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EXTENSIONS OF PRO-AFFINE ALGEBRAIC GROUPS II
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Dedicated to Gerhard Hochschild on the occasion of his Sbth birthday

Introduction. We fix an algebraically closed field F of
characteristic zero throughout. It is known that any pro-
affine algebraic group H over F is the semidirect product
Hu-Hr of its unipotent radical Hu and any maximal reductive
subgroup Hr. This suggests, for considering extensions of
a unipotent pro-affine group U over F by H, only Hu is
relevant. More precisely, one is led to ask whether, given
a homomorphism H—> O(U) ~ Aut(U)/Inn(U) for which
Ext (H, U) is nonempty, the restriction map Ext(if, U) —>
Ext(Hu, U)H is bijective. The author has shown that this is
the case if U is affine. We will show that for unipotent
pro-affine U, the above restriction map is injective and that
it is surjective in the case where H = Hu X Hr, provided
that Έxt(H, U) is nonempty. We will also obtain necessary
and sufficient conditions that Ext(ίΓ, U) be nonempty in case
both H and U are affine, U unipotent.

The first two results cited above are obtained via the case where
U — A is abelian, unipotent and pro-affine (i.e., a pro-vector group).
The main obstacle is the fact that the rational cochain groups
Cn(Hu, A) are not, in general, rational iϊr-modules unless A is affine.
This fact necessitates the technical maneuvers of the first three
sections.

In §4, we give a cohomology-free proof that the restriction
homomorphism Ext(i?, A) —> Ext(HU9 A)H is an isomorphism when all
groups are affine, A unipotent and abelian. We also determine when
Ext(iϊ, U) is nonempty, in terms of given homomorphism H->0(U),
when H and U are affine, U unipotent and not necessarily abelian.
The arguments of § 4 where communicated to the author by Gerhard
Hochschild, and I am grateful for his allowing me to include them
here.

!_• Some generalities on inverse limits* Throughout this section,
j y is an arbitrary but fixed directed set. All inverse systems and
inverse limits have the subscript a ranging over Ĵ Γ ^ is a category
whose objects are at least groups and whose morphisms are group
homomorphisms, in which {0} is the zero object and exactness of a
sequence has the usual meaning. The same is true of the category
j ^ , which is large enough to contain the image of the inverse limit
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functor lim: &'->£& from the category <g" = <g^op of inverse systems

in ^ indexed by Ĵ C It is well known that lim is a left exact

functor.
We call an object (Aa) of <g" compact if it is possible to give

each Aa a compact Tx topology (not necessarily Hausdorff) in such a
way that, say, left multiplications are continuous (and hence homeo-
morphisms) and the maps Aβ —• Aa are continuous and closed when
a < β. Proposition 2.7 of [2] (the protective limit theorem) gives
the following lemma.

LEMMA 1.1. Let Q—>(Aa)-^(Ba)—>(Ca)—>Q be an exact sequence in
<£" with (Aa) compact. Then the induced sequence 0 -»A —>B-+C-+0
of inverse limits is exact.

Proof. We must show that the map B-+C is surjective. For
this, let (ca) be an element of C. For each a, let Xa be the set of
all ba in Ba which are sent to ca by the map Ba->Ca. Each Xa is
nonempty because the maps Ba —• Ca are surjective, and the Xα's
make an inverse system of sets. Each Xa is a coset mod.Aα in Bay

and we may use any ba in Xa to transport the topology of Aa to
Xa9 the resulting topology on Xa being independent of the ba chosen.
The maps Xβ -»Xa are continuous and closed when a < β9 so lim Xa

is nonempty by the projective limit theorem. Any element (ba) of
lim Xa is sent to (ca) by the map B^C.

For the remainder of the section we assume G is a group, K a
field, and <& some category of locally finite semisimple iΓ[Cr]-modules
which admits all submodules of its objects. We may take 3f to be
the category of all iΓ[G]-modules.

Let S be a system of representatives for the isomorphism classes
of simple iΓ[G]-modules in <g% all of which are finite dimensional.
Then each object M of ^ is the direct sum (BsesM8, where M8 is
the sum in M of all submodules which are isomorphic with s, for s
in S.

If (Ma) is an object of <g" and M = lim Ma, we put Mίs] = lim Mi
for each s m S. Then we have natural maps πs: M—> M1^ for each
8 in JS , and the induced map Λf —> Π« Λ^[s| is easily seen to be injective.
We view it as an identification, and then M coincides with the set of
all elements (m8) = ((m«)) of IL Mίs] which have, for each α, at most
finitely many ms

a not equal to 0.
We show next that each ikf[s] is a (locally finite) semisimple K[G]-

module all of whose simple submodules are isomorphic with s. The
kernel Jof the representation p: K[G]-> E(s)=Έndκ(s) has codimension
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at most dim(i?(s)) = dim(s)2. Since every element of s is annihilated
by J, the same is true of every element of Mίs\ So Af[s] is locally
finite, and each element of Λf[s] generates a submodule isomorphic
with a quotient of a submodule of E(s), where E(s) has the K[G]-
module structure for which g φ — p(g)°φ for g in G and φ in E(s)9

which makes p a i£[G]-homomorphism. This corresponds to the action
by K[G] on the first factor of s (x) s* ~ E(s), where s* = Horn^s, K).
Thus E(s) is a sum of dim(s) copies of s, and ilί [ s ] is also a sum of
copies of s.

If N is a subset of M, we put N = M n IL (π s(N)). Clearly
N g= N and N = N. We call JV the closure of iV in ikf and we call
N closed in M if N = JV. This does not define a topology on ikf
because (finite) unions of closed subsets need not be closed. However,
arbitrary intersections of closed subsets are closed and finite sums
of closed submodules (in fact subgroups) are closed.

LEMMA 1.2. If N is a closed suhmodule of M, there is a closed
submodule P of M with N + P = M and N Π P = (0).

Proof. Since each M [ s ] is semisimple, we may choose a K[G]-
module complement Ps to τrs(iV) in Λf[s]. Then P = Mnϊ[8P* satisfies
the requirements of the lemma.

LEMMA 1.3. Let (Ma) —•> (Na) be a ^'-morphism inducing the
map π: M —> N of inverse limits, let P be a closed subset of N and
Q = π~\P). Then Q is a closed subset of M.

Proof, Let (qs) be an element of Q. For each s in S, there is
a q in Q which projects to qs. Now π(q) belongs to P, hence so does
the projection of π(q) to Nw since P is closed. This projection
coincides with π{qs), so qs lies in Q. Now π((qs)) is in P, again because
P is closed. Thus (<f) is in Q, so Q = Q.

If (Jkfα) is an object of ^ ' such that, for each a, all but at most
finitely many Mi are equal to (0), we say that (Ma) is of finite local
type. In this case, if M = limΛfα, we have that M — ΓL -M"1-*3.

LEMMA 1.4. Let (Ma) -> (JVα) δβ α ^'-morphism and suppose
that (Ma) is of finite local type. Then the image of the induced
map π: M —> N of inverse limits is a closed submodule of N.

Proof. Denote π(M) by P and suppose (ps) is in P. For each
s in S, there is a p in P which projects to ps. Say π(ms) = p where
m s = (ml) G Πίe ŝ ΛfCί] = M. Then clearly π(mί) = ps. Since Λf = Π. Λί"w,
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(ml) belongs to M. Now π((ms

s)) = (ps), so (ps) is in P and P = P.
For any G-module A, let B\G, A), Zn(G, A), and Hn(G, A) be the

usual groups of w-coboundaries, %-cocycles, and %-cohomology classes
for G in A,

LEMMA 1.5. Let (Ma) be an object of cέ?' and M = lim Ma. Then

the natural map H\G, M) —• lim H\G, Ma) is injective.

Proof, We have a commutative diagram with exact rows

(0) > B\G, M) > Z\G, M) > H\G, M) • (0)

(0) > lim B\G, Ma) » lim Z\G, Ma) > lim H\G, Ma) .

To prove the lemma, we must show that (1) is surjective. For this
we consider the commutative diagram with exact rows

(0) > M° > M > B\G, M) > (0)

(2)

(0) > lim MS > lim Ma —-U lim B\G, Ma)

where the superscript G denotes G-fixed part. The lemma is equiva-
lent to showing that (2) is surjective. Since each Ma is semi-
simple, we have the usual decompositions Ma — MS 0 (Ma)G where
(Ma)G is the set of sums of elements of the form g-m — m with
g in G and m in Ma. The inverse system (Ma) respects these de-
compositions, so 1 = MG φ MίG] where MίG1 — lim (Ma)G. Since the
map (Ma)G -> B\G, Ma) is an isomorphism for each a, the map MiG-\ —>
lim B1(G, Ma) is also an isomorphism, and the lemma is proved.

2* Injectivity of the restriction homomorphism Ext(iϊ, A) —>
Ext(Hu, A) for unipotent abelian A. Throughout this and the next
section, H is a pro-affine algebraic group over F and A is a unipotent
abelian pro-affine iϊ-group (i.e., H operates on A and the induced
map H x A-+ A is a polynomial map). We write A = lim Aα where
the Aα's are the restriction images of A to a cofinal family of
finitely generated IZ-stable Hopf subalgebras of the polynomial
algebra P(A) of A.

LEMMA 2.1. The natural map H\H, A) —• lim H\Ht Aa) is an

isomorphism.
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Proof. We remined the reader that, as in [1], H\H, A) and
H\H, A) and H\H9 Aa) are built from polynomial 1-cocycles, though
our proof also applies to the 1-cohomology groups built from arbitrary
1-cocycles. We consider two commutative diagrams, both with exact
rows,

(0) > B\H, A) > Z\H, A) > H\H, A) > (0)

(2)

(0) > lim B\H, Aa) > lim Z\H, Aa) —^ lim H\H, Aa)

(0) > AH * A > B\H, A) > (0)

1= I- 1»
(0) > lim (Aa)

H * lim A. -^U lim B\H, A.) .

To see that the map of the lemma is surjective, we must show that
(2) is surjective. To see that it is injective, we must show that (1) is
surjective, or equivalently that (3) is surjective. The surjectivity of
both (2) and (3) follows from Lemma 1.1, since each (Aa)

H (respectively
B1^, Aa) = AJ(Aa)

H) is a finite dimensional vector group and the coset
topology (in which the closed sets are the finite unions of translates
of subspaces) makes the lemma applicable. This completes the proof.

We recall that Hu denotes the unipotent radical of H.

THEOREM 1. The restriction homomorphism Ext (if, A) —*
Έtxt(Hu, A) is injective.

Proof. From [4] we have an exact sequence Ext(H/Hu, AHu) —>
ExtHu(H,A)-»H1(HIHu,H

1(Hu,A)) where Hι(Hu, A) is built from
polynomial 1-cocycles Hu —> A while H\H/HU, H\HU, A)) is buit from
arbitrary 1-cocycles H\HU-*H\HU, A). Since H/Hu is reductive and
AITu unipotent, we have that Ext(H/Hu, AHu) = (0). So to show that
the kernel Exta (jϊ, A) of the restriction homomorphism is trivial,
we must show "that the map Ext^Cff, A) -> H\H/HU, H\HU, A)) is
the zero map.

For each α, we have a commutative diagram

ExWίH, A) > H\HJHU, H\HU, A))

(H, Aa) > H\H/HU, H\HU, Aa))

and, since each Aa is an aίfine iϊ-group, Proposition 5.2 of [1] shows
that each Ext^ίZ, Aa) = (0). Hence the map
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Ext^Off, A) > lim H\H/HU, H\HU, Aa))

induced by these is the zero map. This latter map is a composite

ExtHu(H, A) > H\H/HU9 H\HU, A)) > H\H/HU, lim H\HU, Aa))

> lim H\H/HU, H\HU, Aa)) . ^~

The second map is an isomorphism by Lemma 2.1. Since each
H\HU, Aa) is a (locally finite) rational module for the reductive group
H/Hu, and hence semisimple, Lemma 1.5 shows the third map is
injective. It follows that the first map is the zero map, and the
theorem is proved.

COROLLARY 1. Suppose H and U are pro-affine algebraic groups
over F, U unipotent, and a homomorphism H ~+ O( U) = Aut( Ϊ7)/Inn( U)
is given so that Έxt(Hu, U) is nonempty. Then the restriction map
Έxt(H, U)->Έxt(Hu, U) is injective.

Proof. Let A denote the center of U. Then Ext(iϊ, A) operates
on Ext(iϊ, U) and Ext(iί%, A) operates on Ext(iϊw, U), both via the
usual Baer composition. In view of the compatability of these actions
with respect to the restriction maps given by Proposition 2.4 of [1],
the corollary follows immediately from the fact that the first action
is transitive and the second faithful. In fact, both actions are
faithful and transitive by Proposition 2.1 of [1].

3* A special case of surjectivity of the restriction homo-
morphism Ext(iϊ, A) -»Ext(Hu, A)H. We preserve all notations of
§2. Proposition 5.1 of [1] shows that in the case where A is affine,
the image of the restriction homomorphism coincides with the iϊ-fixed
part Έxt(Hu, A)H of Έxt(Hu, A). The proof proceeds by choosing a
maximal reductive subgroup Hr of H and then an iϊr-stable comple-
ment S for B\HU, A) in Z\HUf A). This is possible because Z\HU, A)
is a locally finite rational module for the reductive group Hr1 and
hence semisimple. This ceases to be the case, in general, when A
is no longer affine. Given an extension of A by Hu whose class is
H-fixed, the proof goes on to select the representative in S for the
extension, which is necessarily iϊr-fixed. From this jffr-fixed 2-cocycle,
one can construct an extension of A by H which restricts to the
given extension. We therefore have everything that is needed to
prove the following theorem.

THEOREM 2. If A is a unipotent abelian pro-affine H-group
{over F) and H = Hu x Hr (i.e., H% and Hr commute), then the image
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of the restriction homomorphism coincides with Ext(Hu, A)H.

Proof. It suffices to obtain an unstable complement for B\H, A)
in Z\HU, A). We have that C\HU, A) = Km C\HU, Aa) for the spaces

of polynomial 1-cochains, and each C\HU9 Aa) = Aa (g) P(HU) is a rational
iϊr-module. An element x of Hr acts on / in C\H%, Aa) so that
(x-f)(h) = X'f{x~xhx) for h in Hu. Since iϊw and iJ r commute, the
inside action is trivial. Thus Hr acts on Aa ® P(HU) via the first
factor only. Each Aa involves only finitely many isomorphism classes
of simple iϊr-modules, so the same is true of each Aa(ξ$ P(HU). Thus
the C\HU9 Aa)'s form an inverse system of finite local type in the
sense of §1, and Lemma 1.4 shows that the image B\HU, A) of the
boundary map C\HU, A) -+ Z\HU, A) = lim Z\HU, Aa) is a closed sub-
module. Then Lemma 1.2 guarantees the existence of the desired
complement, so the theorem is proved.

COROLLARY 2. //, with the notations and assumptions of Corol-
lary 1, we have H = Hu x Hr, then the image of the restriction map
Ext(H, U)->Ext(Hu, U) coincides with Ext(Hu, U)H.

Proof. Again we let A denote the center of U. If ξ and f'
represent elements of Έxt(Hu, A) and Ext(ί^, 17), respectively, then
as was observed in [1], we have x-(ξ + £') = x ξ + x ξ' for x in ίZ",
where + indicates the Baer action. The corollary follows immediately
from this observation, the theorem, and the transitivity of the Baer
action.

4* A sharper treatment in the affine case* Let H and U be
affine algebraic groups over F, U unipotent, and η\ H —> O(U) a
homomorphism. If there does exist an extension U" —> 2?' -* H inducing
η, the extension is necessarily jffr-split because Hr is reductive and
U unipotent. Since U is unipotent and affine, the sequence Inn(Z7) ->
Aut( U) -> O( 27) is a sequence of morphisms of affine algebraic groups
over F. The iϊr-splitting of the above extension shows, in particular,
that the restriction of η to Hr is a rational homomorphism Hr ->
0(17). We will now show that this necessary condition is also
sufficient in the following sense.

THEOREM 3. If H and U are affine algebraic groups over F, U
unipotent, and the restriction rf of the homomorphism Ύ]:H—>0(U)
to a maximal reductive subgroup Hr of H is a rational homomorphism
Hr-*0(U), then the restriction map Ext (if, U) —• Ext (HU9 U)H is
surjective. In particular, Ext(iϊ, U) is nonempty if Ext(iϊM, U)H
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is nonempty.

Proof. Let τ: Aut(£7) —> 0(17) be the canonical map and put R =
τ~ι(Ύ]'(Hr)). Since Ύ)'{Hr) is reductive and Inn(ϊ7) unipotent, the
extension Inn(ϊ7) —>R -+η'(Hr) is split. So 37' lifts to a rational
homomorphism μ: Hr -» Aut(ϊ7) Let σ: i ί r —> Aut(U) x Aut(ifJ be
induced by μ and conjugations on Hu (within H).

Now let ξ: [U, E, Hu]atπ be an extension inducing the restriction
of η to Hu whose class is JEΓ-fixed. For each x in Hr, the extension
x ζ map is defined (as in [1]) as x-ζ = [U, E, Hu]a>,π> where a' =
aoμ(χ~1) and τr'(e) — xπ(e)x~1 for e in E. An equivalence #•£—>£ is
a rational automorphism of j? which stabilizes U, on which it induces
μ(x), and which induces conjugation by x on Hu.

The set Aut°(2£) of rational automorphisms of E stabilizing U is
an algebraic subgroup of the algebraic group Aut(E) and we have
the natural rational homomorphism λ: Au.t°(E) —» Aut(Z7) x Aut(i?J.
The assumption that the class of ξ is if-fixed says precisely that
σ(Hr)QX(Aut°(E)). The kernel P of λ is unipotent, as is most easily
seen via the isomorphism Aut(J57) = Aut(L(jδr)), where L(E) is the
Lie algebra of E. Choosing a basis for L(E) containing one for
L(U), P operates by unipotent matrices. So we put S = X~\σ(Hr))
and argue as above that the extension P —> S —» o(Hr) splits, so that
σ lifts to a rational homomorphism v: Hr—> Aut\E). Now if E-Hr

is the semidirect product with respect to v, then U-^E-Hr->Hu Hr = H
is an extension inducing η which restricts to ξ. This completes the
proof.

The only serious obstacle to using the same argument in the pro-
affine case is the fact that Aut(i?) need not be a (pro-affine) algebraic
group when E is a unipotent pro-affine group over F(cf. [5]). Suppose
that H, U, and η are as above except that that H and U are pro-
affine and not necessarily affine. Assume we have the necessary
condition that the restriction of η to Hr is a rational homomorphism
onto the image in 0(U) of an algebraic subgroup of Aut(Z7). Then
we obtain μ: Hr-> Aut(U) lifting the restriction of η to Hr just as
above. Let us call (the class of) an extension ζ = [U, E, Hu] strongly
Jϊ-fixed if there is an algebraic subgroup of Aut°(i£) whose image
in Aut(Z7) x Aut(Hu) contains σ(Hr), where σ is defined as above.
Then, for a strongly iϊ-fixed extension, the above argument works
with only slight modification, owing to the fact that P need not be
an algebraic subgroup of Aut(E). So the image of the restriction
map Ext(iϊ, U) -»Ext(J5Γίt, U) coincides with the set of strongly in-
fixed elements of Ext(iϊw, U). We do not know whether every H-
fixed element of Ext(fiΓu, U) is strongly jff-fixed. By Corollary 2, we
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see that this is the case when H = Hu x Hr provided Ext(iϊ, U) is
nonempty, or equivalently provided at least one element of Έxt(Hu, U)
is strongly H-fixed.

REFERENCES

1. B. Peterson, Extensions of pro-affine algebraic groups, Pacific J. Math., 77 (1979),
189-231.
2. G. Hochschild and G. D. Mostow, Representations and representative functions of
Lie groups, Annals of Math., 66 (1957), 495-542.
3. f Pro-affine algebraic groups, Amer. J. Math., XCI (1969), 1127-1140.
4. G. Hochschild, Basic Constructions in Group Extension theory, Contributions ̂ to
algebra, dedicated to Ellis Kolchin on the occassion of his 60th birthday, Academic
Press, 1977.
5. , Algebraic automorphism groups, Illinois J. Math., 19 (1975), 131-144.

Received February 1, 1978. We also acknowledge support under NSF grant number
MCS 77-03939.

SAN JOSE STATE UNIVERSITY

SAN JOSE, CA 95192






