ON UNIVERSAL EXTENSIONS OF DIFFERENTIAL FIELDS

E. R. Kolchin

Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

The main result of this paper is the following:

THEOREM: Let \mathscr{U} be a universal extension of the differential field \mathscr{F} of characteristic zero and let \mathscr{G} be a strongly normal extension of \mathscr{F} in \mathscr{U} . Then \mathscr{U} is a universal extension of \mathscr{G} .

Introduction. We deal with differential fields, always of characteristic zero, relative to a nonempty finite set of commuting derivation operators. By an extension of a differential field, we always mean a differential field extension. An extension \mathcal{F}' of a differential field \mathcal{F} is said to be finitely generated if \mathcal{F}' has a finite subset Φ such that $\mathcal{F}' = \mathcal{F} \langle \Phi \rangle =$ the smallest extension of \mathcal{F} in \mathcal{F}' that contains Φ .

Let \mathscr{F} be a differential field. Recall that an extension \mathscr{U} of \mathscr{F} is called *universal* if, for any finitely generated extension \mathscr{F}_1 of \mathscr{F} in \mathscr{U} and any finitely generated extension \mathscr{G} of \mathscr{F}_1 not necessarily in \mathscr{U} , \mathscr{G} can be embedded in \mathscr{U} over \mathscr{F}_1 , i.e., there exists an extension of \mathscr{F}_1 in \mathscr{U} that is isomorphic (in the sense of differential fields) to \mathscr{G} over \mathscr{F}_1 . Such a universal extension of \mathscr{F} always exists ([2] p. 132, Th. 2). It is not unique, but if \mathscr{U} and \mathscr{V} are two universal extensions of \mathscr{F} , then there exist universal extensions \mathscr{U}' and \mathscr{V}' of \mathscr{F} , lying in \mathscr{U} and \mathscr{V} , respectively, such that \mathscr{U}' is isomorphic to \mathscr{V}' over \mathscr{F} ([2] p. 135, Exerc. 7).

Let \mathscr{U} be a universal extension of the differential field \mathscr{F} and let \mathscr{G} be an extension of \mathscr{F} in \mathscr{U} . Under favorable conditions, \mathscr{U} is then a universal extension of \mathscr{G} , too. For example, this is the case when \mathscr{G} is finitely generated over \mathscr{F} ([2] p. 133, Prop. 4), and also when \mathscr{G} is algebraic over \mathscr{F} ([2] p. 134, Exerc. 1). The main purpose of the present note is to point out another such favorable condition. We shall show (§1) that when \mathscr{G} is a strongly normal extension of \mathscr{F} , in the general sense of Kovacic [4] (i.e., not necessarily finitely generated), then \mathscr{U} is universal over \mathscr{G} . This result shows that, in the study of strongly normal extensions, it is not necessary to replace \mathscr{U} by a larger universal extension of \mathscr{F} (see Kovacic [4] p. 518).

Every strongly normal extension of \mathscr{F} in \mathscr{U} is embeddable over \mathscr{F} in a constrained closure of \mathscr{F} in \mathscr{U} ([3] p. 162, Th. 3 or Blum [1] p. 42 (15)) and hence, in particular, is constrained over \mathscr{F} ([3] p. 148, Th. 1). It is tempting to conjecture that the above result generalizes to constrained extensions of \mathscr{F} in \mathscr{U} . We shall show (§2) by a counterexample that \mathscr{U} can fail to be universal over a constrained closure of \mathscr{F} in \mathscr{U} .

1. Strongly normal extensions. Recall ([2] p. 393), for a finitely generated extension \mathcal{G} of \mathcal{F} in a given universal extension \mathcal{U} of \mathcal{F} , that \mathcal{G} is called strongly normal over \mathcal{F} if every isomorphism σ over \mathcal{F} of \mathcal{G} onto an extension of \mathcal{F} in \mathcal{U} is strong, i.e., has the property that $\sigma c = c$ for every constant c in \mathcal{G} and $\mathcal{G}\mathcal{K} = \sigma \mathcal{G} \cdot \mathcal{K}$, where \mathcal{K} denotes the field of constants of \mathcal{U} . This definition is apparently a relative one, depending on the universal extension \mathcal{U} of \mathcal{F} in which \mathcal{G} is embedded. It is eary to see, however, that if \mathcal{G} is strongly normal over \mathcal{F} relative to one \mathcal{U} , then \mathcal{G} is strongly normal finitely generated extension is an absolute one. When \mathcal{G} is not necessarily finitely generated over \mathcal{F} , \mathcal{G} is said, following Kovacic [4] p. 518, to be strongly normal over \mathcal{F} if \mathcal{G} is the union of strongly normal finitely generated extension.

It follows from [2] pp. 402-403, Th. 5, and the definition that if \mathcal{G} is any strongly normal extension of \mathcal{F} and \mathcal{C} is any extension of \mathcal{F} , both contained in an extension of \mathcal{F} having the same field of constants as \mathcal{F} , then $\mathcal{G}\mathcal{C}$ is a strongly normal extension of \mathcal{E} , and \mathcal{G} and \mathcal{C} are linearly disjoint over $\mathcal{G} \cap \mathcal{C}$.

We now prove the main theorem of this paper which was stated in the opening paragraph.

Proof. (a) We must show that if \mathscr{G}_1 is a finitely generated extension of \mathscr{G} in \mathscr{U} and \mathscr{H} is any finitely generated extension of \mathscr{G}_1 not necessarily in \mathscr{U} , then there exists an embedding $\mathscr{H} \to \mathscr{U}$ over \mathscr{G}_1 . As before, denote the field of constants of \mathscr{U} by \mathscr{K} , and put $\mathscr{C} = \mathscr{F} \cap \mathscr{K}, \ \mathscr{C}_1 = \mathscr{G}_1 \cap \mathscr{K}$. Then $\mathscr{C} = \mathscr{G} \cap \mathscr{K}$ ([2] p. 393, Prop. 9), \mathscr{C}_1 is a finitely generated field extension of \mathscr{C} ([2] p. 113, Cor. 1 to Prop. 14), \mathscr{U} is a universal extension of \mathscr{FC}_1 , and \mathscr{CC}_1 is a strongly normal extension of \mathscr{FC}_1 ([2] p. 396, Th. 2). Thus, we may replace $(\mathscr{F}, \mathscr{G}, \mathscr{G}_1, \mathscr{H})$ by $(\mathscr{FC}_1, \mathscr{GC}_1, \mathscr{G}_1, \mathscr{H})$, i.e., we may suppose that $\mathscr{F}, \mathscr{G}, \mathscr{G}_1$ have the same field of constants \mathscr{C} .

(b) That being the case, fix a finite family β of generators of \mathscr{G}_1 over \mathscr{G} . Then \mathscr{U} is a universal extension of $\mathscr{F}\langle\beta\rangle$ and $\mathscr{G}_1 = \mathscr{GF}\langle\beta\rangle$ is a strongly normal extension of $\mathscr{F}\langle\beta\rangle$. Thus, we may replace $(\mathscr{F}, \mathscr{G}, \mathscr{G}_1, \mathscr{H})$ by $(\mathscr{F}\langle\beta\rangle, \mathscr{G}_1, \mathscr{G}_1, \mathscr{H})$, i.e., we may suppose that $\mathscr{G}_1 = \mathscr{G}$.

(c) That being the case, let \mathscr{D} denote the field of constants of \mathscr{M} . Then \mathscr{D} is a finitely generated field extension of \mathscr{C} , so that there exists an isomorphism $\mathscr{D} \approx \mathscr{D}'$ over \mathscr{C} with \mathscr{D}' a field extension of \mathscr{C} in \mathscr{M} . Because \mathscr{C} and \mathscr{D} are linearly disjoint over \mathscr{C} ([2] p. 87, Cor. 1 to Th. 1), and likewise \mathscr{C} and \mathscr{D}' , this can be extended to an isomorphism $\mathscr{C}\mathscr{D} \approx \mathscr{C}\mathscr{D}'$ over \mathscr{C} . This can in turn be extended to an isomorphism $\mathscr{K} \simeq \mathscr{K}'$, where \mathscr{K}' is a finitely generated extension of $\mathscr{G}\mathscr{D}'$ not necessarily in \mathscr{U} . Now, \mathscr{U} is a universal extension of $\mathscr{F}\mathscr{D}'$, $\mathscr{G}\mathscr{D}'$ is a strongly normal extension of $\mathscr{F}\mathscr{D}'$ in \mathscr{U} , and \mathscr{K}' is a finitely generated extension of $\mathscr{G}\mathscr{D}'$ with field of constants \mathscr{D}' . An embedding $\mathscr{H}' \to \mathscr{U}$ over $\mathscr{C}\mathscr{D}'$ would, when composed with the isomorphism $\mathscr{H} \approx \mathscr{H}'$ over \mathscr{C} , yield an embedding $\mathscr{H} \to \mathscr{U}$ over \mathscr{C} . Thus, we may replace $(\mathscr{F}, \mathscr{G}, \mathscr{H})$ by $(\mathscr{F}\mathscr{D}', \mathscr{G}\mathscr{D}', \mathscr{H}')$, i.e., we may suppose that the field of constants of \mathscr{H} is \mathscr{C} .

(d) That being the case, fix a finite family α of generators of the extension \mathscr{H} of \mathscr{G} , and put $\mathscr{C} = \mathscr{F}\langle \alpha \rangle$. Then $\mathscr{G} \cap \mathscr{C}$ is a finitely generated extension of \mathscr{F} ([2] p. 112, Prop. 14), so that \mathscr{H} is universal over $\mathscr{G} \cap \mathscr{C}$. Thus, we may replace $(\mathscr{F}, \mathscr{G}, \mathscr{H}, \mathscr{C})$ by $(\mathscr{G} \cap \mathscr{C}, \mathscr{G}, \mathscr{H}, \mathscr{C})$, i.e., we may suppose that $\mathscr{G} \cap \mathscr{C} = \mathscr{F}$. Since \mathscr{G} is strongly normal over \mathscr{F} , then the differential field $\mathscr{H} = \mathscr{G}\mathscr{C}$ is strongly normal over \mathscr{C} and \mathscr{C} are linearly disjoint over \mathscr{I} .

(e) Because \mathcal{U} is universal over \mathcal{I} , there exists an isomorphism $\mathcal{E} \approx \mathcal{E}_0$ over \mathscr{F} with \mathcal{E}_0 an extension of \mathscr{F} in \mathscr{U} , and this isomorphism can be extended to an isomorphism $\sigma: \mathcal{H} \approx \mathcal{H}_0$, where \mathcal{H}_0 is an extension of \mathcal{F} (and of \mathcal{C}_0) not necessarily in \mathcal{U} . Put Then $\mathcal{H}_0 = \mathcal{G}_0 \mathcal{E}_0$, this differential field is a strongly $\mathcal{G}_{v} = \sigma \mathcal{G}.$ normal extension of \mathcal{C}_0 , and \mathcal{G}_0 and \mathcal{C}_0 are linearly disjoint over \mathcal{F} . Evidently \mathcal{U} is universal over \mathcal{C}_0 (because \mathcal{C}_0 is finitely generated over \mathcal{F}), and hence the strongly normal extension $\mathcal{G}_0 \mathcal{E}_0$ of \mathscr{C}_0 can be embedded in \mathscr{U} over \mathscr{C}_0 , i.e., there exists an isomorphism $\sigma_0: \mathscr{G}_0 \mathscr{E}_0 \approx \mathscr{G}_2 \mathscr{E}_0$ over \mathscr{E}_0 with $\sigma_0 \mathscr{G}_0 = \mathscr{G}_2 \subset \mathscr{U}$. The field of constants of $\mathscr{G}_{2}\mathscr{E}_{0}$, like those of $\mathscr{H}_{0}=\mathscr{G}_{0}\mathscr{E}_{0}$ and $\mathscr{H}=\mathscr{G}\mathscr{E}$, is \mathscr{C} , and hence $\mathscr{G}_2\mathscr{C}_0$ and \mathscr{K} are linearly disjoint cover \mathscr{C} . Therefore $\mathscr{G}_{2}\mathscr{E}_{0}$ and $\mathscr{G}_{2}\mathscr{K}$ are linearly disjoint over \mathscr{G}_{2} . But by (d), \mathscr{E} and \mathscr{G} are linearly disjoint over \mathcal{F} , so that \mathcal{C}_0 and \mathcal{G}_0 are, too, and hence also \mathscr{C}_0 and \mathscr{G}_2 . Therefore \mathscr{C}_0 and $\mathscr{G}_2 \mathscr{K}$ are linearly disjoint over \mathscr{F} . But \mathscr{G} is strongly normal over \mathscr{F} , so that $\mathscr{G} \subset \sigma_0 \sigma \mathscr{G} \cdot \mathscr{K} = \mathscr{G}_2 \mathscr{K}$. Hence \mathscr{C}_0 and \mathscr{G} are linearly disjoint over \mathscr{F} . Therefore, $id_{\mathscr{E}_0}$ and the isomorphism $\mathscr{G}_{2} \approx \mathscr{G}$ (restriction of $(\sigma_{0} \circ \sigma)^{-1}$) extend to an isomorphism $\tau: \mathscr{G}_2\mathscr{C}_0 \approx \mathscr{G}\mathscr{C}_0$. The composite isomorphism $\tau \circ \sigma_0 \circ \sigma$ is an embedding of \mathcal{H} into \mathcal{U} over \mathcal{G} .

2. A counterexample for constrained extensions. Recall that an extension \mathcal{G} of a differential field is said to be constrained ([3] p. 144) if every finite family of elements of \mathcal{G} is constrained over \mathcal{F} in the sense of [2] p. 142, that a differential field is said to be constrainedly closed ([3] p. 145) if it has no constrained extension other than itself, and that \mathcal{G} is said to be a constrained closure of \mathcal{F} ([3] p. 147) if \mathcal{G} is constrainedly closed and is embeddable over closed \mathcal{F} in every constrainedly extension of \mathcal{F} . A constrained closure of \mathcal{F} always exists, and it is a constrained extension of \mathcal{F} .

We are going to exhibit an ordinary differential field \mathscr{F} , a universal extension \mathscr{U} of \mathscr{F} , and an extension \mathscr{G} of \mathscr{F} in \mathscr{U} such that \mathscr{G} is a constrained closure of \mathscr{F} and \mathscr{U} is not universal over \mathscr{G} .

Let \mathscr{C} be any denumerable field of characteristic zero and put $\mathscr{F} = \mathscr{C}(x) =$ the field of rational fractions over \mathscr{C} in an indeterminate $x; \mathscr{F}$ has a unique structure of ordinary differential field with field of constants \mathscr{C} in which the derivative of x is 1. By [3] p. 149, Prop. 4, we may fix a denumerable universal extension \mathscr{U} of \mathscr{F} . By [3] p. 146, Cor. 1 to Prop. 3, \mathscr{U} is constrainedly closed.

The set of solutions in \mathcal{U} different from 0 and 1 of the differential equation

 $y'=y^{\scriptscriptstyle 3}-y^{\scriptscriptstyle 2}$.

is denumerable and hence can be arranged in a sequence

$$\gamma_0, \gamma_1, \gamma_2, \cdots$$

By [3] §8, this set is infinite and is an independent set of conjugates over \mathscr{F} , and $\mathscr{F}\langle\eta_0, \eta_1, \eta_2, \cdots\rangle$ is constrained over \mathscr{F} (see [3] p. 144, Prop. 1). Because \mathscr{U} is constrainedly closed, $\mathscr{F}\langle\eta_0, \eta_1, \eta_2, \cdots\rangle$ has a constrained closure \mathscr{G} in \mathscr{U} . The differential ideal $[y' - y^3 + y^2]$ of the differential polynomial algebra $\mathscr{G}\{y\}$ is evidently prime and does not have a generic zero in \mathscr{U} (because all its zeros in \mathscr{U} are in \mathscr{G}). Therefore, \mathscr{U} is not universal over \mathscr{G} . (The same argument shows that \mathscr{U} is even not universal over $\mathscr{F}\langle\eta_0, \eta_1, \eta_2, \cdots\rangle$.) We are going to show that \mathscr{G} is a constrained closure of \mathscr{F} .

By [3] p. 144, Prop. 2(a), \mathscr{C} is constrained over \mathscr{F} . Let \mathscr{H} be any denumerable constrained closure of \mathscr{F} (e.g., any constrained closure of \mathscr{F} in \mathscr{U}). The set of solutions in \mathscr{H} of the above differential equation can be arranged in a sequence

As before, this set is infinite and is an independent set of conjugates over \mathscr{F} . Therefore, there exists an isomorphism

$$\varphi: \mathscr{F}\langle \eta_0, \eta_1, \eta_2, \cdots \rangle \approx \mathscr{F}\langle \zeta_0, \zeta_1, \zeta_2, \cdots \rangle$$
.

Now, $\mathscr{F}\langle\zeta_0, \zeta_1, \zeta_2, \cdots\rangle$ is normal over \mathscr{F} in \mathscr{H} (see [3] §6 p. 153). Hence, by [3] p. 159, Cor. 1 to Th. 2, \mathscr{H} is a constrained closure of $\mathscr{F}\langle\zeta_0, \zeta_1, \zeta_2, \cdots\rangle$. Therefore, by [3] p. 158, Th. 2(b), \mathscr{P} can be extended to an isomorphism $\mathscr{G} \approx \mathscr{H}$, so that \mathscr{G} is a constrained closure of \mathscr{F} .

References

1. Lenore Blum, Differentially closed fields: a model-theoretic tour, Contributions to Algebra, Academic Press, New York, 1977, pp. 37-61.

2. E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.

3. ____, Constrained extensions of differential fields, Advances in Math., 12 (1974). 141-170.

4. Jerald Kovacic, Pro-algebraic groups and the Galois theory of differential fields, Amer. J. Math., 95 (1973), 507-536.

Received March 13, 1978. Research supported by a grant from the National Science Foundation.

Columbia University New York, NY 10027