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MAPS ON SIMPLE ALGEBRAS PRESERVING ZERO
PRODUCTS. I: THE ASSOCIATIVE CASE

W. J. WONG

Recent studies of linear transformations of various types
on the space of nXn matrices over a field suggest the
general problem of finding the semilinear transformations
/ on an algebra A over a field k, with the property that

where x,y £ A. In this article such maps are determined
for a class of primitive associative algebras, including the
case of bijective maps / on a finite-dimensional simple
associative algebra A.

Introduction. In recent years there have been many investi-
gations characterizing the linear transformations on the n x n
matrix algebra MJk) over a field k which preserve various proper-
ties, one of the earliest being a theorem of Dieudonne finding the
bijective linear maps preserving the set of singular matrices in
MJk) [4], with other studies concerning maps preserving rank,
various algebraic groups, etc. [1, 2, 5, 6, 8]. In many cases, the
problems considered can be easily formulated entirely in terms of
the structure of MJJc) as an associative or Lie algebra, and can
therefore be investigated in other algebras. For example, a theorem
of Watkins [9] finds the bijective linear transformations / on MJJc)
satisfying the condition that [fix), f(y)] = 0 for all pairs of elements
x, y of MJJc) such that [x, y] = 0, where [ , ] denotes the usual Lie
product in MJk). This naturally suggests that the same problem be
investigated for other algebras. If A is any algebra (not necessarily
an associative or Lie algebra) over a field k, we can seek to determine
the set G(A) of all bijective linear transformations / on A with the
property that f(x)f(y) = 0 for all pairs of elements x, y of A such
that xy = 0. We say that such a map / preserves zero products.

If A is finite-dimensional, the set of all ordered pairs x, y for
which xy = 0 is an algebraic set in the aίfine space A x A, and an
easy modification of the proof of a lemma of Dixon [5, p. 886]
shows that G(A) is a group. Clearly G(A) contains the automor-
phism group (?! of i , the group of units G2 of the centroid of A
(the algebra of linear transformations which commute with both
left and right multiplications in A), and the group Gz of all bijective
transformations / of the form f(x) = x + g(x), where g is a linear
map of A into the ideal A° of all elements z for which zA = Az =
0. The product G0(A) = G,G2GZ is a subgroup of G(A). (If A0 - 0,
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then G2 is abelian and GQ(A) is the semidirect product of Gt and G
[7, p. 107]).

Following Dieudonne [4], we can generalize our problem slightly
by taking for G{A) the set of all bijective semilinear maps / on A
which preserve zero products, and enlarging G0(A) by taking Gλ to
be the group of all semilinear automorphisms of A (semilinear maps
which are automorphisms of the multiplicative structure). We can
also consider more general situations in which A may not be finite-
dimensional, or the maps / are not assumed to be bijective. Since
there is no problem if all products in A are zero (so that all sub-
spaces are ideals), we shall examine the opposite case, where A is
simple or nearly simple. Of particular interest will be classical
algebras of linear transformations, for which our problem is some-
what analogous to the problem of finding the automorphisms of the
classical groups [3].

We deal first with the case that A is a simple associative
algebra, or more generally a primitive associative algebra. If A is
assumed to possess minimal left or right ideals, there is a natural
topology defined on A, and also an associated division algebra D.
Under the hypothesis that D is finite-dimensional over k, we show
that, except in the trivial case that A is a division algebra, a
continuous semilinear transformation which preserves zero products
and satisfies a condition weaker than bijectivity must essentially lie
in G0(A) (Theorem C and Corollary D). In particular, if A is finite-
dimensional, so that the topology is discrete, we have G(A) = G0(A).

The solution of this problem is obtained by applying a result
concerning maps on tensor products of vector spaces over division
algebras, which preserve elements of rank 1. This situation has
been considered by a number of authors, e.g., Jacob [6], Marcus and
Moyls [8], but the exact result we need (Theorem A) does not seem
to be in the literature. With some variations and complications,
the methods of this article will also play an essential role in the
case of nonassociative simple algebras which we shall consider in
subsequent papers. For example, a study of "generalized rank 1
preservers" will be used in [10] to determine maps preserving zero
products for a class of simple Lie algebras constructed from the
finite-dimensional simple associative algebras.

Since the transformations occurring in the conclusion of Theorem
G and Corollary D are bijective, the hypotheses of these results may
also be regarded as providing some information about maps preserv-
ing zero products which are not bijective. The last section of the
paper gives some examples of such maps. It remains an open
problem to determine the maps preserving zero products which do
not satisfy our conditions, although a recent paper of Botta throws
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some light on the question when A is finite-dimensional and k is
algebraically closed [1].

l Maps on tensor products* We first recall the definition
and some basic facts about tensor products of vector spaces over a
division ring. Suppose D is a division ring, U is a right vector
space over D, and V is a left vector space over D. If H is any
additive abelian group, a map b: U x V-+H is said to be balanced
if it is additive in each variable and b(ua, v) = b(u, av)f for all u e
U, veV, aeD. A tensor product of U and V consists of an additive
abelian group T with a balanced map t: U x V—> T, with the pro-
perty that every balanced map 6: U x F->iJ can be factored uni-
quely, 6 — gt, where g is a homomorphism of T into H. Then T
exists and is essentially unique. Usually T is denoted U ® V and,
if u 6 U, v 6 F, t(u, v) is denoted w (x) w. An element x of ?7(x) V is
said to be of rank 1 if x = %®v, where u and v are nonzero. A
rank 1 subgroup of t/® F is a subgroup whose nonzero elements
are all of rank 1. The elements of rank 1 generate C/(x) V. In an
expression of an element x of rank 1 in the form x — u (g) v, the
subspaces (u), <V> generated by u and v are uniquely determined,
and will be denoted U(x), V(x).

LEMMA 1. If x, y are elements of rank 1 in U® V such that
x -f y is either of rank 1 or zero, then U(x) = U(y) or V(x)~ V(y).

Proof. Any element p of the dual space U* of U induces a
homomorphism p: t/(x) V —> V such that p(u<g)v) — p(u)v, and so
p(u ®V)G V(U ® v).

Suppose that x~u (x) v, y — ux (R) v19 and assume that U{x)φU(y).
Then there exist p, q in ί7* such that

p(u) = 1, p(^) = 0, q(u) = 0,

Then p(x + y) = p(a?) + j%) = v, g(a? + 2/) = g(α?) + ^(y) = vλ. Hence
v and ^ lie in V(x + y), so that V(x) = V(x + y) =

For convenience we write Z7*, F # for the sets of nonzero ele-
ments of U, V respectively. If u e U\ the set

u ® V = {u (x) v\v e V}

is a rank 1 subgroup of U(&V. Similarly, an element v of V4

determines a rank 1 subgroup
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LEMMA 2. If H is a rank 1 subgroup of £/(x) F, then either
H Q u(£) V, some u e U\ or H C U®v, some v e V*.

Proof. Assume that H is not contained in u (x) V for any u.
Then there exist nonzero x9 y in H such that U(x) Φ U(y). By
Lemma 1, V(x) = V(y). If z is any nonzero element of H, then either
U(Z)ΦU(X) or U{z)ΦU{y). By Lemma 1, F(z) - V(x) or F(z)-F(?/).
In any case, V(z) =V(x), and so HQ Utgiv, where V(x) = (v).

If D is a division algebra over a field &, which may be identi-
fied with a subfield of the center of D, then Ϊ7(g) V can be made
into a vector space over k, with scalar multiplication such that
ciu (x) v) — u (x) (cv), where ue U, v e V, cek. lϊ ueU\ then κ ® 7
is a subspace of the ^-vector space U 0 V, and the map v —> u(x) v
is an isomorphism of F with u ® F as ^-vector spaces. Similarly,
if v e V*9 U (x) v is a subspace of ί/(x) 7 isomorphic with U.

Before stating the main result of this section, we recall that a
map h of V into another left vector space Vx over D is said to be
semίlinear with respect to an automorphism σ of D (more briefly,
σ-semilinear) if h is additive and h(av) = aσh(v), for all ve F, aeD.
Similarly one can define semilinear maps between right vector spaces.
Also, semilinear maps can be defined from a left vector space to a
right vector space, or vice versa, with respect to an anti-automor-
phism of D. Further, if F and Vλ are left vector spaces over a
division algebra D over a field k, then the maps of V into VL

(regarded as vector spaces over k) which are semilinear with respect
to a given automorphism μ of k form a right vector space L«(F, V})
over D, with the product ha of an element h of L,t(V, Vx) by an
element a of D being given by the equation

(ha)(v) — h(av) ,

where v e F. Similarly, if U, Ux are right vector spaces over Ώ,
the ^-semilinear maps of U into ϋΊ form a left vector space L,t(U,

over D.

THEOREM A. Let D be a finite-dimensional division algebra
over a field k, let U, Uι be right vector spaces over D, let F, FL be
left vector spaces over D, and suppose dim^ U > 1, dim^ F > 1. //
/: U (x) F —> C/i (H) VΊ is a semilinear map with respect to an auto-
morphism μ of k, and f maps rank 1 elements on rank 1 elements,
then one of the following holds.

( i ) There exists a nonzero element ux of Uι and a D-linear
map u~>hu of U into Lμ(V, Fx), such that hu is injective for all
nonzero u in U, and
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f(u (x) v) = u, (x) hu(v) ,

for all ue U, v e V.
(ii) There exists a nonzero element vλ of V1 and a D-lίnear

map v->gυ of V into Lμ(U, Z70, such that gv is injective for all
nonzero v in V, and

f(u (g) v) = gv(u) (x) vγ ,

for all ue U, v e V.
(iii) μ can be extended to an automorphism σ of D, and there

exist injective σsemilinear maps g: U—> Uίf h: V > V19 such that

f(u (x) v) = g{u) (x) h(v) ,

for all u 6 U, v 6 V.
(iv) μ can be extended to an anti-automorphism σ of D, and

there exist injective σ-semilinear maps g: V > Ulf h: U —> Vlf such
that

f(u <g) v) = g(v) (x) h(u) ,

for all u e U, v e V.

Most of the rest of this section is devoted to proving this
theorem. We remark that the condition that rank 1 elements are
mapped on rank 1 elements implies that / is injective on any rank
1 subgroup of ί7(x) V. However, / may not be injective on the
whole of U0V.

The following is an immediate consequence of Lemma 2.

LEMMA 3. If ue U\ then f(u ® V) £ uv (g) Vi9 some u, e Uϊ, or
fin (x) V) C ETi (x) vlf some v, e VI

The next result shows that one of the two possibilities for
f(u 0 V) holds uniformly as u varies over U*.

LEMMA 4. It is impossible to have

f(u (g) V) £ u, (x) V19 f{u' ®V)QU1(g)v1,

where u, uf e U\ u, e Uf, vL e F/.

Proof. If v 6 V\ then f(u (x) v) and f{uf (x) v) have rank 1,
while f{u (x) v) + f(ur (g) v) = /((% + %') ® v) has rank 1 or is 0.
By Lemma 1, either Uλ{f{ur®v)) = ^ ( / ( u (x) v)) = <ux>, or Vx(f{u®

(x) v)) = <^>. Thus either /(% (x) v) or f{uf (g) v) lies in
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(u, (x) F :) Π {Uι (x) Vj). As a vector space over k, (ux (x) F2) Π (tΛ (x) tO
has dimension equal to the dimension [D: k] of D over k, while F
has dimension [D: k] dim^ F. Hence the inverse image of (^(g) FJ n
( C/Ί (g) vj under the injective semilinear map v —> /(tc (x) v) of F into
^i ® Fj is a proper subspace of F, and the inverse image of (ut (g)
Vi) Γl (Z7i (x) vj under the map v -* /(%' (x) v) of F into ί7x (g) ̂  is a
proper subspace of F. Thus F is a union of two proper subspaces,
and this is impossible.

We thus have two possibilities:
(A) For every u e U, there exists u, e Uι such that

f(u <g) F) S u, (g) F, .

(B) For every ue U, there exists vx 6 Fx such that

/(w (x) F) £ [/, (g) ̂  .

Similarly, we also have two possibilities for the f(U(g)v):

(a) For every v e F, there exists vy e Vλ such that

f(U®v)Q U.0V, .

(b) For every v e V, there exists u1 e U1 such that

In all we therefore have four cases, (Aa), (Ab), (Ba), (Bb), where
(Aa) means that both (A) and (a) hold, etc. We consider these one
at a time.

Case (Ab). Fix v e F # and ux 6 U} satisfying (b). Considering
f(u ®v), we see that this fixed u± may be used in (A), for every
we U, so that

f(u 01;) = %!® λ«(t;) ,

where hu is a map of F into Fx, depending on u. The map hu is
uniquely determined by u if u ^ 0, and we take h0 — 0.

Since the map v -+u®v is ^-linear and / is ^-semilinear, hu is
also /^-semilinear. If u and v are nonzero, f(u (g) v) is nonzero, so
that hu(v) Φ 0. Thus hu is injective if u Φ 0. Clearly /^+tt> = few +
feu,. Finally, if aeD,

u, (g) hu(av) = /(w (x) αv) = /(%α (g) v) = ux <g) feMβ(v) ,

so that fcttα = /^ttα. Thus the mapw-*/^ is D-linear, and case (i) of
Theorem A holds.

Case (Ba). An exactly similar argument shows that case (ii) of
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Theorem A holds.

Case (Aa). There exist maps gx: U-> Ulf h^. V—>Vlf 7: Ux V-*
D, such that

f(u (x) v) = gλ(u) (x) y(u, vty^v) .

Since / preserves rank 1 elements, y(u, v) is nonzero when u and v
are nonzero.

We prove that, if u, u' e U*, and v, vf e V*, then

(*) Ύ(U, V) = y(u, v')y(u', v')-lfy(v/, v) .

There are two cases. First suppose that h^v) and h^v') are linearly
independent. From the equations

f(u (x) (v + v')) - /(u (g) v) + f(u (g) vθ ,

f{u' (x) (v + v')) = /(%' ® v) + f(u' (x) t;') ,

we have the relations

y(u, v + v^h^v + v') = 7(11,

y(u', v + t;')fei(v + v') = 7(u',

Since h^v) and fei(v') are linearly independent, we have

y(u, v) = Xy(u', V)9 Ύ(U, vr) = XΎ(U', V') ,

where λ = y(u, v + vr)Ί{nf, v + v')~ι. The equation (*) follows.
Now suppose that hL(v) and hλ(v') are linearly dependent. Since

(B) does not hold, there exists v" in V such that hx(v") and \hv{v)
are linearly independent. By what we have proved,

, v) = τ(u, v")y(u', v")-lfy(u', v) ,

, V') = 7(U,

and the equation (*) follows.
We now fix v! e U*, vf e V\ and set

= gL(u)y(u, v')f when ue U* ,

9(0) = 0 ,

Λ(v) = 7(V, vf)~^{n\ v)hL(v), when v

Λ(0) = 0 .

By the equation (*) we have

f(u (x) v) = g(u) (x) h(v) ,

for all u e U, v e F.



236 W. J. WONG

If u Φ 0, v Φ 0, then f(u ®v) Φθ, and so g(u) Φ 0, h(v) Φ 0.
Since / is μ-semilinear, we see that g and h are μ-semilinear as
maps on U and V regarded as vector spaces over k. Thus g and h
are injective.

If a 6 D, u 6 [7#, t; 6 F*, then

) h(av) = / O (x) αw) = /(wα (g) v) = g{ua) (x) h(v) .

It follows that

g(ua) =

fe(αt ) =

where άeD. The first of these two equations shows that a is
independent of v, and the second shows that it is independent of u.

If a, β 6 D, then

g{u)Έβ = g(uaβ) = g{uά)β = g(u)aβ ,

so that α/3 = α/5. Similarly, α + /3 = α + /S. Hence the map a —>
α is an endomorphism σ of D, which clearly extends the automor-
phism μ of k. Thus σ is injective, and, since D is finite-dimensional
over k, σ is an automorphism of D, with g and fe both σ-semilinear.
Thus case (iii) of Theorem A holds.

Case (Bb). Here case (iv) of Theorem A holds. The argument
is essentially the same as for case (Aa), and is omitted.

This completes the proof of Theorem A.

We remark that there are conditions under which cases (i) and
(ii) of Theorem A cannot occur, for example when U = Ulf V = Vu

U and V are finite-dimensional, and k is algebraically closed, since
then Lμ(V, V) and Lμ(U, U) do not contain any subspace of dimen-
sion greater than 1, whose nonzero elements are all injective [8].
Also we mention that a converse to Theorem A is easily formulated
and proved.

A similar theorem to Theorem A was proved by Jacob [6], in
which D is any division ring with more than 2 elements, and the
semilinearity condition on / is replaced by the assumption that / is
bijective and that both / and its inverse satisfy a condition of
"coherence in variance."

2* Maps on spaces of linear transformations* If D is a
division ring, V is a left vector space over D and Vf is a right
vector space over Ό% then (V, Vf) is called a pair of dual vector
spaces if there is given a nondegenerate bilinear form 6: V x Vf—>
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D [7, p. 69]. Usually b(v, v') is abbreviated (v, v'). A Hausdorff
topology can then be defined to make V a topological group, by
taking the annihilators Y1 in V of finite-dimensional subspaces Y
of V as a fundamental set of neighborhoods of 0. This is called
the V'-topology on V, and can also be described by the fact that
the closure of any subspace W of V is the double annihilator W11;
in particular, finite-dimensional subspaces are closed [7, p. 71].
Similarly, there is a F-topology defined on V.

Suppose (J7, U') and (V, V) are two pairs of dual vector spaces
over D. If x: U - > V is semilinear with respect to an automorphism
σ of D, a σ^-semilinear map x'\ V —> U' is called the adjoint of
x if

(x(u), v') = (u, x\v')Y ,

for all ueU,vre V. If U and V are given the ί/'-topology and
F'-topology, then x has an adjoint if and only if it is continuous.
Similar remarks hold for σ-semilinear maps of U into V, where σ
is an anti-automorphism of D, etc.

The continuous linear maps from U to V form an additive
group L(U, V) (more accurately, LV,>V,{O, V)). An element x of
L(U, V) is finite-valued if the image x(U) is a finite-dimensional
subspace of V, and the finite-valued maps in L(U, V) form a sub-
group F(U, V). This subgroup can be identified with the tensor
product U' 0 V, so that elements vl (x) v of rank 1 in U' ® V are
identified with maps u —> (u, u')v, which are precisely the continuous
linear maps x for which x(U) has dimension 1 (that is, x has rank
1 in the usual sense for linear maps).

The set Vu of all mappings of U into V has the product
topology obtained from the F'-topology of V. As a subset of Vu,
L(U, V) inherits this topology, and becomes a topological group, in
which a fundamental set of neighborhoods of 0 consists of the sub-
groups

N(W,X) = {xeL(U, V)\x(W)QX1} ,

where W and X range over the finite-dimensional subspaces of U
and V respectively. We call this the symmetric topology on
L(U, V), since the map x—>x' (adjoint of x) is a homeomorphism
of L(U, V) on L(V, Ur), taken with its similarly defined topology.
The symmetric topology is coarser than the finite topology usually
defined on L(U, V) [7, p. 29]. F(U, V) is a dense subgroup of
L(U, V).

If U and V are finite-dimensional, all the topologies mentioned
are discrete, and then all maps are of course continuous.
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If D is a division algebra over a field k, identified with a sub-
field of the center of D, then L(U, V) is a vector space over k,
and F(U, V) is a subspace. The identification of F(U, V) with
U' ® V is a vector space isomorphism. In this case, every finite-
dimensional subspace of L(U, V) is closed. In § 3 we shall use a
more general result.

LEMMA 5. Let B and C be subspaces of L(U, V) such that BS=
C and dimfc C/B = n < oo.

( i ) If B is closed, then C is also closed.
(ii) In any case, if B and C are the closures of B and C,

dimfc C/B ^ n.

Proof, (i) By induction, we need only consider the case n = 1,
so that C — B + kx, where x & B. Since B is closed, there exist
finite-dimensional subspaces WX,XX of U, V, such that x + N(Wlf

Xt) is disjoint from B. This implies that N(Wlf Xd contains no
element of C outside B.

Let y be an element of the closure of C. Then y + iSΓ(Wr

1, XJ
meets C, so that y — ax — b eN(Wί9 Xt), where aek,beB. If W,
X are finite-dimensional subspaces of U, V containing Wlf Xx res-
pectively, we find that y — a'x — b' e JV( W, X), where α' ek,b' e S.
Since iV(TF, X) £ iSΓ(Wlf X,), we see that ^(W,,^) contains (a -
af)x + b — 6', and thus α = α'. Hence (y — ax) + JW(TF, X) meets B.
Since the iV( W, X) with TΓ 2 Wγ and X 2 ^ form a base for the
system of neighborhoods of 0, and B is closed, it follows that y —
ax e B, so that y eC.

(ii) Since dimfc (B + C)/B = dimfc C/(B n C ) ^ % , ( i ) implies that
B + C = C, and the result follows.

We now consider the case that D is a finite-dimensional division
algebra over fc. In the next result, continuity is always taken with
respect to the topologies we have defined. In particular, L(U, V)
(and its subspaces) are given the symmetric topology. If x, y are
maps, the product xy is the composition "y followed by OΣ."

THEOREM B. Let (U, U'), (V, V'\ (Ul9 U[), (Vlf VI) be pairs of
dual vector spaces over D, where D is a finite-dimensional division
algebra over a field k, and suppose ά\mD U > 1, dim^ V> 1. Let
A be a subspace of L{U, V) containing F(U, V), and let

f:A >L(Ulf V,)

be a continuous map which is semilinear with respect to an auto-
morphism μ of k. If f maps elements of rank 1 in A on elements
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of rank 1 in L(Ulf FJ, then one of the following holds.
( i ) There exist a nonzero element u[ of U[ and a continuous

μ-semilinear map h: A —> Vι whose kernel contains no element of
rank 1, such that

fix) = u[® h(x) ,

for all x e A.
(ii) There exist a nonzero element vλ of Vλ and a continuous

μ-semilinear map g: A—> TJ[ whose kernel contains no element of
rank 1, such that

f(x) = g(x) <g) Vl ,

for all x e A.
(iii) μ can be extended to an automorphism σ of D, and there

exist a continuous injective σ-semilinear map h: V~^ V1 and a
continuous σ~~ι-semilinear map g:U1—>U whose image giUΊ) is
dense in U, such that

f(x) = hxg ,

for all xeA.
(iv) μ can be extended to an anti-automorphism σ of D, and

there exist a continuous injective σ-semilinear map h: Uf ~^Vί and
a continuous σ^-semilinear map g: U1~^ V whose image g{U^) is
dense in V, such that

f(x) = hx'g ,

for all x e A, where xr is the adjoint of x.

Proof. Since F(U, V) and F(Ulf Vλ) are spanned by their ele-
ments of rank 1, the restriction of / maps.FW, V) into F(Ulf Vλ).
Since F(U, V) = *7'(x) V, F(Ul9 Vλ) = U[ Θ Vl9 we can apply The-
orem A.

Suppose case (i) of Theorem A holds. Then there exists a non-
zero element u[ of Ό[ such that

f(F(U, V))^u[®Vx.

Suppose XiβLiU^ Vλ), x1ίu[^} Vx. Then the kernel of xλ does not
contain the annihilator H1 of u[ in Ulf so that there exists a one-
dimensional subspace Wλ of Hλ such that XjiWΊ) Φ 0. There exists
a one-dimensional subspace Xx of V[ such that xxi Wλ) is not contained
in the annihilator XX

L of X,. If y1ex1 + N(Wl9 Xt), then y^W,) is
not contained in Xx

ι, so that yι $ u[ (x) Vx. Hence u[ (g) V1 is a closed
subset of L(Ulf Vλ). Since / is continuous and F(U, V) is dense in
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A, we have f(A) Q u[ 0 Vu so that

f(x) = u[ (x) Λ(&) ,

for all xe A, where h is a map of A into Vx. Since / is ^-semi-
linear and nonzero on elements of rank 1, so is h.

Suppose Xγ is any finite-dimensional subspace of VI. Since u[φ
0, there exists a one-dimensional subspace Wx of U1 which is not in
the annihilator of u[. By continuity of /, there exists a neighbor-
hood N of 0 in A, such that f(N)QN(WlfX1)f so that u[®h(x)
maps Wx into Xf, for all xeN. Hence Λ(ΛΓ) £-Γ/. Thus Λ- is
continuous, and case (i) of Theorem B holds.

If case (ii) of Theorem A holds, a similar argument shows that
assertion (ii) of Theorem B holds.

Next suppose case (iii) of Theorem A holds, so that μ can be
extended to an automorphism σ of D, and there exist injective σ-
semilinear maps gf: U' —> U[y h: V—> Vu such that

f(u' (x) v) = fir V ) Θ h(v) ,

for all ur 6 U\ v e V. Suppose Wλ is a finite-dimensional subspace
of Ux. Let v be a nonzero element of V, so that fo(v) Φ 0, and
there exists a one-dimensional subspace Xi of V[ which does not
annihilate h(v). Since / is continuous, there exist finite-dimensional
subspaces W, X of U, V, such that f(AnN(W, X)) QN(WU Xx).
If u' e W1, then u'<g)v eAf) N(W, X), so that g\u') (g> fe(v) € ̂ (TFΊ,
Xi). Since A(v) g Xff g'(u') e Ψi1. This shows that g' is continuous.
Similarly, h is continuous.

Since gf is continuous, it possesses an adjoint map g: Uι —> Ϊ7,
which is a continuous tf^-semilinear map. If ur e U', v e V, ue U,
then g\υf) ® h(v) maps u on the element

(w, g'(u'))h(v) - to(tt), ^')σfe(v) = h((g(u), u')v) ,

and (flr(%), u')v is the image of g(u) under uf (g) v. Hence,

/(a) =

for all elements x of rank 1, and hence for all x in F(U, V).
Now define a map /x on the whole of A by setting f^x) =

#e A Since βr and /i are continuous, /i maps A into If(ϋi, Fx). If
TF2, Xx are finite-dimensional subspaces of Uu VI, then (̂WΊ) is a
finite-dimensional subspace T7 of Z7, and there exists a finite-dimen-
sional subspace X of V such that h(Xλ) Q X^, since fe is continu-
ous. Clearly f,{A Π JV(TΓ, X)) £ tf(TFlf XJ, so that f, is continuous.
Since L(UU Vλ) is Hausdorίf and / and fλ agree on the dense subset
F(U, V) of A, it follows that f = flf so that /(α;) = hxg, for all
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xeA.
Since gf is injective, the definition of the adjoint map shows

that the only vector in U' annihilating g(U^) is 0. Thus the closure
of giUj) in U is g(U^)1L = U, so that g(Uύ is dense in U. Asser-
tion (iii) of Theorem B holds.

If case (iv) of Theorem A holds, a similar argument shows that
assertion (iv) of Theorem B holds. This completes the proof of
Theorem B.

As in Theorem A, a converse to Theorem B is easily formulated
and proved.

3. Maps on primitive algebras* An associative algebra A over
a field k is said to be primitive if it possesses a faithful irreducible
right module. If such an algebra has a minimal one-sided ideal,
then it has both minimal left ideals and minimal right ideals, and
also has a faithful irreducible left module [7, Chap. IV]. In this
case A has, to within isomorphism, only one faithful irreducible
right module. The commuting algebra of this module is a division
algebra D, which can be realized within A as the subalgebra eAe,
where e is an idempotent generating a minimal right ideal. By the
structure theorem for primitive algebras with minimal one-sided
ideals, there is a pair of dual vector spaces (F, V) over D such
that F(V, V)QAQL(V, V). We take V with the F'-topology,
and A with the topology induced from the symmetric topology on
L(V, V). If A is not a division algebra, then dim^ V> 1.

THEOREM C. Let D be a finite-dimensional division algebra
over a field fc, and (V, V) a pair of dual vector spaces over D,
with d i m Z ) F > l . Let A be a subalgebra of L(V, V) containing
F(V, V)f and let f be a continuous map of A into itself which is
semilinear with respect to an automorphism μ of k, such that f
preserves zero products. Assume

1i) The kernel of f does not contain any elements of rank 1
in F(V, V).

(2) The image of f is dense in A, or V is finite-dimensional
and the kernel off does not contain any divisors of zero.

Then μ can be extended to an automorphism σ of D, and there
exist a σ-semilinear homeomorphism h: V—>V and a nonzero ele-
ment a of the center of D, such that

f(x) = hxdah~ι ,

for all x e A, where da is the homothety v —+ av on V defined by a.
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Proof. We shall show that / preserves elements of rank 1, so
that Theorem B can be applied. For xeA, form the left and right
annihilators

R(x) = [z 6 A\ xz = 0} ,

subspaces of A.
Suppose that x is of rank 1, and let v be a nonzero element of

the image x(V). Consider the fc-linear map θ: A—> V/keτx given by
θ(y) = y(v), the coset of y(v) (mod ker x). Clearly θ is surjectiye. If
2/eker#, let z — u' ®y(v), where uf is an element of V such that
(v, u') = 1. Then zeJS(#), since y(v)eker x, and # — zeL(x), since

= s(t ). Hence ker θ S L(a ) + R(x), so that

dim, A/(L(x) + #(#)) ̂  dim^ A/ker θ = dimfc V/ker a? = [D: fc] .

(Actually ker θ = L(a?) + i?(aθ, so that equality holds.)
Next suppose that x has rank greater than 1. Let v, w be

linearly independent vectors in x{V). Since kerx is closed, F/kera?
has a Hausdorff quotient topology. The Λ -linear map θ: A -> Vj
ker sc φ F/ker x given by

is continuous and surjective. If yeL(x), zeR(x), then y(v) == y(w) —
0, ίδ(v) e ker a?, and s(w) e ker cc, so that y + ze ker ^. Since ker θ is
closed, we see that dim* A/cl (L(x) + R(x)) ^ dimΛ A/ker θ = 2 dimfc V/
ker a? ̂ > 4[i): fe], where cl denotes closure in the symmetric topology.

If V is finite-dimensional, then A is the algebra of all linear
transformations on V, and y e R(x) if and only if y maps V into
ker x, so that Λ(α?) is isomorphic as a &-vector space to the direct
sum of dim^ V copies of ker x, so that

dinifc 12(α5) =ί [D: ^(dim^ F)(dimz? ker x) ,

and dimA R(x) is a strictly decreasing function of rank x.
Since / preserves zero products, f(L{x)) Q L(f(x)) and f(R(x)) S

R(f(x)). If a? has rank 1, then

dimkf(A)/f(L(x) + R{x)) ^ dimk A/(L(x) + R(x)) ^ [D: k] .

If the image f(A) is dense in A, we see by Lemma 5 that

dim, A/cl (L(/(aO) + «(/(»))) ^ dim, A/cl (/(Ir(a?) + Λ(a?))) ^ [JD: k] .

It follows that fix) has rank at most 1. Since f(x) Φ 0 by condi-
tion (1), f(x) has rank 1. If the second alternative of condition
(2) holds, then
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dimfc R(f(x)) ^ dimfc f(R(x)) = dimfc R(x) ,

so that rank f{x) :g rank x. Again we see that f(x) has rank 1.
We can now apply Theorem B. Suppose case (i) holds, so that

there is a nonzero element v! of V such that f{A) £ v! (g) V. In
the proof of Theorem B we saw that u'(S) V is closed in L(V, V).
If / has dense image, we see that

so that dim V = 1, a contradiction. If V is finite-dimensional, let
v' be a nonzero element of V. There is an injective μ-semilinear
map h(hv' in the notation of Theorem A) of V into itself, such that
f(v' ®v)~uf® h(v), for all veV. Since V is finite-dimensional, h
is surjective. Choose v so that (h(v), v?) Φ 0. Let w' be a nonzero
element of the annihilator of v in V, and w any nonzero element
of V. Then

(wr ® w)(t;' (g) v) = 0, f{w' (g) w)/(t;' <g) v) Φ 0 ,

a contradiction. Hence, case (i) does not hold.
A similar argument shows that case (ii) does not hold.
Suppose now that case (iii) of Theorem B holds. Then μ extends

to an automorphism σ of D, and there exist a continuous injective
σ-semilinear map h: V~-> V and a continuous σ^-semilinear mapgr:
V—> V with dense image, such that

f(x) = hxg ,

for all xeA. Suppose the image of / is dense in A. If v is a
nonzero element of V, choose y e A such that y(v)Φθ. Let W be
the subspace of V spanned by v9 and choose a one-dimensional sub-
space X of V such that y(v)$XL. There exists xeA such that
f(x)ey + N(W, X), so that f(x)(v) - y(v)eX\ Hence /(αθ(t ) ^ 0,
so that v $ ker g. Hence g is injective. If V is finite-dimensional,
then g is surjective and hence again g is injective.

Let W be a one-dimensional subspace of V and X any one-
dimensional subspace of W1. We can take rank 1 elements x, y in
A such that y(V) = FT and ker a = X 1 . Then ^ = 0, so that

hxghyg = f(x)f(y) = 0 .

Since # has dense image and Λ is injective, g#λi/ = 0, so that
0(Λ(WO) C-XΛ Since TF is closed, we have TF = WLL, the inter-
section of all the subspaces X 1 as X ranges over the one-dimensional
subspaces of W1. Hence,

g(h(W))ΩW,
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for every one-dimensional subspace W of V. It follows that gh is
a homothety da: v —> av, where a is an element of D. Since gh is
ZMinear, a: must lie in the center of D. Since gh is injective, aφθ>
so that dα is a homeomorphism of V on itself. Thus g is bijective,
and hence h is also bijective. Since h~ι = dα1^ is continuous, fe is a
homeomorphism. Setting g = d^"1, we obtain the desired result.

Finally consider the case (iv) of Theorem B. We have a contin-
uous injective semilinear map h: V —> V and a continuous semilinear
map#: V—> V with dense image, such that

f(x) = hx'g ,

for all x e A. As before, we see that g is injective. Let If be a
one-dimensional subspace of V, and y an element of A having image
W. Since dim^ V> 1, we can choose a nonzero element v' of W1.
Since 2/' ^ 0, and g and fe are injective, there exists an element
veV which is not annihilated by g(h{y'{V'))). Let x = v'<g)v. Then,
since ker#' annihilates x{V), we see that x'ghy* Φθ. Since g has
dense image and h is injective, f{x)f{y) = hxrghyfg Φ 0. However,
#2/ = 0. Thus this case does not occur, and Theorem C is proved.

Our result can be stated in intrinsic terms, that is, without
reference to the representation of A as an algebra of linear trans-
formations. In the situation of the theorem, F(V, V) is the socle
soc (A), which is the sum of the minimal right ideals of A, or equi-
valently the sum of the minimal left ideals of A. (Also soc (A) is
the unique minimal ideal of A.) The finite-dimensional subspaces of
V are just the images of the elements of F(Vf V), and the annihi-
lators in V of finite-dimensional subspaces of V are just the kernels
of the elements of F(V, V). Hence the symmetric topology on A
is determined intrinsically by taking as base for the neighborhoods
of 0 the sets {y e A\xyw = 0}, where w and x range over soc (A).
The elements of rank 1 are characterized as the elements generating
minimal right (or left) ideals.

If h and a are as in the conclusion of the theorem, the map
x-*$da is an element of the centroid (center) of L(V, V)f and the
τri2φ x-± hxh'1 is a semilinear automorphism of L(V, V). If A Φ
L{V, V), it is not clear that these maps leave A invariant, except
in the case that A — F(V, V). To avoid complications, we give an
intrinsic restatement of Theorem C only for the case that A is
simple.

COROLLARY D. Let A be a simple associative algebra over a
field k, which is not a division algebra, and suppose that A contains
a nonzero idempotent e such that eAe is finite-dimensional over k.



MAPS ON SIMPLE ALGEBRAS PRESERVING ZERO PRODUCTS 245

Then A is a topologίcal group with a base for the neighborhoods of
0 being given by the sets {yeA\xyw = 0}, where x,weA. Let f be
a continuous semilinear map on A which preserves zero products,
such that f is injective on every minimal right ideal of A. Assume
that either the image of f is dense in A, or A is finite-dimensional
and the kernel of f does not contain any divisors of zero. Then f
is the product of an element of the unit group of the centroid of
A with a semilinear automorphism of A.

Proof. Since a nilpotent one-sided ideal generates a nilpotent
two-sided ideal, simplicity implies that A has no nonzero nilpotent
one-sided ideals. Let e be a nonzero idempotent for which the
dimension of eAe is as small as possible. If b is a nonzero element
of eAe, so that b — eb — be, we see that

(beAeYbA = (bA)n+1 Φ 0 ,

so that (beAe)n Φ 0. Hence, eAe has no nilpotent right ideals. Let
J be a minimal right ideal of eAe. Then, J = feAe, where / is an
idempotent in eAe [7, p. 57]. Since / = fe, we have

fAf = feAfe £ feAe = J .

The minimality of the dimension of eAe implies that fAf — eAe, so
that J = eAe. Thus eAe has no proper nonzero right ideals. Simi-
larly, eAe has no proper nonzero left ideals. It follows that eAe is
a division algebra, and hence that eA is a minimal right ideal of A
[7, p. 65]. Using the structure theorem for primitive rings with
minimal one-sided ideals, we are now in a position to apply Theorem
C, which immediately gives Corollary D.

We remark that when D — k in Theorem C, if A is finite-dimen-
sional and / is assumed to be bijective, then the determination of
/ is immediate from a result of Dieudonne [4]. In another direction,
if / is assumed to be a homeomorphism and both / and /- 1 preserve
zero products, then / and f~ι preserves elements of rank 1, which
are characterized as those elements x whose right annihilators R(x)
are maximal in the set of all right annihilators of nonzero elements
of A. Then / can be determined by using the theorem of Jacob
[6], without any assumption on the dimension of D.

4* Examples* Maps preserving zero products which do not
satisfy the conditions of Theorem C can be constructed in a number
of ways. Take V and A as in Theorem C.

(a) If W is a closed subspace of V, then the set
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Aw = {xeA\x(V)^ W,x(W) = 0}

is a closed subalgebra of A in which all products are zero. Any-
continuous semilinear map / of A into Aw will preserve zero pro-
ducts, but will not satisfy condition (2) of Theorem C. If V is
infinite-dimensional, it is possible for / to be injective, so that con-
dition (1) is satisfied. For example, we may have V= W(& U, V' =
UJ0 W1, where W and U are each linearly homeomorphic with
V. Let g: U—> V, h: W--» V be linear homeomorphisms. If xeA —
L(V, V), then h~ιxg is a continuous linear map of U into W, which
extends to an element f(x) of Aw. The map / is a λ -linear homeo-
morphism of A on Aw.

(b) Any algebra endomorphism of A will of course also preserve
zero products. In the infinite-dimensional case, it is possible to
have nonzero endomorphisms of A which are not automorphisms.
Suppose W is a subspace of V such that there exists a linear
homeomorphism h: W—> V. If xeL(V, F), we obtain a continuous
linear transformation h~λxh on W. If h can be extended to a contin-
uous linear map on F, then h~xxh extends to an element of L(V, F),
and we obtain a continuous injective endomorphism of L(V, V).
The closure of the image of this endomorphism consists of linear
transformations mapping V into the closure of W. If W is not
dense in F, then the image is not dense in L(V9 F), so that again
condition (2) is not satisfied.

(c) In another direction, suppose T is a dense subspace of F.
We note that if y is a continuous finite-valued linear transformation
on T, then the kernel of y is open in ϊ7, since it has finite condi-
mension, so that there exists a finite-dimensional subspace X of V
such that y(Tf]Xλ) = 0. It follows from this fact, and the dense-
ness of T, that if v is any element of V, then y(T Π (v + X1)) has
a single element w. Further, {w} is the intersection of all the sets
y(Tf](v+ Y1)), as Y ranges over all finite-dimensional subspaces
of V. It is easily checked that the map v ~> w is the unique
extension of y to an element of F(V, V). Now, if there exists a
linear homeomorphism s: T —> V, then every element x of F(V, V)
defines a finite-valued linear transformation s^xs on T, which can
be uniquely extended to an element of F(V, V). This gives an
injective endomorphism of F(V, V) with dense image, which is not
continuous if T is a proper subspace of V.

(d) Let V have countably infinite basis vlf v2, vs, , and V
the dual basis v[, v'i9 v[, , such that (vif vf

β) — δi3 . All of the situa-
tions (a), (b), (c) may be exhibited by taking W to be generated by
i>i, ^3, vδ9 - , U by v2, v4, v6, , and T by vx-v^ v2-vz, v3-v4,

(e) It seems to be open whether there exists a continuous
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semilinear map preserving zero products which satisfies condition
(2) but not condition (1) in Theorem C.
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