no differential valuation v of the differential
field C(z, 4(z), /'(z)) (where ,(z) is a Weierstrass /-function of the
complex variable z, as in Example 8) such that v(z) <0. For suppose
that v is a valuation of C(z, ~(z), /' (z)) with residue field C such that
v(z) < 0. Then v induces a valuation on the elliptic function field
C(~(z), /'(z)) that corresponds to some point z,€C, so that
v( 4z — 2,)) < 0. We know that C(/(z), /'(2)) = C(/4(z — 2,), /(2 — 2,))-
If (z) satisfies the equation

(#(2) = 4~ (2))" — 9:/4(2) — g5,
with g,, g,€C, and we set t(z) = A(z)//#'(z), Wwe compute
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tr(z) =1 12(/’(%))2 — 9 .
8(/(2))* — 2g,/(2) — 29,

Since 4(z — z,) satisfies the same differential equation as (z), we
get v(t(z — 2,)) > 0, v(E'(z — 2,)) = 0. Hence v(t'(z — 2,)z/2") = v(z) < 0,
so that » is not a differential valuation.

The following result will have many applications.

THEOREM 2. Let K be a differential field of characteristic zero,
k a differential subfield of K, & a subfield of the field of constants of
K, and v a valuation of K that is trivial on <. Suppose that C =
& Nk maps surjectively to the image of k in the residue class field
of v. Let T be a subgroup of the multiplicative group K* such that
k* < T, such that K = & (T), such that any constant in T is in C,
such that (ae T, v(a) =0)= (ack™), and such that if a,beT and
v(a), v(b) > 0 then v(a'b/b’) > 0. Then v is a differential valuation
of K, and % 1is the field of constants of K.

It will be convenient to first prove the following preliminary
result.

LEMMA. Under the conditions of Theorem 2, each nonzero element
x e &[T] can be written as a finite sum x = >S,=, &t,, with each &, €
&*, each t, e T, and v(t) < (&) < -+ < v(t,).

It is trivial that x can be written in the form x = 3\2, &, with
each £ e % * and each f,e T. Write x in this way, and suppose that
n i1s minimal for such a representation of x. We may suppose that
v(t) = vty = - = vE,) < V), -, v(¢,). We have, by our assump-
tions, ¢,/t,€k for ¢ =1, ---, . Clearly v(x) = v(t,). If v(x) > v(,),
using the equation x/t, = >\, &.(¢t,/t,) and mapping into the residue
class field of v gives a relation of linear dependence over C among
&, -+, &. Say that ¢, =c¢& + -+ +¢,_ &, withe, -+, ¢,_,6C. Then
r = El(tl + cltr) 4o+ §r—1<tr—1 + c'r—ltr) + &bty T o0 Sntn' Since
t/t.ek for 1 =1, ---, »r, each of the coefficients ¢, + ¢t,, ---, t,.., +
¢,_.t, is in T U {0}, and we get an expression for x of the type >, &,
of length less than 7, which is impossible. Thus v(x) = »(¢,). For
1=1,---,7, let d,eC have the same residue class field image as
ti/tl' Then z = (Zz;l §zdi)t1 -+ 22:2 & (tz - ditl) + &byt + 000 2
Now >V .&d;e% and for i =2, ---,» we have t,— di, €k and
v(t,—d;t,)>v(x). Hence we could have assumed that in the representa-
tion of minimal length =3, &t,, with each & €% and each ¢, ¢ T,
we had v(x)=v(t)<v(t,), - -+, v(t,). Applying this result to the repre-
sentation of minimal length of © — &¢, as © — &¢t, = X%, &t;, we can
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assume that v(x — &%) = v(t,) < v(¢t,), -+, v(¢,). Continuing thus, we
get the lemma.

We now prove the theorem. Since K is the field of quotients of
&’|T], the lemma implies that any element u € K* can be written as

w=u(36a) [ (Enb),

with u,€ T, each &, n;€&*, each a, b;€ T, a, = b, =9, = 1 and v(a,),
v(b;) > 0 for ¢, 7 > 1. In this case v(u) = v(u,), and if v(u) = 0 then
u, €k and % has the same residue class field image as does %.,5,. Thus
the residue class field of v is &. If v(u) # 0, then v(u,) # 0, s0 u, &
C and u] # 0. Thus if v(u) # 0, we can write

n m
% ’ Z £ %o/ Ug Z 7;05%0/ s
=2 1 -+ =2 — =2

u n

tho g_l &, JZzl 7;b;

If v(u,) >0, we get v(aju,/ui), v(bju,/u;) >0 for each 17,5 >1 by
our assumptions, and we get the same conclusions if »(u,) < 0 by
using the identity w,/u; = —Q/u,)/1/u,)’. Thus if v(u) # 0, we have
v(u'/u) = v(ui/u,). Hence if v(u) = 0, we have v(u) = v(u,), v(u') =
v(u). We now show that if e K is constant, then ue®. If u =
0 is constant, so is 1/u, so we may suppose v(u) = 0. Subtracting
from u a suitable element of &, we may suppose v(u) > 0, in which
case we already know that «’' = 0. Thus the constants of K are
precisely &. Since for each wec K* such that v(u) # 0 there is a
u, € T such that v(u) = v(u,), v(u') = v(uy), the condition (1) of Theorem
1 is true for elements of K since the corresponding facts hold for
elements of 7, and this completes the proof.

ExAmMPLE 10. Let C be a field of characteristic zero, ¢, ---, ¢,
elements of C that are linearly independent over Q, let y, ---, ¥, be
indeterminates over C, and let K be the differential field C(y, ---, v,),
with differentiation defined as trivial on C and such that ¥l/y, = ¢;
for i=1,-..,r. For any =, ---, n,€Z, we have

(yir - yr)[(yir - y2r) = me + -0 + 40, ,

which is nonzero unless %, = --- =n, = 0. Let ¢ be any isomorphic
embedding of the subgroup Ze¢, + --- + Z¢, of C into an ordered
abelian group. Then there is a unique valuation v of K that is
trivial on C and such that v(y,) = z(¢,) for each i =1, ---, . Apply
the last theorem to the present field K and valuation v», with %k =
& = C and T the multiplicative subgroup of K generated by C*
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and y, -+, ¥,. We conclude that C is the subfield of constants of
K and v a differential valuation. Note that any differential valuation
of the differential field K such that v(y,) # 0 can be obtained in this
way, since for ¢ =2, ---, » we have v(yivy,/y.y) = 0, so that by (1)
and (4) we cannot have v(y,) = 0.

Example 10 becomes a little more transparent if we take ¢, = 1,
write ¥, = 2, ¥, = «°¢, ---, ¥, = 27, and use Example 5 to alter the
derivation of K by multiplication by the factor 1/x. We then get the
following result: If 1,¢, :--, ¢, €C are linearly independent over Q,
we have a differential field C(z, x°, ---, ) with constants C and
derivation given by (z°)’ = ca*™* for any ceZ + Z¢, + --- + Zec,, and
for any isomorphic embedding v of Z + Z¢, + --- + Zc¢, into an
ordered abelian group we have a differential valuation v of C(x, z*,

-+, x°7) such that v(x) =7(1) and v(x") =7(c) for 1 =2, ---, 7;
furthermore we obtain in this way all differential valuations v of
C(z,x,- - - ,x2°r) such that v(x)+=0. Asan example, take C=C and choose
ceC,ceQ. Then there are differential valuations of the differential
field C(z, x°) for which & has positive value and «° either positive or
negative value, which can be infinitely small or infinitely large with
respect to the value of x. It is hard to make analytic sense out of
this if ¢e R, but if, for example, ¢ =i =1 —1, we get just such a
differential valuation of C(z, 2) by setting x = e a' = ¢~ and
letting ¢t — + oo through real values, as in Example 2.

THEOREM 3. Let K be a field, © and k subfields of K that are
linearly disjoint over C =% Nk and such that K = < (k), let k
have the structure of a differential field with subfield of constants
C, and let v be a differential valuation of k. Then there is a unique
derivation on K that extends that on k and is trivial on &, and
this derivation has & as its subfield of constants, and there is a
unique valuation of K that extends v and is trivial on &, and this
1s a differential valuation of K with the same value group as k.

A derivation of K = & (k) that extends the given derivation of
k and is trivial on & is uniquely determined by the rules for dif-
ferentiating rational functions, so there is at most one such derivation.
To show the existence of such a derivation of K, choose a transcen-
dence basis {¢;};c; of & over C and note that the linear disjointness
of  and k over C implies that {c};.; are algebraically independent
over k, so that the given derivation can be extended to a derivation
of k[{c;};c;] that annuls each ¢, hence to a derivation of k({c,};..),
hence to a derivation of the algebraic extension K of this latter
field, and this last derivation will annul each element of &, since
% is algebraic over C({¢;};c;). Thus we have the existence and
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uniqueness of our extended derivation on K. Now consider the
differential valuation v of k. Any nonzero element z of <[k]
can be written as z = 32, &u,, for some n, with each £, ez * and
each u,€k*. Suppose v(u,) < v(u,), + -+, v(u,), and let a,, ---, a,€C
be such that v((u,/u,) — a;) >0 for 1 =2, ---, . Then

r =&+ a8+ -0+ a,)u, + i &(u; — au,) ,

and «; — au, €k with v(u, — au,) > v(u,) for 1 =2, ---, n. Had n
been chosen minimal for our given x, we would have & + a8, +
--+ +a,5, #0. Thus any nonzero x2e€%[k] is of the form
x = >, &u,;, with each & €& *, each u,ck*, and with v(u,) < v(u,),
-+, v(u,). We claim that v(u,) depends only on x, and not on the
choice of =, &, -+, &,, Uy, -+, u,. For otherwise we could obtain a
relation >, &u; =0, with » > 0, each & e%*, each u,ck*, and
with »(u,) < v(u,), - -+, v(u,), and we shall now show such a relation
to be impossible. If w,, ---, u, are linearly dependent over C we can
express one of these as a linear combination of the others with coef-
ficients in C, and hence get a similar identity >.~,&u;= 0, but with
smaller . We may therefore suppose wu, ---, u, to be linearly
independent over C. But u, ---, , are linearly dependent over &,
hence by linear disjointness over C, so that u, is a linear combination
of u, +--, u, with coefficients in C, contradicting v(u,) < v(u,), - - -,
v(u,). Thus v(u,) depends only on z. If w is a valuation of K that
extends v and is trivial on &, then clearly w(x) = v(u,), so w is
uniquely determined on Z’[k], and hence on the quotient field of the
latter ring, which is K. Conversely we may define w on & [k] — {0}
by w(x) = v(u,), and we get immediately that w extends the map v,
is zero on %, and has the property that if x,, x,e Z[k] — {0}, then
w(x,x,) = w(x,) + wx,), w(x, + =) = min{w(x,), w(®,)}. Any element of
K* can be written as z/y, with z, y e k] — {0}, and w(x) — w(y)
depends only on z/y, so that we may define w(z/y) to be w(z) — w(y),
and thus we get our desired valuation on K. It remains only to
show that the subfield of constants of K is & and that w is a
differential valuation of K, and this is an immediate consequence of
Theorem 2 applied to the present K, k, &, and C, with T = k*.

ExAMPLE 11. There is no differential valuation » of the dif-
ferential field of real-valued functions R(x, cosz, sinz) for which
v(x) < 0. For by Theorem 3 such a v must extend to a differential
valuation, also denoted v, of C(x, cosz, sinzx) = C(x, ¢**). Since
v((e*®) zfe*x’) < 0, (4) implies that v(e*”) 0, so that the residue class
field image of tanx is 1.
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THEOREM 4. Let k be a differential field and let v be a diffe-
rential valuation of k with value group I'. Then there is a map +
from I'* =T — {0} into I" such that for all ack* with v(a) #0 we
have (v(a)) = v(a'/a), and + has the following properties:

(a) If ael™ and neZ, n+#0, then y(na) = ().

(b) For any verl, the set {acl:a =0 or (a) =7} is a sub-
group of I.

(¢) For any a, eI, ¥(8) < ¥(a) + |al.

By Corollary 1 of Theorem 1 we have a well-defined map «: I'* —
I’ given by (v(a)) = v(a'/a) for any ack* such that v(a) #0. If
neZ, n+#0, then y(nv(a)) = (@)= v({(a")'/a™) = v(na'/a) = v(a'[/a) =
J(v(a)), proving (a). Property (b) is verified by noting that if a, b ¢
k* are such that +(v(a)), ¥(v(b)) = v, then (v(a) + v(b)) = Y(v(ab)) =
v((ab)'/ab) = v((a’/a) + (b'/b)) = min {v(a'/a), v(b'/b)} = min {y(v(a)),
(v())} = v, provided all these symbols make sense, and also using
the case » = —1 of (a) to get inverses. To prove (c), note first that
we may take a > 0, since () = J(—a). Take a, bek* such that
v(a) = a, v(b) = B. Then (@) + |a| — ¥(B) = v(a'/a) + v(a) — v(b'/b) =
v(a'b/b’) > 0, by (1) of Theorem 1.

It is convenient to recall here that for any abelian group I”, the
kernel of the homomorphism I'—»I" @, Q which is given by v—7®1
is the torsion subgroup of I'. Furthermore, the vector space over Q
which is given by Q' = I’ @, Q is generated by the image of I" in
QI'. If I' is torsion free, we have an embedding of I" into the Q-
vector space QI'. If I’ is an ordered abelian group, then so is QI
in a natural way, and we have an order-preserving embedding of I"
into QI.

In the most important applications of Theorem 4, the differential
field & will be differentially algebraic over its subfield of constants C
and finitely generated as a differential extension field of C, hence of
finite transcendence degree over C. For any valuation v of a field
k that that is trivial on the subfield C, the rational rank of v, i.e.,
dim, QI', where I' is the value group of v, is at most degtrk/C
[4, p. 50]. It follows that in the case of Theorem 4 where deg tr k/C
is finite, the function « is finitely valued, with # (v(I"*)) < deg tr k/C.

It will be shown in a later paper that if I" is any ordered abelian
group and +: I'* — I’ a function satisfying (a), (b), (¢), and if certain
reasonable further conditions hold, such as + being finitely valued,
then I' and + arise from a differential field with a differential
valuation, as in Theorem 4.

ExampLE 12. Consider the Hardy field k& = R(x, e, ¢, log x) of
real-valued functions as x — + o, as in Example 1. For any NeZ,
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the limit as x— 4+ of each of the functions (e*)"/e”, x"/e®, and
(log )"/« is 0. It follows that each nonzero element f of k& can be
written in one and only one way in the form

[ = (e #)m(e =) (1/)(1/log z)™f,

where n,, n,, %, n,€Z and f, has a finite nonzero limit as x — + co.
The map f+ (n,, n, s, n,) gives an isomorphism of the value group I’
of k& with the group Z*, lexicographically ordered (i.e., (%, N, 1, 7, >
0 if n, m, n, n, are not all zero and the first of these integers which
is nonzero is positive). We compute immediately

0,0, —1,0) if m, -0

0, 0, 0, 0) if m,=0, m,==0

0,0, 1, 0) if m=m,=0, m=0
0,0,1,1) if m=my=m;,=0, m,#0.

q/f(mly m27 m3, m4) =

REMARK. As is illustrated by Example 12, in the case of Hardy
fields, and also in the case of differential fields of germs of real-
valued functions on deleted one-sided neighborhoods of a point of R,
we have the important principle

(*) Let a > B be positive elements of /. Then (a) < (8). Indeed
if a > ng for all positive integers n then +(a) < 4(8), and in
the contrary case +r(a) = ¥(3).

To prove this, suppose to fix ideas that we are working with
a Hardy field & of real-valued functions near + cc. Choose f, g€k
such that o = v(f), B8 = v(g). Then f(x), g(x), and f(x)/g(x) all have
limit 0 as «— 4+ . Assume, as we may, that f(x), g(x) > 0.
Then for large x we have f(x) < g(x), so log f(x) < log g(x), or, since
we are dealing with the logarithms of small positive numbers,
[log f(x)| > |log g(x)|. Adjoining the logarithms of positive functions
does not spoil a Hardy field (ef. [1, p. 113]), so we may assume that
log f, loggek. Since |log f(x)| > |log g(x)| for large z, we have
v(log f) £ v(log g), which implies w((log f)") < v((log ¢)'). Therefore
o(f'1f) £ v(g'lg), or (a) < 4(B). This proves the first statement.
To prove the second statement, choose f, ¢ as above and apply the
given argument to f and ¢g°. We get |log f(x)| > |nlog g(x)|, or
|log f(x)/log g(x)| > n for large x. Since this is true for all neZ,
we have v(log f/log g) < 0, so v(log f) < v(log g), so v(f'/f) < v(g'/9),
or y(a) < ++(B). This proves the second statement. Finally, if there
is a positive integer » such that a < ng, then y(a) < (B = ¥(nB) =
(@), so y(a) = (8.
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ExampLE 13. The statement (*) of the above Remark is not
valid in general, not even in the case of differential valuations
associated with differential fields of meromorphic functions which
approach limits along a curve in C, as in Example 2. For example,
consider the differential field of meromorphic functions of the complex
variable z given by k = C(z, ¢?, ¢**), whose derivation is the usual
differentiation with respect to z. If we set z(¢t) = ¢* + 4(t* — 1/t) and
let ¢t — + oo through real values, we get

limﬁzl—l—@ Iez(t)| =et2 1imw:

topoo P ’ Toteie @
For any NeZ, both (¢”)¥/e* and z"/e” approach 0 as z — o along
the curve z = 2(¢),t — + . It follows that any nonzero element
f ek can be written in one and only one way in the form

f = (e =(1/z) S, ,

where n, %, %,€Z and f; has a nonzero limit in C as z — o« along
the curve z = 2(t), t — +oc. Thus we have a valuation of %k, and
the map f +— (n, n, n,;) is an isomorphism of the value group I" with
the lexicographically ordered group Z°. We see by the method of
Example 2 or by Theorem 2 that our valuation is a differential
valuation. We compute +(1, 0, 0) = v((e™*)/e™®) =0, +(0, 1, 0) =
v((e™)'fe™) = (0, 0, —1), (0, 0, 1) = v((1/2)'/(1/2)) = (0, 0,1). We get
a contradiction to (x) by taking @« = (1, 0, 0), 8 = (0, 1, 0).

The following theorem will turn out to be of fundamental
importance.

THEOREM b. Let I’ be an ordered abelian group, I'* = I — {0},
and : I'* — I a map such that

(@) tf ael™ and neZ, n+ 0, then (na) = (a)

(b) forany~verl,theset{ael:a =0 or(a) =~} 1is a subgroup
of I

(e) for any a, Bel™, ¥(B) < y(a) + |a].
Then for any a, Bel'™* and any positive integer n,

n(y(B) — y(@)) < el .

We must show that for any specific a,, B, € I'* and integer n, > 0
we have n,(v(8,) — ¥ () < |a,|. It suffices to consider only the case
w(B,) > 4r(a;). Replacing +r, if necessary, by the map «;:I* — T
given by (7)) = ¥(v) — ¥(a,), which also satisfies conditions (a), (b),
(e), we are reduced to consideration of the case (@) = 0, ¥(3,) > 0.
Now consider the function +,: I'* — I" defined by v»(v) = 0 if (7)) <
0, vo(7) = ¥(By) if (v) > 0. We verify immediately that «, also
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satisfies conditions (a), (b), (c), and that 4, and + agree on a, and g,.
Thus we are reduced to considering the special case of the theorem
in which there is a positive d € I" such that (I"*) = {0, 0}, and here
we have to prove that if ae /™ and (@) = 0, then né < |a| for any
positive integer n. Now since o < 4+(d) + |d|, we cannot have (6) =
0. Hence 4(0) =06. To prove for some fixed a € I'* such that (a) =
0 that no < |a| for any positive integer =, it suffices to restrict our
attention to the subgroup of I' given by Za + Zo. Noting that
w(Zo + Z0)*) = {0, 0}, we are reduced to the special case where
I' = Za + Z5. Since + takes on two values on I'*, I" cannot be eyclic,
by condition (a). Hence I' is a free abelian group on two generators.
The function + takes on the value ¢ on (Zd)*, and the value 0
elsewhere on I'*. If the ordering of I" is archimedian, I" is order-
isomorphic to a subgroup of R, hence has arbitrarily small positive
elements. Thus if I' is archimedian there exists gel" such that
0 < B<0d, and we get 8¢ Zo, so that (8) =0, and hence we have
a contradiction in the statement 0 = (0) < 4(B) + |B|. Thus the
ordering of I' is not archimedian. Therefore I" contains a proper
convex (or “isolated”) subgroup, necessarily of rank 1, therefore
cyclic with some generator ¢ >0, and ¢ is the smallest positive
element of I'. Now d <€) + € 80 0 £J — () < e, and therefore
0 = 4(¢). Therefore + equals d on (Ze)* and equals 0 elsewhere on
I'*, so that de€Ze. Since the image of |a| in the ordered abelian
group I'/Ze (which is isomorphic to Z) is positive, we have |a| > ne
for all n e Z, and this completes the proof.

LEMMA. Let k be a differential field, v a differential valuation
of k, » a prime number and let weck* be such that v(w)é& pv(k*).
Then there is a unique extension (to within order-isomorphism) of
the valuation v to k(u'?) and this extended valuation is a differential
valuation of k(u'?) which has the same constants as k.

Since v(u)¢ pv(k*), we have u'?¢k, so that [k(u"?): k] = p and
1, u, ---, u® V7 are a k-basis for k(u"?). If w is any extension to
k(u'?) of the valuation v of k¥ and a,, a,, -, a,_, €k, then w(a,u*?) +
w(a;u?) if a, a; # 0 and 4 % j(mod p). Thus

p—]‘ . . . - .
w(Z‘, a,.u“”) = min,,,... ,_,w(au*?) = (1/p) min,_,,... ,_,v(afu’) .
=0

Therefore w is completely determined by v, so that we can simplify
our notation by writing w = v. We now try to apply Theorem 2 to
the case of K = k(u'?), with the present %k and v, with & =C =
constants of %, and with T = U,,,...,.k*u"?. That k*C T and K =
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& (T) are clear. If ack*,i=1, ---, p — 1, and au? is a constant,
then so is a*u’ek, so that a*u’eC, which contradicts v(u)¢& pv(k*).
Thus any constant in 7T is in %k, hence in C. The condition (ae T,
v(a) = 0)=(ack*) is trivial. If ae T then a?ck* and (a?)’/a? =
pa'/a, so that v(a'/a) = v((a?)'/a?). Hence if a, b€ T and v(a), v(b) >0
we have v(a'd/b’) = v(a'/a) — v(b'/b) + v(a) = v((a®)’'/a?) — v((b?)'/b7) +
v(a?)/p. But this last expression is positive, by Theorem 5, since
a?, b* €k and v is a differential valuation of k. Thus Theorem 2 is
applicable, and this completes the proof.

THEOREM 6. Let k be a differential field, v a differential valuation
of k. Then any extension of v to a wvaluation of an algebraic
extension field of k is a differential valuation of the extension
field.

It suffices to consider the case where the extension field is the
algebraic closure & of k. Before proceeding with the proof, two
remarks are appropriate. First, recall the elementary fact that the
derivation on k extends in a unique way to a derivation on k. Thus
the extended derivation on % commutes with each k-automorphism
of k. Second, recall that the valuation v of k¥ can be extended to a
valuation of %k, and that (except for an order-isomorphism of the
value groups) any two extensions of » to & differ by a k-automorphism
of k (cf. [4, p. 28]). In what follows we denote by the same symbol
v a fixed extension to k£ of the given valuation of %, and we go
about proving that v is a differential valuation of %. The proof
uses a number of standard ideas, appropriately modified, that may
be found in [3, Chap. 2]. We first note that each subfield of % that
contains %k is itself a differential field and we partially order by
inclusion the set of those intermediate fields on which the restriction
of v is a differential valuation. By Zorn’s lemma, there is a maximal
such intermediate field. Replacing % by this maximal intermediate
field if necessary, we are reduced to the case where the restriction
of v to k is a differential valuation, but the restriction of » to any
subfield of % that properly contains % is not, and we have to show
that in this case k = k. Let C, & be respectively the subfields of
constants of % and of k. Then % is the algebraic closure of C in
k, hence is itself algebraically closed, and since v is trivial on C it
is also trivial on &. Theorem 8 implies that the restriction of v to
& (k) is a differential valuation. Thus & (k) = k, and hence & = C.
In particular, C is algebraically closed. When we extend a valuation
of a field to an algebraic extension field, the residue class field of
the extension field is algebraic over the residue class field of the
original field. Thus the residue class field of %k is algebraic over
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that of k, which is C; thus ¥ and % have the same residue class
field C. When we extend a valuation of a field to a valuation of an
algebraic extension field, the value group of the extension field contains
as a subgroup the value group of the small field, with the quotient
group a torsion group. Let I" be the value group of k. The lemma
tells us that for any prime number p, I' = pI’. Thus I is a divisible
group, that is I' = QI', so that I' is also the value group of k.
Thus % and % have the same residue class field C and the same value
group I'. Supposing that k = k, we fix a field K such that kc Kc k
and » = [K: k] > 1 is minimal. Next fix some ac K, a¢k. Then
K = k(o). We define a subset S of I' by

S={rerl: for some ack, via —a) =7}.

Fix a function v+ a; from S into % such that v(a — a;) =7 for
each ve€S. The set S is nonempty. If veS, we can find b €k such
that »(b) = v, so that v((a — a;)/b) =0, and then we can find ceC
having the same residue class field image as (a — a;)/b. Then
(@ — a;)/b — ¢) > 0. Thus a; + be €k and v(a — (a; + be)) >v. Thus
S does not have a greatest element. Now for any &ek, consider
v(a; — &) as v ranges over S. This quantity is defined except when
a; = & which can happen for at most one veS, and then only if
gck. We have v(a; — &) =v{(ar — @) + (@ — &)). It may be that
for some o0& S we have v(a — &) < o, and then for veS,v> 0o we
have v(a;, — &) = v((a;y — a) + (@ — &) = v(a — &). In this case v(a; — &)
takes on the fixed value v(a — &) for all sufficiently large v e S (this
happens, for example, if £€k). On the other hand, we may have
v(a — &) greater than each element of S. In this case, for each v €S
we have v(a;, — &) = v((ar — @) + (@ — §)) = v(a; — @) =7, so v(ar—§)
increases with v for v €S (this happens, for example, if £ = a). Now
let z be an indeterminate over k¥ and let f(x)ek[x] be a nonzero
polynomial. Writing f(x) as the product of an element of %k and
several monic linear factors x — &, with £ek, we see that either
v(f(ar) = v(f(a)) if v € S is sufficiently large, or »(f(a;) is a strictly
increasing function of v if v € S is sufficiently large. For example,
if f(x)ek[x] is linear, we have »(f(a;) = v(f(a)) for all sufficiently
large v €S, while if ¢(x) is the minimal polynomial of a over k, we
have v(¢(a;)) increasing for all sufficiently large v€S. By the mini-
mality property of n = [k(a): k] = deg ¢, any nonzero f(z)€ k[x] of
degree less than n factors into linear factors in k[x], so that for
such an f(x) we have »(f(a;)) = v(f(a)) for all sufficiently large v e S.
Write ¢(x) = 3\, 2%, with each a, €k, and set ¢,(2) = D1, aix’, ¢'(x) =
S taxtY, both nonzero elements of k[x] of degree less than =.
Then 0 = (¢(a)) = g(@) + a’¢’(e), so that o' = —¢(a)/¢'(a). Hence
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v(a') = v(gla)) — v(g' (@) = v(gfar)) — v(p'(ar)) = v(gar)/¢'(ar)) if ve8
is sufficiently large. We also have, for each v¢ S,

(p(ar)) = dolar) + a/¢'(ar) .

For v e S sufficiently large, we have v(¢,(a;)) = v(é(a)) and v(¢'(a;)) =
v(¢'(a)). We also know that v(a;) = v(a) for sufficiently large v €S,
so that if v(a) = 0 then v(a;) is constant for sufficiently large v € S.
But v((¢(a;))") is an increasing function of v for sufficiently large
v€S, since v(é(a,) is an increasing function of v and » is a diffe-
rential valuation on k. If wv(a) = 0 this can happen only if for
sufficiently large veS we have v(g(a,) = v(a,¢'(a;)), in which case
v(ay) = v(ga;)/é' (a;)) = v(a’). Thus for any a € K such that a¢ k and
v(a) # 0, we can find an element ack such that v(a) = v(a) and
v(a') = v(a’). This last statement is also true, trivially, if ack,
v(a) # 0. Since v is a differential valuation on %k, property (5) of
Corollary 1 to Theorem 1 holds for elements of %, hence, by what
we have just shown, for elements of K. The converse part of the
same Corollary 1 now implies that v is a differential valuation on K.
This contradicts the maximality assumption we have made on k%,
showing that ¥ = k and completing the proof.

It will be shown in another paper that any differential valuation
of a differential field ¥ can be extended to a differential valuation
of any liouvillian extension field of k.
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