PACIFIC JOURNAL OF MATHEMATICS
Vol. 86, No. 1, 1980

ANALYTIC SUBGROUPS OF AFFINE ALGEBRAIC
GROUPS, I

ANDY R. MAGID

Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

Let H be Zariski-dense analytic subgroup of the connected
linear complex algebraic group G. It is known that there
is a torus 7 in G with G =HT and HN T discrete in H.
This paper gives equivalent conditions for HN T to be trivial,
and considers the connection between these conditions and
left algebraic group structures on H induced from the
coordinate ring of G.

Let G be a connected linear complex algebraic group, and let H
be a Zariski-dense analytic subgroup of G which is integral in the
sense of [2, Defn. 1, p. 3886]. In [10, Thm. 3] it was shown that
there exists an algebraic torus 7 in G with G = HT such that the
Lie algebra of T is a vector space complement to the Lie algebra
of H in the Lie algebra of G; T is called a complementary torus to
H in G. The principal results of this paper deal with conditions
under which such a complementary torus meets H trivially. The
existence of such a torus is connected, by [10, Prop. 6] and [10,
Prop. 7], to left algebraic group structures on H in the sense of [8,
Defn. 2.1].

We recall some terminology: let H be an analytic group, let f be
an analytic function on H, and let z be in H. Then z-f (respectively,
f-x) is the function on H whose value at y is f(yx) (respectively,
fy). f is representative if {z-f|x € H} spans a finite-dimensional
vector space, and R(H) denotes the Hopf algebra of all representative
functions on H [5]. A representative function f on H is semi-simple
if the representation of H on the span of {z-f|x e H} is semi-simple,
and R(H), denotes the subalgebra of all semi-simple representative
functions on H [5]. An analytic left algebraic group structure on H is
a finite-type C-subalgebra A on R(H) such that (1) if fe€ A and z € H,
f-xe A, and (2) evaluations at element of H correspond bijectively to
C-algebra maps from A to C [8, Defn. 2.1]. A nucleus of H is a
closed, solvable, simply connected normal subgroup K such that H/K is
reductive [6, p. 112]. An additive character of H is a homomorphism
from H to the additive analytic group C and X*(H) is the free
abelian group of additive characters of H. H is an FR group if
H has a faithful finite-dimensional representation; if ¥V is the space
of such a representation then H is a Zariski-dense analytic subgroup
of the Zariski-closure of H in GL(V) which is an algebraic group.
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L(H) is the Lie algebra of H. If G is a complex algebraic group,
k[G] denotes the affine coordinate ring of G, and we refer to the
complex topology on G as the strong topology.

Let H be a connected, commutative F'R analytic group. By [10,
Lemma 1], H=V x T, where V is a complex vector group and 7T
is a multiplicative torus. Then 7 is the intersection of the kernels
of the additive characters of H, so T is the unique maximal torus
of H.

LEMMA 1. Let H be a connected commutative FR analytic group
and let T be the unique maximal torus of H.

(1) A closed analytic subgroup U of H is a mucleus if and
only if H=UT with UN T = {e}.

(2) There is a one-one correspondence between the nuclei of H
and the vector space complements to L(T) in L(H).

Proof. Write H=V x T with V a complex vector group, and
let p,: H—V and p,: H— T be the projections. Let U be a nucleus of
H. Then p,(U) is a vector subgroup of V. If p,(U) =+~ V, there is
a nonzero linear functional p on V with p(p,U) =0. Let q¢ = pp..
Then ¢ is an additive character of H with ¢(U) = 0, so ¢ induces
an onto additive character of H/U. Since H/U is reductive and
commutative, H/U is a torus and hence has no surjective additive
characters. Thus p,(U) =V and hence T'— H/U is onto. Then there
is a subtorus T, of T such that I(T,) — L(H/U) is an isomorphism.
Since T, and H/U are tori, T,— H/U 1is algebraic, and hence an
isogeny. In particular, 7, N U is finite. But U is simply connected,
and hence a vector group, so 7., NU ={e}. Then H =T, XU, so T,
is a maximal torus of H, so T = T,. This establishes half of (1).
For the other half, if H=UT with UNT = {e¢}, then L(H) =
L(U)@® L(T). Since Ker(exp,) is contained in T, exp,: L(U) —U is
an isomorphism, so U is simply connected. U 1is solvable and
normal, and H/U is isomorphic to 7T, and hence reductive, so U is
a nucleus of H, and (1) obtains.

For (2), if U is a nucleus of H then (1) implies that L(H) =
L(U)® L(T). Conversely, if L(H)=M® IL(T), let U = exp,(M).
Then exp,(U) = M + Ker(exp,) is closed in L(H), so U is a closed
analytic subgroup of H. Also, UT = H since L(H) = M & L(T) and
M= LU). If e UN T, there are m € M and y € L(T) with exp,(m) =
expy(y) =x. Then m — yeKer(expy) S I(T) so meL(T)YNM =0
and * =e¢. Thus UN T = {¢} and by (1), U is a nucleus of H.

LEMMA 2. Let H be a connected analytic group, let R be the
radical of H, and let K be a nucleus of H.
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(1) (HHR)S K< R and K 1s a nucleus of R.
(2) If Lisaclosed simply connected normal subgrouwp of H with
L C K, then K/L is a nucleus of H/L.

Proof. (1) K is contained in R since K is a connected closed
solvable normal subgroup of H. Let f: H— H/K denote the projection.
Then f(R) is the radical of the reductive group H/K, so ¢ = (H/K,
f(R)) = f(H, R) and (H, R) is contained in K. Also, K is a closed,
simply connected solvable normal subgroup of R, and R/K is the
radical of H/K. Since H/K is reductive, its radical is a torus so K is
a nucleus of R. (2) K/L is a closed, simply connected solvable normal
subgroup of H/L and H/L/K/L = H/K is reductive, so K/L is a
nucleus of H/L.

The preceding lemmas combine with [10, Thm. 10] to yield the
following characterization of nuclei.

THEOREM 3. Let H be a connected FR analytic group, let R be
the radical of H, let R = R/(H, R), let T be the unique maximal
torus of R, and let f: R — R be the canonical map. Then the nuclei
of H are the groups f~(U), where U is a closed analytic subgroup
of R with R=UT and UN T = {e}.

Proof. [10, Thm. 10] shows that (H, R) is closed in H and that
every fYU) is a nucleus. Conversely, if K is a nucleus of H then
by Lemma 2, part (1), (H, R) £ K< R and K is a nucleus of B. By
Lemma 2, part (2), with L = (H, R) C R, K/(H, R) is a nucleus of
R, and by Lemma 1, K/(H, R) x T = H, so K = f™(K/(H, R)) is of
the desired form.

Theorem 3 allows us to improve [10, Thm. 10] somewhat:

COROLLARY 4. Let G be a connected linear algebraic group, H a
Zariski-dense analytic subgroup of G and K a nucleus of H. Then
there 1s a reductive subgroup Q of H Zariski-closed in G and a
complementary torus T of H in G such that H=KQ with KN Q={e}
and (T, Q) = {e}.

Proof. [10, Thm. 10] establishes the existence of T and @ when
K has the form f(U) as in Theorem 3, and Theorem 3 shows that
K always has this form.

Also, Theorem 8 and Lemma 1 show that, in the notation of
Theorem 3, the set of nuclei of H corresponds bijectively to the set
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of vector space complements to L(T) in L(R). We now show that
this latter set carries the structure of a complex vector space.

To simplify notation, let V be a finite-dimensional complex vector
space and let W be a subspace of V. Let S be the set of vector
space complements to Win V. Fix M, in S, and let M be any element
of S. Let p:V— M, and q: V — W be the projections. Since Ker(p) =
W and WNM =0, Ker(p| M) =0. Since dimM =dimV — dimW =
dim M,, »| M is an isomorphism. Let f, = qo(p|M)™: M,—W. Then
M ={m + fy(m)|me M}, and M — f, is a bijection between S and
Hom,(M, W). Thus S carries the structure of a complex vector
space.

We relate this calculation to sets of nuclei:

THEOREM 5. Let H be a connected FR analytic group, and let
R be the radical of H. Then the set of nuclei of H is a complex
vector space of dimension rd — rd — d?, where r = dim(L(R)), r, =
dim L((H, R)) and d = rank(X*+(H)).

Proof. Let R = R/(H, R) and let T be the maximal torus of R.
As noted above, the set of nuclei corresponds bijectively to the set of
vector space complements to L(T) in L(R) by Theorem 3 and Lemma
1. Let U be a vector subgroup of R with R =U x T. By the above
considerations, the set of vector space complements to L(T) in L(R)
is in bijection with Hom¢(I(U), L(T)). Let H = H/(H, R). Then H
is also FR (since (H, R) is normal and Zariski-closed in any linear
algebraic group in which H is a Zariski-dense analytic subgroup),
and H = RS where S is semi-simple since R is the radical of H.
Also, R is central in H, so that RN S is central in S, and since S
is semi-simple and FR, the center of S is finite. Thus R N S is finite.
But every element of finite order of R lies in 7, so RNS < T and
H=U % (TS). Now X*(H)= X*(H), and since TS is reductive,
X*(H) = X*(U). Thus dim(U) = dim(L(U)) = rank(X*(H)) = d. Also
dim (I(T)) = dim (L(R)) — dim (L (U)) = dim (L (R)) — dim (L (H, R)) —
dim L(U) =+ — r, — d. Thus dim(Hom(L(U), L(T)) = (r — r, — d)d.

A similar description of the set of nuclei as a vector space was
obtained by other means in [9, Cor. 2.2].

We now consider some further implications of Corollary 4. Let
G be a connected linear algebraic group, H a Zariski-dense analytic
subgroup, K a nucleus of H, @ a reductive subgroup of G, and T a
complementary torus of H in G such that H = KQ with KN @ = {e},
and (T, Q) = {e}, as in the corollary. Then P = TQ is a reductive
subgroup of G with (P, P) = (@, Q). We show now that P contains
a complementary torus 7" of H in G with T N Q = {e}.
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PROPOSITION 6. Let P be a reductive algebraic group and let Q@
be a reductive algebraic subgroup with (P, P) = (@, Q). Then there is
an algebraic torus T in P such that P = QT" with @ N T" = {e}.

Proof. Let S=(Q, Q) = (P, P). We note that S and Q@ are
normal in P. Let R, be the radical of P and R, be the radical of
Q, so R, is contained in R,. Let T, be a torus in S containing the
center of S [1, Cor. 11.1, p. 270]. Then T, = R,T, is a torus in P
and T, < T,NS. We claim that T,N S = T,: for if »¢te T,N S with
reR, and te T, then »reR,N S which is central in S so ¢ T, and
rteT,, Let T'=RT,. Then T, T'NS<C T,NS=T,s0T;NS =
T,. Also, T, is a subtorus of Tj, so by [1, Cor., p. 206] there is a
torus T’ in T so that T, = T\7" and T"N T, ={e}. Since T'NS <&
T'NS=T, T NS ={e}. Since T; is a subtorus of T,, by [1, Cor.,
p. 206] again there is a torus 7" in T, so that T, = T9;7"” and T:N
T" ={e}. Since T"NSST,NS=T,and TS T, so T"'N T, = {e},
then 7" NS ={e}. Let T=T'T". Then T, = T.T and T. N T = {e}.
Let x = tt, be in TN S with t,e T and t,e T”’. ThenzecT,NS=T,
soxeTNT, ={e} and t, =t;*. Since T"NT"'STiNT" = {e}, t, = e.
Then TNS={}. Now @Q=RS so @ =17T,S, and T; = T'T, with
T, < S, so @ =1T'S. Similarly, since P=R,S, P=T,S and T, =
TiT" = T\ 17'T" = T\T with T,< S, P=1TS. Since T=T"T',P=
T"(T'S) = T"Q. Now let xe T"NQ. Since xcQand @ =T'S, x = ts
with ¢e T’ and s€S. Then s =¢"2 is in T"7T"” = T and in S, and
weshowed above that TNS ={¢}. Thus s=¢ and z=1¢ is in T
But « is also in 7" and T"NT = {e} so x ={e}. Thus QNT" = {e},
and the proposition follows.

COROLLARY 7. Let G be a connected linear algebraic group, H
a Zariski-dense analytic subgroup of G and K a nucleus of H. Then
there s a reductive subgroup Q of H Zariski-closed in G and a
complementary torus T to H in G such that H = KQ with KN Q=
{e}, T" N Q = {e}, and T" normalizes Q.

Proof. Let @ and T be as in Corollary 4. Let P = TQ. Then
P is reductive and (P, P) = (@, Q). Let T be as in Proposition 6.
Then G = HT = KQT = KP = KQT" = HT", and L(G) = L(H) &
L(T) = L(K) ® L(Q) @ I(T) = L(K) @ L(P) = L(K) D L(Q) @ L(T") =
L(H)&® L(T"), so T" is a complementary torus to H in G, and @
and 7" possess the desired properties.

The examples following [10, Thm. 3| show that, in the notation
of Corollary 7, it is not always possible to find a 7" with 7" N H={e}.
Complementary tori with this property are connected to left algebraic
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group structures on H [10, Prop. 6|, and we now examine when
such exist.

We will need to use some facts about representation theory in
this examination. We fix the following terminology: if H is an
analytic group, an H-module V is a finite-dimensional complex vector
space with an analytic left H-action; we let #,: H — GL(V) be the
corresponding representation. The associated semi-simple module to
V is the direct sum V' of the H-module composition factors of H;
we let 7, = 7. and call 7 the associated semi-simple representation.
If H is an analytic subgroup of the analytic group G, then every
G-module is, by restriction, an H-module. In this case, if V is an
H-module, we say that », extends to G if there is a G-module W
containing V as an H-submodule. In [3], a criterion is given for
determining when a representation of H extends to G in the case
H is a normal semi-direct factor of G.

THEOREM 8. Let G be a connected linear algebraic group and H
a Zariski-dense analytic subgroup of G. Then the following are
equivalent:

(1) Ewvery additive character of H 1s the restriction of an
additive character of G.

(2) There is a complementary torus T to H in G with TN H
finite.

(38) There is a complementary torus T" to H in G with T
H = {e}.

(4) Every nucleus of H is a nucleus of G.

(5) Ewvery H-module is an H-submodule of a G-module.

Proof. (1) and (2) are equivalent by [10, Thm. 3| and (3) implies
(2) trivially. We next show that (2) implies (4). Let K be a nucleus
of H and let T, @ be as in Corollary 4. Let P = TQ. Then Pis a
reductive subgroup of G and G = KP. We assume T H is finite.
By [10, Thm. 3], H is strongly closed in G, and hence K is a
strongly closed simply connected analytic subgroup of G. K is normal
in G since H is Zariski-dense in G and K is normal in H. KN Pis
solvable and normal in P, so K P is contained in the center Z of
the reductive group P. Z = TZ', where Z’ is the center of @. Let
xeKNP. Then x =tq where teT and geZ'. Since xze€ H and
qeH, teTNH. Let n be the order of TN H. Then 2" = ¢*, so
¢cKNQ=_{e. Let ,Z' denote the m-torsion in Z’. Then ,Z’ is
finite since Q is reductive, and KNP (TN H)(,Z') so KNP is
finite. Since K is simply connected, KN P = {¢}. Thus G/K = P is
reductive, so K is a nucleus of G and (2) implies (4). We now show
that (4) implies (3). Let K, T, @, P be as above. Since K is then
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a nucleus of G, G/K = P/KN P is reductive. The analytic map
f:P-» PIKN P is then a morphism of algebraic groups by [10,
Lemma Al]. Since f induces an isomorphism on Lie algebras, it
follows that f has finite kernel, i.e., PN K is finite, and since K is
simply connected, PN K = {¢}. Thus G = KP with PN K = {¢}. By
Proposition 6, P =QT"” with 7" NQ = {e}. It follows that G =
KQT"” = HT"” and T N H = {e}, so (4) implies (3). We next show that
(3) implies (5): Assume condition (3) holds; i.e., G = HT with T a
torus in G with TN H = {e}. Let V be an H-module and let » = »,
be the corresponding representation. Let R be the radical of H.
By [3, Thm. 2.2, p. 215], V is an H-submodule of a G-module if and
only if 2'((G, R)) = 1. We claim that (G, R) = (H, R). First, (H, R)
is contained in the unipotent radical of G, so (H, R) is Zariski-closed
in G. Let ( ), denote Zariski-closure. Then (H, R), = (H,, R.) by
|1, Prop., p. 108]. Thus (G, R) = (H,, R) < (H,, R,) = (H, R), = (H, R)
and it follows that (G, R) = (H, R). Since (H, R) acts trivially on
simple H-modules, »'((G, R)) = '((H, R)) = 1, so every H-module is
an H-submodule of a G-module. Finally, we show that (5) implies
(1): Let feX*(H), f + 0 and let V be the two dimension complex
space with basis e, e, and let H act on V by he, =e¢, and he, =
f(h)e, + e, for he H. Then V is an H-module. Let W, be a G-module
containing V as an H-submodule. Let K be the kernel of f. Since
(G, G) = (H, H) is contained in K, K is normal in G. Let W =
{xe Wy kx = « for all k¥ in K}. Since K is normal in G, W is a G-
submodule of W, and W contains V. Let H = »,(H) and G = ».(G).
W is a G- and H-module, and since K < Ker(r,) and (G, G) < K, G
is abelian. Let 7T be the unique maximal torus of G. If every
additive character of G vanishes on H, then H is contained in 7.
W is semi-simple as a T-module, so W is semi-simple as an H-module,
if HZT. But then V is also semi-simple as an H-module, hence as an
H-module, so f=0, contrary to assumption. Thus there is an additive
character of G which is not trivial on A. This character defines an
additive character ¢ on G whose kernel contains K but whose restrie-
tion to H is not trivial. Let g, be the restriction of ¢ to H. Both
¢, and f induce isomorphisms H/K — C, so there is a nonzero scalar
« such that ag, =f. It follows that f is the restriction of ag to H,
and ag € X*(G). Thus (5) implies (1), and Theorem 8 is complete.

Condition (3) of Theorem 8 is related to the existence of analytic
left algebraic group structures on H by |10, Prop. 6] and [10, Prop.
7|. Thus the other conditions, especially condition (1), are also so
related, as the following corollary makes precise.

COROLLARY 9. Let H be an FR analytic group, and B a Hopf-
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subalgebra of R(H) a finite type over C. Then the following are
equivalent:

(1) B contains an analytic left algebraic group structure
on H.

(2) B separates the points of H and contains X+(H).

Proof. Assume (1) and let A be the left algebraic group structure.
Let B’ be the smallest sub-Hopf-algebra of R(H) containing A, and
let G’ be the algebraic group with k[G'] = B’. By [10, Prop. 7], H
is a Zariski-dense and strongly closed analytic subgroup of G’ and
there is a complementary torus 7" to H in G' with 7' N H = {e}. By
Theorem 8, every additive character of H extends to G’. Since
additive analytic characters of algebraic groups are algebraic, the
additive characters are in k[G'] = B’. Thus X*(H)<S B'S B. By
definition, A separates points of H, hence so does B, so (1) implies
(2). Conversely, assume (2). Let G be the algebraic group with
k[G] = B. Then H becomes a Zariski-dense analytic subgroup of G.
Let fe Xt(H). Then f is a primitive element of R(H):i.e., the
comultiplication sends f to f® 1+ 1 & f, so f is primitive in B and
hence defines an additive character of G. By Theorem 8, there is a
complementary torus T to H in G with T"" N H = {e}. By [10, Prop.
6], A = B” is an analytic left algebraic group structure on H and
A is contained in B so (2) implies (1).

Let H be an analytic group and A a subgroup of R(H). We
recall that A, = AN R(H), denotes the semi-simple representative
functions in A. If A is a left algebraic group structure on H, A is
said to be nmormal basic if for every f in A, and x in H, xz-f and
f-x are in A, [6, p. 116], and a sub-Hopf-algebra of R(H) of finite
type over C is regular if it ‘contains a normal basic left algebraic
group structure on H [7, p. 873]. We will now interpret this concept
in terms of complementary tori. The following lemma determines
the semi-simple part of the coordinate ring of an algebraic group.

LEMMA 10. Let G be a connected linear complex algebraic group
and let U be its unipotent radical. Then k[G], = K[G]°.

Proof. Kk[G]' = k|[G/U] and since G/U is reductive, k[G/U], =
k[G/U]. Thus k[G]Y is contained in k[G],. Conversely, let f ek[G],,
let V=<x-flxeG) and let » = r, be the associated representation.
Since V is semi-simple, U is in the kernel of . Since feV,z-f =
r(x)f = f for all z in U, so f is in k[G]°. Thus k[G], is contained
in k[G]” and the result follows.
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THEOREM 11. Let G be a connected linear algebraic group and
H o Zariski-dense analytic subgroup of G. Let Q be a maximal
reductive subgroup of H. Then the following conditions are equivalent:

(1) Ewvery additive character of H 1is the restriction of an
additive character of G, and there is a mormal algebraic subgroup
L of G such that LQ = G and LN Q = {e}.

(2) There is a complementary torus T to H in G with T N H =
{e} and (T, Q) = {e}.

(3) E[G]" is a mormal basic left algebraic group structure on
H for some complementary torus T to H in G.

(4) KG] is a regular sub-Hopf-algebra of R(H).

Proof. Assume condition (1) and let ¢g: G — G be the algebraic
endomorphism with Ker(g) = L and g(x) =« for all z in Q. Let
K =LNH Then K is the kernel of the restriction of g to H, and
H = KQ with KN Q = {e}, so K is a connected closed normal subgroup
of H. By [10, Thm. 10], K = K,Q, where K, is a nucleus of K and
@, is a reductive subgroup of K with @, N K, = {¢}. Since @ is maximal
reductive in H, some conjugate of @, is contained in Q: then there
is an ze H with 2Q2" Z Q. Butz@Q2x™ < Kso @, = {¢} and K = K,.
Thus K is simply connected and hence a nucleus of H. Let K be
the Zariski-closure of K in G. Then K < L, and KQ is Zariski-closed
in G. Since H C KQ, and H is Zariski-dense in KQ = @G, it follows
that K = L. In particular, L is solvable. Since every additive
character of H extends to G, Theorem 8 implies that K is a nucleus
of G. Let P be a (necessarily maximal) reductive subgroup of G
such that G = KP with KN P = {e}. If necessary, we replace P by
a conjugate so that Q € P. Let T=LNP. Then P = TQ with
TNQ={e}, and T is a closed connected normal algebraic subgroup of
P which is solvable since L is solvable. It follows that T is a torus
with (T, Q) = {e¢}, and G = KP = KTQ = HT with TN HS KNP = {e}.
Thus condition (2) obtains.

Now assume T is as in condition (2). By [10, Prop. 6], A =
k|G]" is an analytic left algebraic group structure on H. We need
to show if fe A, and x€ H, then z-f and f-x are in A,. Let U
be the unipotent radical of G and let L =UT. By Lemma 10, 4, =
k[G]*. Let K be a nucleus of H. Then G = HT = KQT and it follows
that QT is a maximal reductive subgroup of G. By [4, Thm. 14.2,
p. 96], G = UQT = LQ, and @ normalizes U and T so L is normal
in G. Thus if fek[G]* and €@, z-f and f-x are in k[G]*. So
condition (8) obtains.

Condition (3) implies condition (4) by definition, and condition (4)
implies condition (1) by [7, Thm. 2.1, p. 875].
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