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The aim of this paper is to provide full proofs of results announced
in [2], Some theorems are proved under weaker assumptions. The
results lead to a decomposition theorem for actions of SL(2) similar
to that proved in [1] for torus actions. However even in this case
of SL(2) and in a greater extent in the case of actions of arbitrary
semisimple groups the results are not so full and many questions
are left open. Some of them are mentioned in the paper.

All considered algebraic varieties and morphisms are assumed to
be defined over an algebraically closed field k (of any characteristic).
Let G denote a connected semisimple algebraic group. Let a: G x
X —i> X be an action of G on a complete algebraic variety X. For
geG and xeX we shall write g(x) or gx instead of a(g, x). The
subvariety of fixed points of the action is denoted by XG. The orbit
Gx of x 6 X is said to be closed if it is closed in X. A closed orbit
is said to be nontrivial if it is not composed of one point.

THEOREM 1. Let G, X, a be as above. Assume that there exists
a dense orbit in X. Then Xσ is finite (but possibly empty) and if
the action of G on X is not trivial then X contains a nontrivial
closed orbit.

Proof. Let us assume first that X is normal. Then it follows
from Lemma 8 of [9] that X can be covered by open quasi-projec-
tive G-in variant sub varieties. Since X is quasi-compact, X can be
covered by a finite number of these and in order to prove that XG

is finite it is enough to prove that the result is true when X is
quasi-projective. Let X be quasi-projective. Then X can be imbedded
in a G-invariant way into some projective space Pn equipped with
a (linear) action of G. We are going to fix such an imbedding and
consider X as a locally-closed subset of P \ Let a e XG c P \ It is
sufficient to prove that there is an open G-invariant neighborhood
U of a in X such that U Π X° = {a}. It follows from Mumford
conjecture (proved by Habush [5]) that there exists a G-invariant
hypersurface VaPn such that α ί V. The closure X of X in Pn is
closed and the difference X — V is affine. Since any two closed G-
invariant orbits in X — V have different images in the quotient
(X — V)/G (see [3]) and since X — V contains a dense orbit, we have
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(X-V)G = {a). Thus we may take U = X - V and the proof of
the first part of the theorem in the case where X is normal is
complete.

Now we shall prove the second part of the theorem in the
normal case. Assume that the action is not trivial. Let Γ c l b e
a non-trivial orbit of the smallest dimension. Then T U XG is closed
and hence complete. Let us assume that T is not closed. Then
there exists a e T Π XG. Let U be a quasi-affine G-invariant neigh-
borhood of a found as in the first part of the proof. Then TaU
and hence T is quasi-affine. But the difference T — T is a finite
subset of XG hence dim T = dim T = 1 (if a completion of a quasi-
affine variety is finite then the variety is of dimension one). But
any one-dimensional orbit of a semisimple group is isomorphic to
P 1 and this gives a contradiction, since we have assumed that the
orbit is not closed. Thus the theorem is proved in the normal case.

In the general case it is enough to consider the normalization
TJ . X —> X of X with the induced action of G on X. Since τ)(XG) — XG

and XG is finite (because X is normal and we may apply the theorem
in this case), XG is finite. Since X contains a nontrivial closed orbit,
X also contains such an orbit.

COROLLARY 2. // the action of G on a complete variety X has
no nontrivial closed orbit, then the action is trivial.

Theorem 1 shows the importance of closed orbits in the theory
of actions of semisimple groups on complete varieties. It suggests
that in this theory closed orbits (not only fixed points) play a role
analogous to that of fixed points in the theory of actions of multi-
plicative or additive groups. It can be also noticed here that in the
affine case, i.e., if an action of G on an affine veriety Y is given,
then Y contains exactly one closed orbit whenever it contains a
dense orbit (as follows easily from the Mumf ord conjecture). In the
complete case the analogous result is not valid. Moreover the closure
of an orbit may contain an infinite number of closed orbit (see [8],
p. 799).

THEOREM 3. Suppose moreover that the variety X is protective
and assume that X contains a dense orbit. Then XG contains at
most one fixed point.

Proof. Assume that X is normal. Then there exists a G-
invariant imbedding X<=^Pn, where n is an integer and Pn is
equipped with a (linear) action of G. Let this action be given by
g -> A(g) where A(g) = {aίά{g)) is a (n + 1) x (n + 1) matrix, and
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iy j = 0, , n. If [α0, , an] ePn is a fixed point of the action
~ α0

then, for any g eG, A(g) = MflOfc&o, , <*>»] for some X(g) ek and

hence X(g) = 1, since G has no nontrivial characters. We may assume
that the vector subspace of An+1 composed of proper vectors of A(g)
for all g e G is span by eQ = [1, 0, , 0], ex = [0, 1,0, , 0], ,
βk = [0, , °, 1,0, , 0]. Assume that [α0, , an] and [a'Of , α»] e
X& c P \ It follows from the above that ak+1 — = an = 0,
α£+1 = . . . = α* = 0. It follows from the Mumford conjecture that
there are homogeneous G-invariant polynomials F, F' e k[XQ, , Xn]
such that î [αo, , α j ^ 0, F'(a[, -> -, a'n) Φ 0. Of course, we may
assume that άeg F = deg F\ For cekf F + cF' is a homogeneous
G-invariant polynomial and for some cek, (F + cF')(aQ, - - , an) Φ 0,
(F + aF')(a0, , αή) ̂  0. Hence both [α0, , an] and [αj, , αi]
belong to an open affine G-invariant subvariety of X. This contradicts
existence of exactly one closed orbit in the affine case. Hence
Theorem 3 is proved for X normal. If X is not normal then let us
consider the normalization η: X -» X of X. Since η(XG) = XG, and
X^ contains at most one point, so does X°.

It would be interesting to know if Theorem 3 holds under weaker
assumption that X is complete.

Let X* be the union of all closed orbits of the action of G on
X.

PROPOSITION 4. X* is a closed subset of X.

Proof. Let us fixed a Borel subgroup BaG. If α e X belongs
to a closed orbit, then the isotropy subgroup GaaG contains a con-
jugate of B, i.e., the orbit of a contains a point with the isotropy
group containing B. The set X8 is closed hence complete. Let β:
G/B x XB —»X be a map defined by β(gB9 a) = #(α). It is easy to
see that the map is a well defined morphism and it follows from
the above that β(G/B x XB) - X*. But since G/B x XB is complete,
its image is also complete hence closed in X.

THEOREM 5. XG is a union of some connected components of

Proof. Assume that X is normal. Let aeXG. Then there
exists an open G-invariant quasi-projective neighborhood U of a in
X (Lemma 8 in [9]) and there is a G-invariant imbedding U<=->Pn.
It follows from the Mumford conjecture that there exists a quasi-
affine G-invariant open neighborhood of a in X. Therefore the only
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closed orbits of G in U are trivial. Hence XG is open in X*. Since
XG is also closed, the theorem is proved in case where X is normal.
In the general case one uses the already proved result for the
normalization of X.

In the sequel we are going to assume that there exists an
open covering {ί/J {% ~ 1, •••,&) of X such that for each ί there
exists a G-invariant embedding Ui

<^Pn, where n is an integer.
It is known that if X is normal then it has this property. Let
T be a maximal torus of G and let G m ^ Γ be a one-dimensional
subtorus satisfying the condition: Xτ = XGm (see [4] for existence
and other pertinent results). Let X%m be the irreducible (and con-
nected) component of Xτ corresponding to the "big" cell in the
decomposition of X determined by the action of Gm. Let

xo= u XL-

THEOREM 6. Let G = SL(2). Then Xo is a connected and ir-
reducible component of X*.

Proof. First, we prove that X J w c X * . Let aeXGm. Assume
that α£X*. Then the isotropy group of a is either Gm or the
normalizer of Gm in G. The induced action of G on the tangent
space V at a to the orbit of G is linear and when diagonalized then
it is given by t(xί9 x2) = (txu -Γ1^), for t e Gm and (xu x2) e V. Hence
a does not belong to a "big" cell. Thus XJ m cX*.

Now, the only parabolic subgroups of SL(2) are Borel subgroups
and SL(2). Hence, there are only two types of closed orbits: fixed
points and SL(2)/J5 ̂  P1. Let us assume that the action is nontrivial.
Then I o n I G = 0 . (lί aeXG then the induced action of G on the
tangent space Ta,x is either trivial or the induced action of Gm <=-» G
on Ta,χ contains vectors of both positive and negative weights.)
Therefore Xo c X* — XG. Since Xo is irreducible, Xo is contained in
a connected component of X*.

Denote the component by Z. Fix a torus Gm = TaG and let
Blf Bz be the Borel subgroups containing T. Then XJm U ZB^ U ZB* (since
the isotopy group of any point from XGm is parabolic and hence
contains either Bt or J52). But XGm is connected and ZBlpιZB2=0 (since
ZB^ n ZB* = Zβ). Thus either XGw c ZBί or X£m c Z*2. We may assume that
Xa~mc.ZBκ But Z β icZ Γ cX Γ , W and XJm is connected component of Xτ,
hence X£m is a connected component of i?51. Orbit of any point form
Z contains a point from ZBκ Hence GZBl = £. Moreover G/^ con-
tains exactly one fixed point for Bx and any orbit of a point from
Z is isomorphic to G\Bγ. Therefore there exists exactly one con-
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nected component of ZBι, i.e., ZBl is connected and we have proved
that ZBl = GGm. Hence ZBι is irreducible and therefore if is irreduci-
ble. Moreover we have obtained that Xo — GX%m = Z and XQ is a
connected and irreducible component of X.

COROLLARY 7. // the action is not trivial and ch(ft) = 0, then
Xo is isomorphic to XGmxP\

Let X° be the subset of X composed of all points x e X such

that Gx~Γ) Xo Φ 0.

THEOREM 8. X° coinsides with the union of all "big" cells cor-
responding to actions of maximal subtori induced by the given
action of G on X. Hence X° is open. In fact X° is the smallest
G-invariant neighborhood of Xo.

Proof, Let U be the union of all "big" cells corresponding to
actions of maximal subtori. Then UczX0, U is open and G-invariant.
On the other hand, X° is contained in any open G-invariant neigh-
borhood of XQ. Thus U = X° and the theorem is proved.

COROLLARY 9. // ch(fc) = 0 and XQ is rational, then X is ra-
tional. In particular, if the number of closed orbits in X is finite,
then X is rational.

Proof. If the action is trivial, then the corollary is also trivial.
Suppose that the action is nontrivial. If XQ is rational then, X£m is
unirational and Xim x P 1 is rational (Corollary 7). But X contains
Xtm x Ak (where k is a positive integer) as an open subset. Thus
X is rational.

DEFINITION 10. Let G - SL(2) and X* = X* U U X? be the

decomposition of X* into connected components. Let

X, = {xeX JβxXczX?} .

The decomposition {Xt} of X will be called the decomposition
determined by the action of G on X. Subvarieties Xif for i = 1, , r,
will be called cells of the decomposition. Exactly one cell of the
decomposition is open in X. This cell corresponds to Xf = Xo and
is equal to X°. It will be called the "big" cell of the decomposition.

THEOREM 11. (a) X = \JU Xt, Xt 0 1 , - 0 for i Φ j .

(b) Xt is locally closed.
(c) Xi z> X* and X% is the smallest G-invariant neighborhood
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of X? in χim

Moreover the decomposition X=\Jϊ==1Xi described above is the
only decomposition of X satisfying (c).

The theorem follows from Theorem 8 by induction on dim X.

EXAMPLE. Assume that k is of characteristic 0. Let an action
of SL(2) on Pn be given. Then the action is induced by a linear
representation of SL(2) on An+1 and the representation can be split
into a direct sum Vo 0 Vλ φ 0 Vm, where m is an integer and
Vi (for i = 0, , m) is a direct sum of irreducible representations
of the dominant weight i. It is easy to check that in this case
(P»)° = p» - Proj (Vo 0 0 Fm_J and that the cells of the decom-
position of P^are of the form Proj(FO0• 07 < )-Proj(V o 0 ' 0 7 J .
Therefore in some sense the decomposition of X described in Defini-
tion 10 and Theorem 11 can be considered as a generalization of the
splitting of linear representations into a direct sum of sums of
isomorphic irreducible representations.
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