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Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

1. Introduction. The theory of graded Lie algebras, now
more widely called Lie superalgebras, underwent a very rapid
development starting about 1973, inspired by the interest expressed
in the sudject by physicists. I was active in the field for about a
year, during 1975 and 1976. Thus far I have published only the
announcement [16] (jointly with Peter Freund of Chicago’s Physics
Department, to whom I am enormously indebted); in addition, the
summary [29] is to appear.

The present mature state of the field, and the fact that
Hochschild (partly in collaboration with Djokovi¢) made several
important contributions, make this an appropriate oceasion to publish
some further details. Although Victor Kac has brilliantly solved
the main problems, there remains the possibility that the different
methods I used retain some independent interest.

The large bibliography is intended to be complete on mathe-
matical references not contained in [9]; there is also a selection of
physies papers. I hope this bibliography will be useful to some
readers.

This article is written so as to keep the overlap with [29] to a
minimum.

2. Invariant forms. When I began studying Lie superalgebras
I imitated [46] and selected as an initial goal the classification of
those simple Lie superalgebras (over an algebraically closed field of
characteristic 0) that admit a suitable invariant form.

For basic definitions and facts about Lie superalgebras, I refer
to [25]. I shall just recall that if ¢ is a superrepresentation of the
Lie superalgebra L then

(@, ¥) = STr (¢(x)3(1))

is an invariant form on L, where STr denotes the supertrace. This
can be extended to “projective representation”, following the model
of [28, p. 66], but since the setup will shortly be axiomatic anyway,
I shall not pursue the details here.

Assume now that the form + on L induced by ¢ is nondegenerate.
Write L = L, + L,, with L, and L, the even and odd parts of L.
We have that 4 is symmetric on L, skew on L,, and that L, and
L, are orthogonal relative to . It follows that 4 remains non-
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degenerate when restricted to L,. Hence L, is the direct sum of a
semisimple algebra and an abelian algebra.

Since the assumption that the form comes from a representation
plays no further role in the investigation it is feasible to weaken
the hypothesis by assuming outright that L admits an invariant
form and that L, is semisimple @ abelian. We assume that L is
simple.

3. Cartan decomposition. The role of a Cartan subalgebra of
L is satisfactorily played by a Cartan subalgebra H of L, The
decomposition of L, relative to H is fully known, for the abelian
part of L, creates minimal interference. So the even roots and root
spaces have standard properties.

The decomposition of L, relative to H creates odd roots and
root spaces with properties not quite so standard. Odd roots may
be isotropic. Also, two-dimensional root spaces are possible; but this
happens only in one algebra: the 1l4-dimensional projective special
linear algebra of 4 X 4 matrices. In this algebra there moreover
exist odd roots A, ¢ with (A, ) =0 and N + g, X — ¢ both (even)
roots. This is again a unique exception and will be ruled out in
the axioms about to be given.

4. Axioms for roots. The system of roots that has arisen can
now be treated axiomatically. We postulate a finite-dimensional
vector space V over a field of characteristic 0. V is equipped with
a nondegenerate symmetric form (,). In V a finite set I" of non-
zero vectors is given; we call the members of I “roots”. I is a
disjoint set-theoretic union of two subsets whose members we call
“even” and “odd”. There are seven axioms.

1. I spans V.

2. Along with any vector I" contains its negative. A root and
its negative have the same parity.

3. The even roots in I' constitute the system of roots of an
(ordinary) semisimple Lie algebra. (The form on each simple com-
ponent is a scalar multiple of the Killing form, the secalar varying
with the component.)

4. For any two non-orthogonal odd roots the sum or the
difference is a root, but not both.

REMARK. It is probably feasible to classify the larger class of
root systems that arise if the phrase “but not both” is deleted; I
have not tried, since no application is in sight.

In the final three axioms « is an even root and )\ is an odd
isotropic root.
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5. 2a, M)/(a, a) =0, =1, or £2.

6. If 2(a, N)/(a, &) = —1 then N + « is a root.

7. If 2(a, M)/(e, @) = —2 then N + a and N\ + 2a are roots.
N+ a is odd.

The roots in the Lie superalgebras of §2 (i.e., with an invariant
form, and an even part which is semisimple P abelian) satisfy these
axioms, with the solitary 14-dimensional exception mentioned in §3.

5. The structure theorem. Indecomposable systems satisfying
these axioms were classified in a piece of work I completed in
August 1975. The result can today be stated briefly. One gets
precisely the systems attached to the following simple Lie super-
algebras: special linear, orthosymplectic, and the exceptional algebras
of dimensions 17, 81, and 40. The proof was elementary but long.

It is a routine matter to exhibit these root systems, so two
samples will suffice.

Special linear. Take an orthogonal direct sum X @ Y where
X has an orthonormal basis e, ---, ¢, and Y has a negative ortho-
normal basis f,, - --, f. (this means that the f’s are orthogonal and
each (f;, f;) = —1). The even roots consist of all e, — ¢, and f; — f,
(i # 7, J #5). The odd roots are the 2mn vectors (e, + f;).

G(8), the 81-dimensional algebra. Let p, q, » be vectors satisfy-
ing (p, p) =(q,9) = (r,r) = =2, (q,7) = (r,p) = (p,q) = 1. Let f be
a vector perpendicular to p, g, = satisfying (f, f) = 2. The roots
are as follows (the negatives are to be inserted as well).

Even: 9, 4q, v, ¢ —7r, r—p, » — q, 2f.

0dd isotropic: f +p», f*+aq, f £

0dd non-isotropic: f.

6. A model of G(3). Ipresenta model of G(3) which may be
useful for some purposes. Take the even part L, to be G, A, and
the odd part L, as C® V, where C denotes the 7-dimensional space
of elements of trace 0 in a Cayley matrix algebra and V is a 2-
dimensional space carrying a nonsingular alternate form (,). Let G,
act on C in the standard way and A, on V as linear transformations
skew relative to (,). It remains to define the multiplication L, x
L, — L,. This is done via two auxiliary maps ¢ and .

¢: CxC—G@G,. This is the map which appears on page 143 of [21]:

Qf’(c’ d) = [Lch] + [LcRd] + [R¢Rd] ’

where L and R denote left and right multiplication.
Wi Vx V— A, For v, win V define (v, w) to be the linear
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transformation on V that sends z into (x, v)w + (x, w)v. The product
from L, x L, to L, is now defined by

(c ®v)(d Q w) = (v, w)g(e, d) + 4tr (¢, D)y(v, w)

where tr denotes the trace on the Cayley matrix algebra, normalized
so that tr (1) = 1. One must of course verify the Jacobi identity.

7. Jordan superalgebras. For the basic facts on Jordan super-
algebras, I refer to [27]. In my version of the theory, completed
in June, 1976, I used the classical method of idempotents and Peirce
decompositions, rather than Kac’s Lie method. The key hurdle that
had to be surmounted was to exclude the case where the even part
is unit element plus radical (called the “nodal” case in the literature
on nonassociative algebras). Here is the proof.

PROPOSITION. Let J = J, + J, be a Jordan superalgebra over a
field of characteristic 0. Let N be the radical of J,. Assume that
J has a unit element 1 and that every element of J, is an element
of N plus a scalar multiple of 1. Then N + NJ, is an ideal in J.

Proof. It is easy to see that NJ,-J,C N is the only nontrivial
inclusion that needs verification. Thus, for e, beJ, and ne N we
need to show that z =na-b lies in N. Assume not. Let ¢ be
another element in J,. We have that R,R, + R.R, is a derivation
of J (this is a special case of a general principle for converting
algebra identities into superalgebra identities). Likewise, R} is a
derivation. These derivations restrict to derivations on J,, and by
ordinary Jordan theory carry N into N (this is where characteristic
0 is used). Thus zb = (na-b)be NJ,. It follows that be NJ, and
then that (na-c¢)be NJ,. Next

(na - b)e + (na -c)pb € NJ, .

Hence zee NJ,. c¢ is arbitrary in J;, and so zJ,C NJ,, J, = NJ,, and
J, =0 by a Nakayama lemma argument. Everything is trivial if
J, = 0. The proof is complete.

Added in proof (May 28, 1980). I missed some references, and
many additional ones have now appeared. I have compiled a sup-
plementary bibliography.
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