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Let H be Zariski-dense analytic subgroup of the connected
linear complex algebraic group G. It is known that there
is a torus T in G with G = HT and H Π T discrete in H.
This paper gives equivalent conditions for H Π T to be trivial,
and considers the connection between these conditions and
left algebraic group structures on H induced from the
coordinate ring of G.

Let G be a connected linear complex algebraic group, and let H
be a Zariski-dense analytic subgroup of G which is integral in the
sense of [2, Defn. 1, p. 386]. In [10, Thm. 3] it was shown that
there exists an algebraic torus T in G with G ~ HT such that the
Lie algebra of T is a vector space complement to the Lie algebra
of H in the Lie algebra of G; T is called a complementary torus to
H in G. The principal results of this paper deal with conditions
under which such a complementary torus meets H trivially. The
existence of such a torus is connected, by [10, Prop. 6] and [10,
Prop. 7], to left algebraic group structures on H in the sense of [8,
Defn. 2.1].

We recall some terminology: let H be an analytic group, let / be
an analytic function on H, and let x be in H. Then x f (respectively,
f-x) is the function on H whose value at y is f(yx) (respectively,
f(PV))> f i s representative if {x f\xeH} spans a finite-dimensional
vector space, and R(R) denotes the Hopf algebra of all representative
functions on H [5]. A representative function / on H is semi-simple
if the representation of H on the span of {x f\x eH} is semi-simple,
and R(H)S denotes the subalgebra of all semi-simple representative
functions on H [5]* An analytic left algebraic group structure on H is
a finite-type C-subalgebra A on R(H) such that (1) if / e A and xeH,
f*xeA, and (2) evaluations at element of H correspond bijectively to
C-algebra maps from A to C [8, Defn. 2.1]. A nucleus of H is a
closed, solvable, simply connected normal subgroup K such that H/K is
reductive [6, p. 112]. An additive character of J ϊ i s a homomorphism
from H to the additive analytic group C and X+{H) is the free
abelian group of additive characters of H. H is an FR group if
H has a faithful finite-dimensional representation; if V is the space
of such a representation then H is a Zariski-dense analytic subgroup
of the Zariski-closure of H in GL(F) which is an algebraic group.
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L(H) is the Lie algebra of H. If G is a complex algebraic group,
k[G] denotes the affine coordinate ring of G, and we refer to the
complex topology on G as the strong topology.

Let H be a connected, commutative FR analytic group. By [10,
Lemma 1], H— V x T, where V is a complex vector group and T
is a multiplicative torus. Then T is the intersection of the kernels
of the additive characters of if, so T is the unique maximal torus
of H.

LEMMA 1. Let H be a connected commutative FR analytic group
and let T be the unique maximal torus of H.

(1) A closed analytic subgroup U of H is a nucleus if and
only if H = UT with U Π T = {e}.

(2) There is a one-one correspondence between the nuclei of H
and the vector space complements to L(T) in L(H).

Proof. Write H — V x T with V a complex vector group, and
let px: H—>V and p2: H~>T be the projections. Let U be a nucleus of
H. Then pt(U) is a vector subgroup of V. If pλ{U) ΦV, there is
a nonzero linear functional p on V with p{pxU) = 0. Let q — ppλ.
Then q is an additive character of H with q(U) = 0, so g induces
an onto additive character of H/U. Since H/U is reductive and
commutative, H/U is a torus and hence has no surjective additive
characters. Thus p^U) — V and hence Γ—> H/U is onto. Then there
is a subtorus 2\ of Γ such that L(7\) —> L(H/U) is an isomorphism.
Since ϊ\ and H/U are tori, T1-^H/U is algebraic, and hence an
isogeny. In particular, T1f)U is finite. But U is simply connected,
and hence a vector group, so Tλ(λU = {e}. Then H = Tλ x U, so Tγ

is a maximal torus of if, so T = Tλ. This establishes half of (1).
For the other half, if H^UT with Uf}T^{e}, then L(£Γ) =
L(U) ® L(T). Since Ker(expiί) is contained in T, expH: L(U)-*U is
an isomorphism, so U is simply connected. Z7 is solvable and
normal, and H/U is isomorphic to T, and hence reductive, so U is
a nucleus of if, and (1) obtains.

For (2), if U is a nucleus of H then (1) implies that L(H) =
L{U)®L{T). Conversely, if L(H) = M'φ L{T), let £7 = exp7/(M).
Then exp7/(Z7) = Λf + Ker(exp7/) is closed in L(H), so U is a closed
analytic subgroup of H. Also, UT = H since L(iί) = AfφL(T) and
M = L(U). If xeUΓ) T, there are m 6 M and yeL(T) with exp^(m) =
exPtfCi/) = x. Then m - ye Ker (exp/f) Q L(T) so meL(T) Γ\M =0
and a? = e. Thus C/fl T = {e} and by (1), ί7 is a nucleus of if.

LEMMA 2. Lei H be a connected analytic group, let R be the
radical of H, and let K be a nucleus of H.
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(1) (H, R) £ If £ R and K is a nucleus of R.
(2) If L is a closed simply connected normal subgroup of H with

L £ K, then K/L is a nucleus of H/L.

Proof. (1) K is contained in R since if is a connected closed
solvable normal subgroup of H. Let / : H —> H/K denote the projection.
Then f{R) is the radical of the reductive group H/K, so e = (H/K,
f(R)) — f(H, R) and (If, R) is contained in K. Also, K is a closed,
simply connected solvable normal subgroup of R, and R/K is the
radical of H/K. Since H/K is reductive, its radical is a torus so K is
a nucleus of R. (2) K/L is a closed, simply connected solvable normal
subgroup of H/L and H/L/K/L = H/K is reductive, so K/L is a
nucleus of H/L.

The preceding lemmas combine with [10, Thm. 10] to yield the
following characterization of nuclei.

THEOREM 3. Let H be a connected FR analytic group, let R be
the radical of H, let R — R/(H, R), let T be the unique maximal
torus of R, and let f:R-*R be the canonical map. Then the nuclei
of H are the groups f~\U), where U is a closed analytic subgroup
of R with R =UT and UΠ T = {e}.

Proof. [10, Thm. 10] shows that (if, R) is closed in i ϊand that
every f\U) is a nucleus. Conversely, if if is a nucleus of H then
by Lemma 2, part (1), (H, R) £ K £ R and K is a nucleus of R. By
Lemma 2, part (2), with L = (H, R) £ R, K/(H, R) is a nucleus of
R, and by Lemma 1, K/{H, R) x T = H, so K = f-\K/(H, R)) is of
the desired form.

Theorem 3 allows us to improve [10, Thm. 10] somewhat:

COROLLARY 4. Let G be a connected linear algebraic group, H a
Zariski-dense analytic subgroup of G and K a nucleus of H. Then
there is a reductive subgroup Q of H Zariski-closed in G and a
complementary torus T of H in G such that H=KQ with iίΠQ — {e}
and (Γ, Q) - {e}.

Proof. [10, Thm. 10] establishes the existence of T and Q when
K has the form f~\U) as in Theorem 3, and Theorem 3 shows that
K always has this form.

Also, Theorem 3 and Lemma 1 show that, in the notation of
Theorem 3, the set of nuclei of H corresponds bijectively to the set
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of vector space complements to L(T) in L(R). We now show that
this latter set carries the structure of a complex vector space.

To simplify notation, let V be a finite-dimensional complex vector
space and let W be a subspace of V. Let S be the set of vector
space complements to W in V. Fix Mo in S, and let M be any element
of S. Let p: V —> Mo and q: V —• W be the projections. Since Ker(p) =
TF and W Π Λf = 0, Ker(p |Λf) = 0. Since dimΛf = dimF - dimW =
dimikfo, p\M is an isomorphism. Let /*• — qo(p\M)~1: MQ—>W. Then
j|f = {m + fM(m) Im e Λf0}, and M—>fM is a bisection between S and
Ή.omc(M0, W). Thus S carries the structure of a complex vector
space.

We relate this calculation to sets of nuclei:

THEOREM 5. Let H be a connected FR analytic group, and let
R be the radical of H. Then the set of nuclei of H is a complex
vector space of dimension rd — rtd — d2, where r = άim(L(R)), r1 —
dimL((iJ, R)) and d = rank(X+(iϊ)).

Proof. Let R = R/(H, R) and let T be the maximal torus of R.
As noted above, the set of nuclei corresponds bijectively to the set of
vector space complements to L(T) in L(R) by Theorem 3 and Lemma
1. Let U be a vector subgroup of R with R =U x T. By the above
considerations, the set of vector space complements to L(T) in L(R)
is in bijection with Homc(L(C/), L(T)). Let H = H/(H, R). Then H
is also FR (since (iί, R) is normal and Zariski-closed in any linear
algebraic group in which H is a Zariski-dense analytic subgroup),
and H — RS where S is semi-simple since R is the radical of H.
Also, R is central in H, so that R ΓΊ S is central in S, and since S
is semi-simple and FR, the center of S is finite. Thus R Π S is finite.
But every element of finite order of R lies in T, so R Π S Q T and
H = Ux(TS). Now X+(H) = X+(S), and since ΓS is reductive,
X+(5) - X+(ί7). Thus dim(C7) - dim(L(C/)) - rank(X+(iί)) = ί. Also
dim(L(T)) - dim(L(B)) - aim(L(U)) = dim(L(JΪ)) - dim(L(£Γ,
dim L(I7) - r - n - d. Thus dim(Homc(L( 17), L{T)) = (r - n -

A similar description of the set of nuclei as a vector space was
obtained by other means in [9, Cor. 2.2].

We now consider some further implications of Corollary 4. Let
G be a connected linear algebraic group, H a Zariski-dense analytic
subgroup, K a nucleus of iϊ, Q a reductive subgroup of G, and T a
complementary torus of H in G such that H — KQ with JSΓ Π Q = {e},
and (Γ, Q) = {e}, as in the corollary. Then P = Tζ) is a reductive
subgroup of G with (P, P) — (Q, Q). We show now that P contains
a complementary torus T" of H in G with Γ" Π Q = {β}.
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PROPOSITION 6. Let P be a reductive algebraic group and let Q
be a reductive algebraic subgroup with (P, P) = (Q, Q). Then there is
an algebraic torus T" in P such that P = QT" with Q Π T" = {e}.

Proof. Let S = (Q, Q) = (P, P). We note that S and Q are
normal in P. Let Ro be the radical of P and i^ be the radical of
Q, so Rx is contained in ϋ?0. Let TΊ be a torus in S containing the
center of S [1, Cor. 11.1, p. 270]. Then To = ROTX is a torus in P
and Z\ £ To Π S. We claim that T,nS = Tλ: for if rteT0ΠS with
r G i?0 and £ G Tlf then r G JR0 ΓΊ S which is central in S so r 6 T1 and
rί G ϊ\. Let To = i ? ^ . Then 2\ £ To' Π S Q Γo Π S = Tlf so T0'ΠS =
2\. Also, Tλ is a subtorus of To, so by [1, Cor., p. 206] there is a
torus T in Γo' so that TO = TXT and f n Γ ^ {e}. Since Γ'Π S £
To' n S = Tlf V n S = {e}. Since Γo' is a subtorus of Γo, by [1, Cor.,
p. 206] again there is a torus T" in To so that To = TJT" and To Π
Tn = {e}. Since T;/ n S C To Π S - Tx and Tx £ Γί so T/; Π Γi = {e},
then r n S - {e}. Let T - T'T". Then To - T,T and T, n T = {e}.
Let x - txt2 be in T Π S with ίx 6 Γ' and t2 e T". Then xeTof)S=T1

so x e T n 2\ - M and ίx - ί f1. Since r n T"STί n T" = {β}, ίx = e.
Then Γ n S - M . Now Q = R,S so Q = T'JS, and To

r - T'TX with
Tx £ S, so Q = Γ'S. Similarly, since P = J?0S, P = T0S and To =

Γ i r , = T T T n = τ τ w i t h TIQS, P= TS. Since T = T"T\ P =
T"{T'S) = Γ"Q. Now let a e f ' n Q. Since a; e Q and Q = T'S, a? = is
with ί G T and S G S . Then s = Γλx is in Γ T " = T and in S, and
weshowed above that T Π S — {e}. Thus s — e and a? = t is in T'.
But x is also in T" and Γ ί l f = {β} so x = {β}. Thus Qn T/; - {β},
and the proposition follows.

COROLLARY 7. Let G be a connected linear algebraic group, H
a Zariski-dense analytic subgroup of G and K a nucleus of H. Then
there is a reductive subgroup Q of H Zariski-closed in G and a
complementary torus T" to H in G such that H — KQ with KdQ =
{β}, T" Π Q = M, and T" normalizes Q.

Proof. Let Q and T be as in Corollary 4. Let P = TQ. Then
P is reductive and (P, P) = (Q, Q). Let T" be as in Proposition 6.
Then G^HT^KQT = KP = KQT" = HT", and L(G) = L{H) 0
L(T) = L(K) 0 L(Q) 0 L{T) - L(ίΓ) 0 L(P) - L(K) 0 L(Q) 0 L{T") =
L(i ί )0L(T") , so Γ" is a complementary torus to if in G, and Q
and Γ" possess the desired properties.

The examples following [10, Thm. 3] show that, in the notation
of Corollary 7, it is not always possible to find a T" with T"f)H={e}.
Complementary tori with this property are connected to left algebraic
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group structures on H [10, Prop. 6|, and we now examine when
such exist.

We will need to use some facts about representation theory in
this examination. We fix the following terminology: if H is an
analytic group, an iϊ-module V is a finite-dimensional complex vector
space with an analytic left iJ-action; we let r,-: £Γ— > GL(F) be the
corresponding representation. The associated semi-simple module to
V is the direct sum V of the H-module composition factors of H;
we let rr

v — ?•,-/ and call r\- the associated semi-simple representation.
If H is an analytic subgroup of the analytic group G, then every
G-module is, by restriction, an H-module. In this case, if V is an
H-module, we say that rv extends to G if there is a G-module W
containing V as an H-submodule. In [3], a criterion is given for
determining when a representation of H extends to G in the case
H is a normal semi-direct factor of G.

THEOREM 8. Let G be a connected linear algebraic group and H
a Zariski-dense analytic subgroup of G. Then the following are
equivalent:

(1) Every additive character of H is the restriction of an
additive character of G.

(2) There is a complementary torus T to H in G with T Π H
finite.

(3) There is a complementary torus T" to H in G with T" p
H - M.

(4) Every nucleus of H is a nucleus of G.
(5) Every H-module is an H-submodule of a G-module.

Proof. (1) and (2) are equivalent by [10, Thm. 3] and (3) implies
(2) trivially. We next show that (2) implies (4). Let Kbe a nucleus
of H and let T, Q be as in Corollary 4. Let P = TQ. Then P is a
reductive subgroup of G and G = KP. We assume T P H is finite.
By [10, Thm. 3], H is strongly closed in G, and hence K is a
strongly closed simply connected analytic subgroup of G. K is normal
in G since H is Zariski-dense in G and K is normal in H. K P P is
solvable and normal in P, so K P P is contained in the center Z of
the reductive group P. Z — TZ\ where Z' is the center of Q. Let
xeKΠ P. Then x = tq where teT and qe Z'. Since x e H and
qeH, teTf]H. Let n be the order of T P H. Then xn = qn, so
qn eKf) Q = {e}. Let nZ' denote the ^-torsion in Z'. Then JZ' is
finite since Q is reductive, and Kf] P £ (Γ p H)(nZ') so K P P is
finite. Since K is simply connected, K P P = {e}. Thus G/K = P is
reductive, so K is a nucleus of G and (2) implies (4). We now show
that (4) implies (3). Let K, T, Q, P be as above. Since K is then
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a nucleus of G, G/K = P/K Π P is reductive. The analytic map
/: P —> P/Kpi P is then a morphism of algebraic groups by [10,
Lemma Al]. Since / induces an isomorphism on Lie algebras, it
follows that / has finite kernel, i.e., P Π K is finite, and since K is
simply connected, P Π K = {e}. Thus G = KP with P n K - {e}. By
Proposition 6, P = QT" with T" Π Q = {β}. It follows that G =
ZQT" = IZT" and T"ί)H = {e}, so (4) implies (3). We next show that
(3) implies (5): Assume condition (3) holds; i.e., G = HT with T a
torus in G with T (λ H — {e}. Let V be an iί-module and let r — rv

be the corresponding representation. Let R be the radical of H.
By 13, Thm. 2.2, p. 215], V is an iϊ-submodule of a G-module if and
only if r'((G, 22)) = 1. We claim that (G, i2) - (23, R). First, (23, 22)
is contained in the unipotent radical of G, so (H9 R) is Zariski-closed
in G. Let ( )c denote Zariski-closure. Then (fl, R)e = (HCJ Rc) by
LI, Prop., p. 108]. Thus (G, R) = (ifc, i?) £ (#c, i?c) - (i5Γf R)o - (£Γ, Λ)
and it follows that (G, i2) = (H, R). Since (ίί, R) acts trivially on
simple ϋ-modules, r'((G, R)) — r\(H, R)) = 1, so every if-module is
an iί-submodule of a G-module. Finally, we show that (5) implies
(1): Let f eX+(H), f Φ 0 and let V be the two dimension complex
space with basis elf e2 and let H act on V by he1 = ex and Λ,β2 =
/(/&K + e2 for Λ e fZr. Then V is an iϊ-module. Let Wo be a G-module
containing V as an ίf-submodule. Let K be the kernel of /. Since
(G, G) = (JEZ, JET) is contained in if, JSΓ is normal in G. Let W =
{x e W0\kx — x for all k in if}. Since K is normal in G, TF is a G-
submodule of Wo and W contains V. Let H = rw(H) and G = r(Γ(G).
If is a G- and ff-module, and since K £ Ker(rιv) and (G, G) Q K, G
is abelian. Let Γ be the unique maximal torus of G. If every
additive character of G vanishes on H, then H is contained in T.
W is semi-simple as a T-module, so W is semi-simple as an ^-module,
if HζZ T. But then V is also semi-simple as an £Γ-module, hence as an
iί-module, so / = 0, contrary to assumption. Thus there is an additive
character of G which is not trivial on H. This character defines an
additive character g on G whose kernel contains K but whose restric-
tion to H is not trivial. Let gx be the restriction of g to H. Both
gι and / induce isomorphisms H/K-+C, so there is a nonzero scalar
a such that ag1 = /. It follows that / is the restriction of ag to H,
and agβX+(G). Thus (5) implies (1), and Theorem 8 is complete.

Condition (3) of Theorem 8 is related to the existence of analytic
left algebraic group structures on H by [10, Prop. 6] and [10, Prop.
7]. Thus the other conditions, especially condition (1), are also so
related, as the following corollary makes precise.

COROLLARY 9. Let H be an FR analytic group, and B a Hopf-
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subalgebra of R{H) a finite type over C. Then the following are
equivalent:

(1) B contains an analytic left algebraic group structure
on H.

(2) B separates the points of H and contains X+(H).

Proof. Assume (1) and let A be the left algebraic group structure.
Let B' be the smallest sub-Hopf-algebra of R(H) containing A, and
let G' be the algebraic group with k[G'] == B'. By [10, Prop. 7], H
is a Zariski-dense and strongly closed analytic subgroup of G' and
there is a complementary torus T to H in G' with T' f) H = {e}. By
Theorem 8, every additive character of H extends to G'. Since
additive analytic characters of algebraic groups are algebraic, the
additive characters are in k[G'] = B'. Thus X+(H) £ B' £ B. By
definition, A separates points of H, hence so does B, so (1) implies
(2). Conversely, assume (2). Let G be the algebraic group with
k[G] = B. Then H becomes a Zariski-dense analytic subgroup of G.
Let feX+(H). Then / is a primitive element of R(H):Le., the
comultiplication sends / to / (x) 1 + 1 (x) /, so / is primitive in B and
hence defines an additive character of G. By Theorem 8, there is a
complementary torus T to H in G with T" n H = {e}. By [10, Prop.
6], A = Bτ is an analytic left algebraic group structure on H and
A is contained in B so (2) implies (1).

Let H be an analytic group and A a subgroup of R(H). We
recall that As = A Π i? (JSΓ), denotes the semi-simple representative
functions in A. If A is a left algebraic group structure on H, A is
said to be normal basic if for every / in As and x in H, x f and
f x are in As [6, p. 116], and a sub-Hopf-algebra of i2(ίί) of finite
type over C is regular if it [contains a normal basic left algebraic
group structure on H [7, p. 873]. We will now interpret this concept
in terms of complementary tori. The following lemma determines
the semi-simple part of the coordinate ring of an algebraic group.

LEMMA 10. Let G be a connected linear complex algebraic group
and let U be its unipotent radical. Then k[G]s — k[G]u.

Proof. k[G]u = k[G/U] and since G/U is reductive, k[G/U]s =
k[G/U]. Thus k[G]u is contained in k[G]s. Conversely, let fek[G]s,
let V — (x f\xeG) and let r = rv be the associated representation.
Since V is semi-simple, U is in the kernel of r. Since fsVfx f =
r{x)f = f for all x in U, so / is in k[G]u. Thus k[G]s is contained
in k[G]u and the result follows.



ANALYTIC SUBGROUPS OF AFFINE ALGEBRAIC GROUPS, II 153

THEOREM 11. Let G be a connected linear algebraic group and
H a Zariski-dense analytic subgroup of G. Let Q be a maximal
reductive subgroup of H. Then the following conditions are equivalent:

(1) Every additive character of H is the restriction of an
additive character of G, and there is a normal algebraic subgroup
L of G such that LQ = G and L n Q = {e}.

(2 ) There is a complementary torus T to H in G with T Π H =
{e} and (Γ, Q) = {e}.

(3) k[G]τ is a normal basic left algebraic group structure on
H for some complementary torus T to H in G.

(4) k[G] is a regular sub-Hopf-algebra of R(H).

Proof. Assume condition (1) and let g: G —> G be the algebraic
endomorphism with Ker(#) = L and g(x) — x for all x in Q. Let
K = L Π H. Then K is the kernel of the restriction of g to H, and
H = KQ with K Π Q = {β}, so K is a connected closed normal subgroup
of H. By [10, Thm. 10], K = K0Q0 where Ko is a nucleus of if and
Qo is a reductive subgroup of K with Qof] Ko = {e}. Since Q is maximal
reductive in H, some conjugate of Qo is contained in Q: then there
is an x e H with xQ^x~ι £ Q. But xQQx~x £ iΓ so Qo = {e} and JBΓ = Ko.
Thus JK̂  is simply connected and hence a nucleus of H. Let X" be
the Zariski-closure of K in G. Then K ξZ L, and JϊQ is Zariski-closed
in G. Since H C JfQ, and i ϊ is Zariski-dense in ^Q = G, it follows
that K = L. In particular, L is solvable. Since every additive
character of H extends to G, Theorem 8 implies that K is a nucleus
of G. Let P be a (necessarily maximal) reductive subgroup of G
such that G = KP with Kf] P — {e}. If necessary, we replace P by
a conjugate so that Q C P. Let Γ = L n P . Then P = TQ with
ΓflQ —{e}y and Γ is a closed connected normal algebraic subgroup of
P which is solvable since L is solvable. It follows that T is a torus
with (Γ, Q) = {β}, and G = KP = KTQ = HT with Γn £ΓCiΓn P= {e}.
Thus condition (2) obtains.

Now assume T is as in condition (2). By [10, Prop. 6], A =
k[G]τ is an analytic left algebraic group structure on H. We need
to show if / G As and xeH, then x f and / a? are in As. Let ?7
be the unipotent radical of G and let L = Z7Γ. By Lemma 10, L̂s =
k[G]L. Let JBΓ be a nucleus of H. Then G = HT = KQT and it follows
that QΓ is a maximal reductive subgroup of G. By [4, Thm. 14.2,
p. 96], G = UQT = LQ, and ζ) normalizes £7 and T so L is normal
in G. Thus if /e&[G]L and xeG,x f and / α? are in k[G]L. So
condition (3) obtains.

Condition (3) implies condition (4) by definition, and condition (4)
implies condition (1) by [7, Thm. 2.1, p. 875].
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