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INVARIANTS, MOSTLY OLD ONES
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Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

l Introduction* Let G be the group with p elements where
p is a prime number and let k be a field of characteristic p. Then

Vn = k[x]/(x - l)n for n = 1, 2, , p

are the only indecomposable &[G]-modules (observe that Vp = k[G]
is free). The rth symmetric power SrVn+1 can be written as a
direct sum of indecomposables. Let bnyr denote the number of
indecomposables for p large (i.e., p > nr + 1) and define the "false"
Hubert series by

ΨM = Σ Krtr.Σ
r=0

One way to find e.g., ψ3(t) is to actually compute the decompositions
of SrV4: and counting the components. Then we get the following
series for b3>r

1, 1, 2, 3, 5, 6, 8, 10, 13, 15, 18, 21, 25, 28, .

Guessing a difference equation and solving for 63,r and adding up we
get ψz{t). For n = 5 this method is too tedious and ψδ and ψ6 in
[1] were found by other methods (see Ch. V in [1]). After the
manuscript of [1] was completed I found that ψn for 2, 3, 4 agreed
with the generating function for the number of covariants of a
binary form of degree n in Faa de Bruno [4]. Later I learned that
Franklin and Sylvester a century ago computed ψn for n=lf2, •••,
10 and 12 and that our ψ5 and ψ6 up to some misprints agreed with
theirs.

That this agreement is no coincidence is explained in §2. It
turns out that our G-invariants are identical with what Dickson [3]
calls a formal modular semi invariant. For p large they agree with
the leading terms (which are semi invariants) of covariants in
characteristic zero. Thus from [1] we get the following integral
formula for the counting function of covariants

In § 3 it is proved that
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thus solving Problem VI. 3.12 of [1]. The proof uses the integral
above and residue calculus. In a private communication R. P.
Stanley has given a proof using his "Combinatorial Reciprocity
Theorem" [5].

In §4 we try to compute the ring (S V4)
G when p = 5. The

twelve generators are found in Dickson [3] and in Williams [8] and
the Hubert series φB(t) of [1] tells us where to look for the relations.
There are at least 16 relations ranging from degree 6 up to degree
10. The eight worst ones were found by Jan Bohman. Using an
APL-program he had a computor write down the matrix and then
solved the system of equations by hand. The results were then
checked by the computor.

In [2] the number of non-free components of SrVn+ι was com-
puted. In § 5 similar formulas for the number of free components
are found. There are several corollaries that can be formulated in
pure combinatorial language with no reference to invariant theory.

R. P. Stanley corrected some mistakes in the first draft of this
paper. I am most grateful for this. Finally I wish to thank Jan
Bohman whose computations have been invaluable to me.

NOTATIONS.

p is an odd prime
A(m, n, r) — the number of partitions of m into at most n parts

all of size ^ r . pdAS — protective dimension of the A-module S.

2* Invariants, semi invariants and covariants*

2.1. Classical invariants. For the benefit of the reader we
first review some of the classical invariant theory. The coefficients
are the rational numbers. Let a binary form

* in \
f(x, 0) = Σ . )aix

n-iyί

of degree n be given.
Then a polynomial

i» ίm \
F(a0, au , an, x, y) = Σ . )eix

m'3yi

is called a covariant of index λ and order m if the following con-
dition is fulfilled (c3 — Cj(a0, - - , a J are polynomials with integral
coefficients): Make the substitution
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ξ

with det T Φ 0. The form becomes

n

Then

F(A0, ...,Au,ξ,7i) = (det Γ)^(α 0 , , an, x, y) .

Assign a weight v to a». Then c,, (α0, * , α j is homogeneous of degree
r where

wr = 2λ + m

and is isobaric (all terms have the same weight) of weight λ + j .
We note the following facts:

PROPOSITION 2.1. ( i ) F is uniquely determined by its leading
term c0.

(ii) The number of linearly independent covariants F of the
n-form f with leading term c0 of degree r is

A nr
, r, n

(see Faa de Bruno [4] p. 235).

A polynomial c = c(α0, , an)e Z[a0, , an] is a semi invariant
(for /) if it is invariant under the transformation

1 i

0 1

Then

PROPOSITION 2.2. c is a semi invariant if and only if

(1) G is homogeneous and isobarie

( 2 ) c(α 0 , a» α2 + 2αx + α0, •••, α w + ^ ja^+ζjj! J α w _ 2 +
c(α0, αly , α j .

2.2. Modular invariants. Now we consider polynomial with
coefficients in & = Z/pZ. Let G = (σ) be the group with p elements
(written multiplicatively). Let G act on k[a0, alf •••, α j via
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σaQ = a0

oaι — aγ + α0

n\ ln\
σan = an + αΛ_x + α%_2 + + α0 .

Then c(α0, , αw) is a G-ίnvariant if and only if

( * ) cla0, αx + α0, , αn + ί j α ^ + + α01 = c(α0, , α j .

This is exactly what Dickson [3] calls a (formal) modular semi
invariant for the binary form

Then c 6 (Sr Vn+1)
G in the notation of [1] means that c is a modular

semi invariant that is homogeneous of degree r. Hence all results
in Chapter V in [1] are also results for modular semi invariants of
a binary form.

Let us now turn to the case when p is large. We introduce
the differential operator

Ω -
da2 dan

If c(α0, •••,«») is homogeneous of degree r and isobaric of weight
w then βc is isobaric of weight w-1.

PROPOSITION 2.3. Assume that p > nr where degree c = r. Then
e is G-invarίant if and only if Ωc = 0.

Proof, In Williams [8] it is proved that e is a modular semi
invariant if and only if

Λ + U +

But weight (c) ^ nr < p and hence βpc = 0 since β diminishes the
weight with one each time it is applied.

PROPOSITION 2.4. Assume that p > nr. Then there is a basis
of G-invariants homogeneous of degree r consisting of isobaric
polynomials.

Proof. Assume that c = cx + c2 + + cs where the c<: s are
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isobaric of weights

W1> W2> > Ws .

Apply Ω

0 = Ωc = Ωc, + + Ωcs .

But weight (Ωcτ) = wt — 1 and hence i2^ = 0 for all i.

THEOREM 2.5. Lei Ẑ , , hs be a basis over Q for the covarίants
having leading terms of degree r . Let cl9 * ,c β be their leading
terms (with coefficients in Z). Reduce the coefficients (moάp). If
p is large then cl9 , c, is a basis over Z/pZ for the homogeneous
G-invariants of degree r.

Proof. The clf , cs are isobaric and are semi invariants, hence
they satisfy Ωct = 0. It follows that Ωct = 0 and all the ct: s are
G-invariants. Now both the vector space of covariants having
leading terms of degree r and the homogeneous G-invariants of
degree r have dimension

. (ΓnrΊ
8 = A[ —\9n,r

over Q and Z/pZ respectively. Hence we need only to show that
cl9 - - , cs are linearly independent over Z/pZ. Express cί9 , cs as
linear combinations of Z of all monomials of degree r in α0, al9 , an.
The resulting matrix has Q-rank = s since cl9 , cs are linearly
independent. Then some s x s subdeterminant is nonzero. If p is
large enough then it is still nonzero after reduction (modp). Hence
cί9 , c s are linearly independent over Z/pZ.

COROLLARY 2.6. Let bn,r be the number of linearly independent
covariants with leading term of degree r. Then

3. Proof of fjjr1) = (-l)ntn+1ψn(t). In [1] it was proved that

for |ί | < 1( ) Ψn(t) 4[

where

= Π ( l -
v=0
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It is also proved that ψn is a rational function.

THEOREM 3.1. ^ ( r 1 ) = (~l)ntn+1ψn(t).

Proof. If we simply change t to t"1 in the integral we will
get the wrong sign. This depends on the fact that (*) is not valid
for 111 > 1. We rather have

(**) i r - Γ gJt, Ψ) (1 + COSφ)dφ = -ψn(t) if \t\ > 1 .

Put z = eίίD and write the integral as

Δ7ί J-π Γ TT /-^ _

where Γ" is the unit circle in positive sense.
The rational function

22 Π (1 - tZn~2*)

has the following poles (remember | ί | > 1).

(a) Inside Γ. uό(t) = all solutions to the equations zn~2u = 1/ί]
for 0 ^ v < n/2.

(b) Outside Γ. vό{t) = %(ί) - 1 = all solutions to the equations
zn~2v = t for 0 ^ v < Λ/2. Then

rM /(*)d« = Σ
27CIJ1' μt

since the sum of the residues at all poles of a rational function* is
zero.

Let us now for a moment think of t as satisfying 11 \ < 1. Then
by (*) we have (since now the vά{t): s are inside Γ)

as a function of t. Hence for \t\ > 1 again we get

= - Σ Res/(«) =

and (**) is proved. Now we observe that
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(1 - 2ί cos 95 +
(1 - fHl + 2 Σ t> cos 2vψ) if I ί |

-(1 - f W l + 2 Σ rvcos2z*?Λ if |ί|>1 .
\ 1 /

Assume that n — 2m is even. Then

/ 1 1

βn(ί, ψ) =
1-t (1 - tT °

1 (-1)- ̂

cos vφ if | ί | < 1

i-* (i-ίτ--^f) c o s^ i f i ί | > 1

where the dp(t): s are rational functions of ί. Multiplying by 1 +
cos φ and integrating over φ we get

if

if | ί | > l .

Hence for | ί | < 1 we get

1 - f (1 - ί)(l - ί2)'
:*.(«)

Similarly if » is odd we get

COROLLARY 3.2. Define H(v) by

= ±H{v)t"

Ό ΐ/v = l,
H(v — n —

Proof. First note that from Theorem 3.1 it follows that the
degree of the rational function ψn(t) is — (n + 1) < 0. Hence there
is for some N an iVth root of unity ζ and polynomials p0, •••, pn^
such that H(v) = Σ £ ? Cil#PiM- W e t h u s c a n d e f i n e H(-^) =
EiC"ix/i>i(~^). The rest follows from 4.7 in Stanley [6].
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4* Computat ion of the ring of invariants in four variables
when p = 5* In this section we explicitly compute the ring S =
S V? when G — ZJ5Z. It can be described as the set of all poly-
nomials / in k[x0, xu x2, x3] where char k = 5 such that

f(xQ, xx + x0, x2 + 2xλ + x0, xz + 3# 2 + 3a?! + x0) = f(xOf xlf x2, xz) .

The S is graded in a natural way by

and

is the Hίlbert series of S. In [1] <£>3 was computed for all p and
for p = 5 we get

ί4)(l - *6) (1 - *)8(1 - t*)

Unfortunately Φz does not give much information about the genera-
tors of S. In Dickson [3] and Williams [8] the following result is
found: S is generated by the following twelve polynomials (the sub-
script indicates the degree)

= x0

2x1

- x\x\ -
V± == XQX% ^ O * ^ I ^2 XijXz ~τ~ ΔX\X% XQX%

V/Q z=:z XQXS V$O ̂ I*^2 « îy«^3 "T" \OXQX2 X^XijX^ -\~ XQX^X2 ΔXQX±X2 ~\~ XQX

vδ = x2(xi — x{ + x\ — 2x\x\ + xQx\x2)

wδ = xt + (2x1 - 2x,x2)x\ + ( 2 ^ i - 2xλxl)xl + (~xi +x{-x\- 2x\x

+ 2xQxlx2)xz

u6 = x2

0xi - (2x0x1x2 + xf)xl + (2xtxl - »o^)»3 + (%t%i

, I vi«Λ/2/ ^ 3 I *^2 ~T~ WQ«/]_ «Z/Q«vitA/2 ^tΛ/o*^2 •"

^β = —^o^3 + %l%s + 2x\x2 — 2xxx\

v7 = (2x0xt - 2xlx2)x\ + xQxx(xl - xί)x2

3 - xQ(2x\ + 2x\x\ + 2x

+ x{)xl + ( — xix^ — 2x1x^1 + 2xQx\x\ — 2x\x2

~Γ \ X$/\ uX§X2 ~Γ ^Λ/o» l̂ ^2 Λ/o*̂ l*̂ 2 X±X2 ~Γ 3/2/

Multiplying Φ3 with factors of the form 1 — tdi where άt is the
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degree of the generator we get

where

h(t) = l-3tf - Zf - 5f - 4t9 - t10 + 6tn + ISt12 + 19t13 + 19tu

+ 9tlδ - 5t16 - 25ί17 - 36ί18 - Alt19 - 29f ° - 2ί21 + 23f2 + 35ί23

+ 53ί24 + 44t25 + 21ί26 - t27 - 28t28 - 41ί29 - 32f ° - 27f' - 6ί32

+ 9f3 + 13f4 + 14ί85 + 12ί36 + 6ί37 - 8ί 8 9 -2ί 4 0 + ί41 + 2ί42 + 2ί43 .

Let now A = k[yl9 , τ/12] be the polynomial ring in twelve variables
and consider the free A-resolution of S.

π0 > Md > > M2 > Mx > A > S > 0

where π(y±) = ulf , π(y12) = u7.
It follows that Mλ is the ideal generated by the relations

between the ulf •••, u7. Let {yid} be a minimal A-basis for Mi with
yiS = di3: Then we get the Hubert series

Ht(S) = (1 + Σ(~m
f)(l - ί3)2(l - £4)2(1 - ί5)3(l - f)\l - tΊ) .

Unfortunately the Hubert series does not completely determine the
number of relations, first syzigies etc. There can be cancellations
in the numerator. The following example (due to R. P. Stanley)
shows the difficulties: The ring

T = k[x, y, z, w]/(xw, yw, zw, xyz)

has the Hubert series

(l - tγ

but T has 4 relations and pdkiXtytZiW ̂ T) — 3. Thus we should really
write

^i(i = ;-- .

Much work was spent on finding the relations. Let us indicate the
difficulties for the five relations of degree eight. There are 47
monomials u\,u\u2y •• ,t&1w7 of degree 8. Expressing these in the

( 3 ) = 165 monomials x8

0, x
7

Qxl9 , xl we get a homogeneous linear

system of equations with 47 unknowns and 165 equations. Several



10 GERT ALMKVIST

reductions can be made but the relations were essentially found by
Jan Bohman by solving these equations by hand. Using the computer
language APL he could easily check the relations found.

THEOREM 4.1. Let p = 5. Then S=^S-V? has 12 generators
u19 ui9 uZ9 vZ9 u4, u5, vδ, wδ, u69 VQ9 U7 and at least the following 16 rela-
tions

r ? —~ <J>" I . nι /)/ , ΛI «» I , /)/*/j/ _ /}/ <ii
-Lv>2 — C/3 1 w2w4 (A/2 1̂  wyw2 vθ\ V g

u2

2v3

R3 = uzvz + n\uA + u2v4 + u\u\

R4 =

R5 =

RQ =

R7 =

— vzu5 + 2

•Bio = ^1^6 — ^3^5 + ^i^ 2 ^δ — Zvl + tcί^l

i2n = usu6 — ulUi — uiut + vi + utu2v4 — u\u\ + u\

RίS = —2u\u2vb + UjUlUt + Uytyl + 2ulu2v4 — 2u2u7 — v4vδ + 2u\n\

Ru = —ιii

Rί5 = UiVβ̂ β + wjw5 + u ^ β ^ — u\uzu± + u\uz — Ui^ius — 2n\u2vz

The case p = 7. In his paper [8] Williams also found the 20
generators when p = 7. In this case the Hubert series is

Φ(i) = 1 + ί3 + 2ί5 + 2t« + ί 7 + ί8

Multiplying by the 16 factors 1 — tdί corresponding to the other 16
generators we get

φ (t) = l-t*-t7-2tB-te9-7tlo-5t11'-tt12+2t1*+ - • - +tm

(I

Hence there are at least 24 relations; probably 1 of degree 6, 1 of
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degree 7, 2 of degree 8, 4 of degree 9, 7 of degree 10, 5 of degree
11 and 4 of degree 12. We see that the difficulties also increase
with the prime p.

Problem. ( i ) Compute the minimal number m = m(p, n) of
generators of S = S VZλΛ.

(ii) Let A = k\ylf , ym] as above.
Compute pdΛS.

5* The number of free components of SrVn+1 and some
combinatorial formulas* In Chapter III and V of [1] we studied
the decomposition of the symmetric power

We found methods to compute c3- for j = 1, 2, , p — 1. Here we
find a simple formula for cp, the number of free components of
SτVn+1. To indicate the dependence on n and r we denote this
number by dn,r. Recall that in [1] and [2] we get the following
results:

Let

Then

an>r = the number of components of SrVn+1

en,r = the number of non-free components of SrVnΛι .

A{m, n9 r) if r or n is even

n
Λ

u A(m, n, r) if both r and n are odd .

Σ i, n, r)

(all congruences are moάp).

Then

we get

PROPOSITION 5.1. Γfê  number of free components of SrVn+1 is

Σ A(m, w, r) if r or n is even

Σ Aim, n, r) if both r and n are odd.
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We get several corollaries that can be formulated in pure com-
binatorial language. In all the following formulas 0 < r, n < p.

COROLLARY 5.2.

COROLLARY 5.2'.

rn

Σ
m=0

, n, r) =

^ p the SrVn+1 is free and

* ̂  p then

j A(m, n, ψ
_ 1 in + r

P\ n

COROLLARY 5.3. = p — 1

1 if n is even

1 / / P - 1
— p + 1 if n is odd

COROLLARY 5.3'. Ifr + n = p —1 then

lίίp-V

., n,r) = . P\\ n

1 / / P - 1

— 1) ί f w is even

— p + 1) if n is odd and r is even
3>

y? Aim, r,n)=—\\ \ — p + 1 ] %f both n and r are odd .

COROLLARY 5.4. If r + n •= p — 2 then

— p + n\ if n is even

— n) if n is odd.

P\\ n

ill'-*
P\\ n

COROLLARY 5.4'. If r + n = p — 2 ί/ιe%

1 / / P - 2

Σ •^•(m

>

 n> r) =
w=0

[ I 1 — p + n) if n is even
P\\ n

P\\ n
n is n is odd and r is even
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Σ A(m, n, r) = — ί I P ) - n) if both n and r are odd .
27n-Irn & \ V n I I

Proofs. 5.2 and 5.3 follow from III. 2.10 in [1] and 5.4 from
Theorem 2 of [2].
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