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DENSE STRONG CONTINUITY OF POINTWISE
CONTINUOUS MAPPINGS

PETAR KENDEROV

Let Y be a topological space and Z be a metric space
with metric d( , •). Denote by C(Y,Z) the space of all con-
tinuous functions from Y into Z. For a given topological
space X and a point wise continuous mapping T: X —> C(Y, Z)
a theorem is proved asserting (under some conditions) that
T is continuous at the points of some dense Gδ subset of
X with respect to the topology of uniform convergence in
C( Y, Z). A "set-valued" version of this result is also proved.
It is shown how one can use these results in order to get
new information about points of continuity and single-
valuedness of (multivalued) monotone operators and (mul-
tivalued) metric projections. As corollaries some known
results about Gateaux or Frechet differentiability of convex
functions on a dense subset of their domains of continuity
are obtained.

()• Introduction. Let 7 be a compact topological space and
Z be a metric space. By C(Y, Z) we denote, as usual, the space
of all continuous functions from Y into Z. In C(Y, Z) we will
consider two topologies. The topology of point wise convergence
and the topology of uniform convergence on Y. Throughout this
introduction X will always denote either a complete metric space
or a compact topological space.

Let T: X -> C( Γ, Z) be a mapping which is continuous with re-
spect to the pointwise topology in C(Y, Z). I. Namioka (Pacific J.
Math., 51 (1974), 515-531, Theorem 2.2) proved that there is a dense
Ga-subset A of X such that, at each point of A, the mapping T is
continuous relative to the topology of uniform convergence in
C(TfZ).

If E is a real normed space and 5* is the unit ball of the dual
space with the weak* topology, then E can be considered as a sub-
set of C(B*f R), where R is the real line. The pointwise conver-
gence topology in C(B*, R) coincides in EczC(B*, R) with the usual
weak topology of the normed space E and the topology of uniform
convergence in C(B*, R) induces the norm topology in E. This is
why the above mentioned result of Namioka implies the following
one: Let T: X —> E be a continuous mapping from the (compact or
complete metric) space X into E with its weak topology. Then
there is a dense Ga-subset A of X such that, at each point of A,
the mapping T is continuous relative to the norm topology in E.

Ill
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As an immediate corollary Namioka obtained from this result that,
if X is a weak compact subset of the normed space E, then the
identity map (X, weak) —> (X, norm) is continuous at the points of
some dense Gδ-subset of (X, weak). This result contains a lot of
information. For instance, by means of it Namioka proved that
every weakly compact convex subset of E is the closed convex hull
of its denting points. However, the question of norm continuity at
some points of a given weak*-continuous mapping T:X-+(E*,
weak*), where E* is the dual of E, is more complicated. There
exists a Banach space E and a weak*-compact subset K of E* such
that the identity mapping (K, weak*) —> (£?*, norm) is not continuous
at any point of K. Nevertheless Namioka gave in the same paper
two positive results. If E* has one of the two properties mention-
ed below, then the identity mapping (K, weak*) -> (E*9 norm), where
K is a weak*-compact subset of E*, is continuous at the points of
some dense Gδ-subset of (K, weak*). These two properties are:

(a) (E*, norm) is weak-compactly generated (i.e., there is a
weakly compact set C of (E*f norm) such that the linear span of
C is dense in (£7*, norm)).

(b) There is an equivalent norm in E such that its dual norm
|| ||* satisfies the condition: for any net {fa}ac:E*, it follows from
IIΛII* - I I/I I* and weak*-limα/α = / that limα \\fa - / | |* = 0.

In this connection it is natural to look for all those Banach
spaces E for which any weak*-continuous mapping T:X—>(E*9

weak*) is norm continuous at the points of some dense Gδ-subset of
X. It turns out this is the case if and only if every separable
subspace of E has a separable dual (equivalently, if and only if E*
has the Radon-Nikodym property or, if and only if every continuous
convex real-valued function in E is Frechet differentiate at the
points of some dense (τδ-subset of its domain of continuity (in the
latter case the space E is called "Asplund space")).

This result as well as the above mentioned result of Namioka
are obtained in this paper as corollaries of one and the same general
theorem. The proof of this theorem is, in essence, identical with
the classical Cantor-set-construction. The Cantor-set-construction
was already used for proving similar kind of theorems. C. Stegall
(Trans. Amer. Math. Soc, 206 (1975), 213-223) proved that, if E*
has the Radon-Nikodym property, then every separable subspace of
E has a separable dual. After that Namioka, basing on a proof of
Stegall, adapted the Cantor-set-construction to give a proof of the
fact that, if every separable subspace of E has separable dual,then
every weak*-compact subset of £?* contains relatively weak*-open
subsets of arbitrarily small diameter. It was this proof of Namioka
(J. Diestel, J. J. Uhl, Jr. "Vector Measures", Amer. Math. Soc. Math.
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Surveys No. 15, p. 213) that suggested to the author the idea how
to use Cantor-set-construction in proving the results contained in
this paper. We also prove a general "multivalued version" of the
above continuity result. As a partial case we have: If T:X—>
(E, weak) is an upper semicontinuous multivalued mapping with
convex and weak-compact images: then at every point x from some
dense G^subset A of X the mapping T has the following "continuity
property"

for every ε > 0 there exists an open UaX, Uax,
(cp) such that inf{||/' - / " | | : / ' 6 Tx', f" e Tx") ^ ε

whatevery x', x" e U.

In some particular situations, when the mapping T9 the space
X and the space E are chosen in an appropriate way, the points at
which T satisfies the (ep)-condition turn out to be exactly the con-
tinuous linear functionals e E* which strongly expose a given weakly
compact subset of E. Or, more generally, the points where T
satisfies (cp) are the points at which a given convex function is
Frechet differentiate. In this way we give a direct proof, without
introducing the notion of "dentability" or the Radon-Nikodym pro-
perty, of the fact that, if every separable subspace of E has a
separable dual, then each continuous covex real-valued function de-
fined in E is Frechet differentiate at the points of some dense
G.-subset of E.

In another situation (under another choice of T, X and E)f the
points with (cp) are exactly those points where a given (multivalued
metric projection is single-valued and norm-to-norm upper semicon-
tinuous. The same (cp)—condition allows us to obtain new informa-
tion about continuity property of (multivalued) monotone operators
defined in weak-compactly generated Banach spaces.

1* Strongly countably complete spaces and the Cantor-set-
construction for single-valued mappings* Let 7 be an open cover-
ing of a topological space X. Some subset S of X is called 7-small
if S is contained in a member of y. The topological space X is
said to be strongly countably complete (Frolik [8]) if there exists a
sequence {y^: i — 1,2, } of open coverings of X such that a de-
creasing sequence {FJ^i of closed subsets of X has nonempty inter-
section whenever each Ft is Ti-small and nonempty. We will con-
sider only Hausdorff and regular strongly countably complete spaces
X in this paper. This class of spaces is very large. Every locally
countably compact space is strongly countably complete. In parti-
cular every (locally) compact topological space is strongly countably
complete. Every complete metric space is also countably complete
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(as the covering yn, n = 1, 2, 3., one takes the collection of open
balls with radius 1/n). The same argument as in the classical Baire
theorem shows that the intersection of every sequence of dense
open subsets of the strongly countably complete space X is again a
dense subset of X.

By C(Y, Z), where Y and Z are topological spaces, we denote
the set of all continuous maps /: Y —> Z. For an arbitrary subset
Yx of Y we denote by rYι: C(Y, Z) -+ C(Ylf Z) the "restriction map'7

assigning to each / from C(Y, Z) its restriction on Y19 In C(Y, Z)
we will consider different topologies. The simplest one is the point-
wise convergence topology which will be denoted by "p". When Z
is a metrizable space, we consider in C(Y, Z) something like the
uniform convergence topology. Suppose d( , ) is a metric in Z
generating its topology. For a given fQ from C(Y, Z) and a positive
number t put U(f0, ί) = {/ e C(Y, Z): d(f, f0): - sup{d(/(τ/), fo(y)): y e
Y) < t}. The sets {£/(/, t):feC(Y, Z), t > 0} form a base for some
topology in C{Y, Z). This topology will be denoted by ζtu". It de-
pends on the particular choice of the metric d( , ) and may change
if in the definition of "u" <Z( , ) is replaced by another equivalent
metric in Z. However, when Y is a compact space, all equivalent
metrics in Z generate one and the same topology in C(Y, Z) and
this is just the uniform convergence topology. This is why the
above defined topology "u" in C(Y, Z) will be called in the sequel
(even in the case of noncompact Y) "uniform convergence topology".
Correspondingly, the function d(fu /2) = svpfflf^y), fz(y)): y e Y},
where fu f2eC(Y, Z), will be referred to as "uniform metric in
C(Y, Z)" even though d(fΊ,f2) might be equal to plus infinity for
some flf f2 6 C(Y, Z). For a given mapping T: X—> C(Y, Z) we use
the following expressions as synonyms: "T is continuous at xoeX
with respect to p","T is p-continuous at xoeX" and "T:X— >
(C(Y, Z), p) is continuous at xoeX". This agreement is also valid
for every other topology (instead of p) which appears in our text.

We are now ready to formulate a general sufficient condition
for a given continuous mapping T: X —> (C(Y, Z), p) to be w-conti-
nuous at the points of some "fat" subset of X.

THEOREM 1.1. Let X be a strongly countably complete space, Y
a topological space, Z a metric space and let T: X-> (C(Y, Z), p) be
a continuous mapping such that, for every countably compact set
AaX and every closed separable F x c Y, the set rYχoTΔ is a separable
subset of (C(Ylf Z), u). Then there exists a dense Gδ-subset A of X
such that T:X—>(C(Y, Z), u) is continuous at every xeA.

Before giving the proof of this theorem we want to show two
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important for our applications examples in which the requirement
of the theorem is fulfilled for every p-continuous mapping T: X ->
C(Y,Z).

PROPOSITION 1.2. Let Y be a compact space and Z be a metric
space. Suppose further T: X —> C(Y, Z) is a p-continuous map
from the topological space X into C(Y, Z). Then, for every count-
ably compact subset Δ of X and every closed separable subset YL of
Y, the set rYχ°TΔ is a separable subset of {C{YU Z), u).

Proof of Proposition 1.2. Put r: = rYl and A — r o TΔ. r°T: X—>
(C( Yl9 Z), p) is continuous and therefore the set A is also countably
compact. By a result of Troallic ([18], Proposition 1) A is ^-separ-
able if and only if it is ^-separable. Hence it is enough to prove
that A is a separable subset of (C(Ylf Z), p). To prove this we
remark first that in C(Ylf Z) there is a metrizable topology V
which is weaker than p. This topology "m" is just the topology of
pointwise convergence at the points of some countable and dense
subset of Yλ. This means that the set A is m-countably compact
and consequently m-compact. As any other metrizable compact, the
space (A, m) has a countable dense subset C c A . We prove now
that C is dense in (A, p) as well. Indeed, take /0 e A. Since C is
dense in (A, m) we find a sequence ( / ^ ^ c C m-converging to /0. As
{A, p) is countably compact, the sequence (/<)<S1 must have a p-cluster
point / e i . But the topology p is stronger than m and / i s also
m-cluster point of the sequence (jQ^i. Since the latter sequence
has only one m-cluster point and this is /0, we get /=/<,. Thus
(A, p) is separable and Proposition 1.2 is proved.

Let now E be a real Banach space and E* be its dual. Denote
the unit ball of E by B: = {xeE: \\x\\ ^ 1}. The set E* can be con-
sidered as a subset of C(B, R), where R is the usual real line. It
is clear that the usual pointwise convergence topology p in C(B, R)
induces the weak* topology of E* and the uniform convergence
topology u of C(B, R) generates the norm topology of E*. By
"w*" and "n*" we will denote the weak* and the norm topology of
E* correspondingly, "w" and "n" are reserved for the weak and
the norm topology of E. When there is no danger of ambiguity
we will omit the star in "n*".

Let Yi be a closed separable subset of (B, n). The restriction
mapping r: C(B, R) -»C(Yl9 R) turning every / from C(B, R) into its
restriction on Yλ will assign to every /* 6 E* its restriction on Yx

and the latter restriction can be identified (in a one-to-one way)
with a continuous linear functional defined on the closed linear span
L of Yi in E. Thus r(E*) is a subset of L*. Moreover, the
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w*-topology of L* is stronger than (or equal to) the one inherited
from (C{YU R), u). One needs no more argument for the following.

PROPOSITION 1.3. Suppose that every closed separable linear
subspace of the Banach space E has a separable dual. Consider E*
as a subset of C(B, R). Then the image of E* under any 'Restric-
tion mapping7' defined by a closed separable subset YΊ of (B, n) is
a separable subset of (C(YU R), u) (i.e., the requirement of Theorem
1.1 is fulfilled for every weak*-continuous mapping T:X~>E*a
C(By R)).

We turn now back to the proof of Theorem 1.1. Let T:X-^
C(Y, Z) be as in the formulation of the theorem and let n be a
positive integer. Put Hn = {x e X: for every open U, x e U, the
diameter of the set TUaC{Y, Z) with respect to the uniform
metric is greater than 1/n). Clearly, the condition flJoί|J»έifl»
implies that T: X—> (C(Y, Z), u) is continuous at xQ. Thus, what
we have to prove is that Hn is nowhere dense in X (the set Hn is
also closed in X but we are not interested in this at the moment).
We will make a repeated use of the following observation.

LEMMA 1.4. Let j be an open covering of X and U be an open
subset of X with Uf]Hn Φ 0 . Then there exist two nonempty open
sets U', U"(zU and a point yeY such that:

( i ) the closures U\ Ό" in X of the sets £/', U" are contained
in U and are 7-small sets.

(ii) for every x'eUf and every x"eU", the inequality
d(Tx'(y), Tx"(y)) > 1/n holds (where c?( , ) is the metric in Z).

Proof of Lemma 1.4. Take some open UaX with UΓ)Hn Φ 0 .
By the definition of Hn, diam TU > 1/n. This means that we can
find x'c, x'o' 6 U and an ye Y such that d(Txr

Q(y), Tx"(y)) > 1/n. Put
β = (d(TxΌ(y)f Tx[\y)) - (l/w))/2 and consider the sets V = {f e
C(Y, Z): d(f(y\ Tx'0(y))<β}*riά V" = {feC(Y, Z): d(f(v), Txΐ(y))<β).
These two sets are open in (C(3Γ, Z), p) and Tx'oe V\ Tx'o'e V". Ac-
cording to ^-continuity of T: X—> C(Y, Z) there exist two open
neighborhoods U' and U" of x'o and x" correspondingly, such that
TU'(zV and Tί7"c :F" . Since 7 is an open covering and X is a
regular space, we may assume that the closures U\ Ό" are 7-small
and lie in U. Thus (i) is fulfilled. To check (ii), take x' e U', x" e U".
Then Tx' e V and Tx" e V". In another words d(Tx'(y), Tx[(y)) < β
and d(Tx"(y), Tx[\y))< β. Then d{Tx\y\ Tx"{y))^ d{Tx[{y)f

TxΌ'(y)) - d{Tx[{y\ Tx\y)) - d{Tx"(y), Tx[\y)) > d(Tx&y), Tx[\y)) -
2/5 = 1/n. Lemma 1.4 is proved.



DENSE STRONG CONTINUITY OF POINTWISE CONTINUOUS MAPPINGS 117

Suppose that the set Hn is dense in some open U0(zX, Uo Φ 0 .
By Lemma 1.4 (with U — Uo and 7 = 7i) there will exist two non-
empty open sets Uoo: = U'czU0, U01: == U"aU0 and y0: = y e Y such
that (i) and (ii) from Lemma 1.4 are satisfied. Since Hn was sup-
posed to be dense in Uo, Hn Π UQQ Φ 0 and Hnf)U01Φ 0 . We can
apply now Lemma 1.4 to Um and get as above a pair of nonempty
open subsets Ϊ7OOO, Um of Um and a point yQ0 e Y such that (i) and
<ii) from Lemma 1.4 are fulfilled for U' = ί7OOo, U" = Um, V = Voo
and 7 = 72 The same can be done with UOί in order to get another
pair of 72-small sets i70J0, Uou c U01 and a point y01 e Y such that (i)
and (ii) from the lemma are satisfied. Proceeding by induction, we
can construct a sequence of open nonempty subsets of X and a
sequence of points in Y which are indexed by symbols of the type
JoJJz ' * 3kf where j 0 = 0 and all other j i 9 i = 1, 2, •••,&, are either
•equal to 0 or to 1. This is done in such a way that

( 1 ) UJQJ1J2...Jk is 7fc-small subset of X;
( 2 ) if p < k, then the closure UJQh...JkczUJ0Jv..jp.
( 3 ) if ji = i{, i = 0, 1, 2, , s, and i β + 1 ̂  j ' β + l f then for every

«' e UJoh...StJβ+1...im and every a?" e Usiii...i'aiί+ι...i'Λ the inequality
d(Tx'(yhh...J8), Tx"(yhh...h)) > 1/n holds.

Now take an arbitrary sequence s = (i*)*^ with i 0 = 0 and
j i 9 i ^ 1, equal to 0 or 1. It defines a decreasing sequence of closed
sets Uo = t7ioz) UhhZ) U3 odίJy . By (1) and by the strong countable
completeness of X, the intersection J(s): = Π ί ^ v r i r ^ = ^̂  ^s n o ^
empty. It follows from (2) that A{s) = Π{Uhh...h: k ^ 0}. For an-
other sequence s' = (iO^o with i ' = 0 and jj = 0, 1, we get another
decreasing sequence of closed sets (Uόιύv..j'1)k^ and another set
j(s') φ 0 . From (3) it follows that for every x' e A(sf) and x" e A{s")
with s' Φ s",

where k + 1 is the smallest positive integer with jί+i ^ ΛVi (this
means that the two "y" in (*) are one and the same point of Y).

Since there are uncountably many different sequences s of the
above type, we get uncountably many different sets Δ(s). Their
images TA(s) under T: X—> C(Y9 Z) will form an uncoutable system
in C(Γ, Z) which is (due to (*)) "very discrete" in (C(Γ, Z\ u), i.e.,
d(fr, f") > Vn whenever / ' 6 T(s'), f" e T(s") and s' Φ s". Put J =
U{A(s):s runs over all possible sequences s} and denote by Y1 the

•closure in Y of the sequence of points yjQjv.-jk£ Y constructed above.
Consider the restriction mapping r: C{Y, Z)—>C(YU Z) and the uni-
form metric in C(Ylf Z) (we denote it again by d(•,•))• Then the
system {r-TA(s):s runs over all possible sequences} will form in



118 PETAR KENDEROV

(C(Ylf Z), u) (due to (*)) an uncountable discrete family. Therefore,
it will be a contradiction and the proof of Theorem 1.1 will be fini-
shed, if we show that r^TΔ is a separable subset of (C(Ylf Z),u).
The following lemma together with the requirement of Theorem 1.1
shows that this is the case.

LEMMA 1.5. The set AaX is countably compact.

This is almost trivial. For a given sequence ( ^ - . j C J we find
step by step a sequence of zero's or one's (jΐ)n>0 with j°0 — 0, such
that each set Ujojt jl from the construction of A contains infinitely
many members of the sequence {xm)m^1. The set Fk = Ujo

0j
o

v..fiΓ)
(Pm)mzk is then closed, nonempty and 7r small. Therefore Π^i FhΦ<2.
Every point from this nonempty intersection is a cluster point for
the sequence (xm)m>Λ. Lemma 1.5 is proved. Theorem 1.1 is also
proved.

COROLLARY 1.6. (Namίoka [13], Theorem 2.2). Let X be a
strongly countably complete regular space, let Y be a compact space
and Z be a metric space. If T: X -> (C(Y, Z), p) is a continuous
map, then there exists a dense Gδset A in X such that, at each
point of A, T is u-contίnuous.

Proof. Apply Theorem 1.1. This is possible because of Pro-
position 1.2.

COROLLARY 1.7. (Namioka [13], Theorem 4.1). Let X be a
strongly countably complete regular space and let E be a normed
space. If T: X -> (E, weak) is continuous, then there is a dense
Gδ-set A in X such that, at each point of A, the map T is norm
continuous.1

Proof. Denote by B* the unit ball of the dual space E*
endowed with the weak*-topology. The space E can be thought of
as a subset of C(B*, R). The pointwise convergence topology p of
C(J3*, R) generates the weak topology in E and the norm topology
in E is just the one inherited by (C(B*, R), u). Since 5* is weak*-
compact space, it remains to apply 1.6 to the map T:X->Ecz
C(B*, R).

COROLLARY 1.8. (Namioka [13], Corollary 4.2). Let K be a
weak-compact subset of the normed space E. Then there is a dense

1 For separable normed spaces E this result belongs to Alexiewicz and Orlicz [1[;
see also Fort [7].
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Gδ-set A in {K, weak) such that the identity map (K, weak) —>
(JSΓ, norm) is continuous at each point of A.

Proof. (K, weak) is compact and thus strongly countably com-
plete.

COROLLARY 1.9. Let every separable closed linear subspace of
the Banach space E have a separable dual and let X be a strongly
countably complete regular space. If T:X —>i7* is a weak*-conti-
nuous mapping, then T is norm-continuous at the points of some
dense Gδ-subset of X.

Proof. Proposition 1.3 shows that Theorem 1.1 can be applied.

COROLLARY 1.10. Let every separable closed linear subspace of
the Banach space E have a separable dual and let K* be a weak*-
compact subset of E*. Then there is a dense Gδ-subset A of {K*tw*)
such that, at every point of A, the identity mapping (K*, w*) —>
(K*, n*) is continuous.

Proof. This is immediate from Corollary 1.9 because (K*9w*)
is a compact and thus a strongly countably complete space.

REMARK 1.11. It follows from Corollary 1.10 that, if every
separable subspace of the Banach space E has a separable dual,
then every weak*-compact set K* of E* contains relatively weak*-
open subsets with arbitrarily small diameter. This property in turn
(see the proof of Proposition 9 from the paper of Namioka and
Phelps [14]) implies that every separable linear subspace of E has
a separable dual. Therefore the assertion contained in Corollary 1.9
is actually nessesary and sufficient condition for the space E to be
an Asplund space (see also Lemma 3 and Corollary 10 from
Namioka and Phelps [14]).

2 Cantor-set-construction for multivalued mappings* We
want to give here another version of Theorem 1.1 which concerns
multivalued maps. Considered for single-valued mappings only, the
"multivalued result" does not give the full generality of Theorem
1.1. But it is still sufficiently general to provide some new and
useful information concerning continuity properties of monotone
mappings and metric projections. As corollaries we get also new
proofs of some known and important results about the properties
of weak-compact subsets of Banach spaces and about differentiability
of convex functions defined on such spaces.
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Fist of all we recall some definitions and notations. The multi-
valued map T: X->Yt where X, Y are topological spaces, is said to
be upper semicontinuous (use) at some point xoeX if, for every
open set U c Y with Tx0 c U, there exists a neighborhood V of x{

in X such that TxaU for each x from V. The mapping T:X->Y
is called upper semicontinuous if it is upper semicontinuous at every
point of the space X.

Let (F, || ||) be a normed space with unit ball B. Denote the
unit ball of the dual space F * by J5*. Take Γ c J S * and put
Y± = {/ e F: </, y} = 0 for every y e Γ}. The quotient space Q(Γ) =
ίyFx is also a normed space. The elements of Y can be viewed as
continuous linear functionals on (Q(Y), || ||) and it is not difficult to
see that, for each qeQ(Y), the norm \\q\\ is greater than or equal
to sup{| (q, y) |: I / G 7 } (for any feF, \\f\\ = sup{| </, /*> |: /* e5*} ^
sup{|</,y>|:»eΓ}; if 16 7,, then | | / + 1|| ^ sup{|</, y): ye Y};
this means that the norm of q = f + YL in Q( F) satisfies the above
inequality).

Further, the linear subspace G of F * will be called "norming
subspace" if

Il/H = sup{</, g): geGoB*} ΐoτ each / from F .

By w(F, G) (resp. w(G, JF7)) we will denote the weakest topology in
F (resp. in (?) with respect to which all elements of G (resp. of F)
regarded as linear functionals on F (resp. on G) are continuous.

For a given YaB* we denote by rγ the quotient mapping F->

THEOREM 2.1. Let X be a strongly countably complete space,
(F, ll'll) be a normed space and G be a norming subspace of F * .
Suppose T: X —> {F, w(F, G)) is an upper semicontinuous (multi-
valued) mapping with w(F, G)~compact and convex images and such
that for every countably compact J c l and every countable YaB* Π G,
the set rγoT(A) is separable in (Q(Y), || | |). Then there exists a
dense Gδ-set A in X at every point x of which the following "con-
tinuity property" (cp) is fulfilled:

(cp)
for every ε > 0 there is an open Uc X, Us x, such
that inf{||/' - f" \\: f e Tx', f"eTx"}<,ε whenever
X', X" 6 U .

As in § 1 we will first point out two situations in which all re-
quirements of this theorem are fulfilled. This situations are import-
ant for us because of the applications we have in mind. As a first
step we need a topological result.
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LEMMA 2.2. Suppose T: Mx —> M2 is an upper semicontinuous
mapping with countably compact images from one topological space
M1 into another M2. If ΔdM1 is countably compact, then T(Δ) —
\J{Tx:x£Δ} is also a countably compact subset of M2.

Proof. Let s = (y,),^ be a sequence in T(Δ) and let xt eΔ, i =
1, 2, , be such points that y{ e Tx{. Consider the closures (yt)i^k of
the tails of the sequence (yx)i^. It is enough to show that the set

i" & ^ 1} is not empty. Since Δ is a countably compact subset
of M19 we can find a point xe f] {(a,)̂ *'- k ^ 1}. The set Tx is
countably compact and the proof will be finished if we show that

k is not empty for every k ^ 1. Suppose this is not the
case. By the upper semicontinuity of T at x we can find an open
VczMlf xeV, such that T(V)Π(yt)t^k = 0 . But this contradicts the
fact that V, as an open neighborhood of the cluster point x, must
contain xt with arbitrarily large indices.

PROPOSITION 2.3. Let Δ be a countably compact space, (F, || ||)
be a normed space and T: Δ —> (F, weak) be an upper semicontinuous
mapping with weak-compact images Tx, xsΔ. Then, for every
countable YaF*, the set rγoT(Δ) is a norm-separable subset of Q(Y).
In other words, Theorem 2.1 is valid in the case when G coincides
with all of F*.

Proof. Since the quotient map rγ: F-> Q(Y) is continuous with
respect to the weak topologies in F and Q(Y)9 it follows from the
previous lemma that rr°T(A) is a weak-countably compact subset of
the normed space Q(Y). On the other hand, the countable set Y,
which can be thought of as a subset of Q(Y)*9 generates a metric
topology V in Q(Y) which is weaker than the weak topology of
Q(Y). The set rγo T{Δ) will be m-countably compact and hence
m-compact. As any other metrizable compact, the space (rγoT(Δ), m)
is separable and has a countable dence subset Carγ°T(Δ). As in
the proof of Proposition 1.2 we can prove that C is dence in
rγoT(Δ) in the space (Q(Y), weak). Indeed, for q0erγoT(Δ) we can
find a sequence {ql)i^laC which is m-converging to q0. As rγ°T(Δ)i)C
is weak-countably compact, the sequence (qdi^ must have a weak-
cluster point q erγo T(Δ). Then q is also m-cluster point of the
sequence (qOî i Since the latter sequence has only one m-cluster
point and this is q0, we get q = g0. This means that rγoT(Δ) is a
weak separable subset of Q(Y). Therefore it will be also norm-
separable subset of Q(Y). The proposition is proved.

PROPOSITION 2.4. Let E be a normed space such that every
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separable subspace of it has a separable dual. Put (F, || | |): =
(E*f norm*) and G: = EcE**. Then the requirements of Theorem
2.1 are fulfilled for every upper semicontinuous mapping T:X—>
(F, w{F, G)) with convex and w(F, G)-compact images.

The proof can be omitted.

Proof of Theorem 2.1. Let n be a positive integer and Hn be
the set of all xeX such that in every open UcX, xeU, there ex-
ist at least one pair x',x"eU with inf{||/' - /" | | : / ' 6 Tx'f f"e
Tx"} > 1/n. As in the proof of Theorem 1.1 we need a lemma.

LEMMA 2.5. Let y be an open covering of X and U be an open
subset of X with UΓ\Hn Φ 0 . Then there exist two nonempty open
sets U\ U" and an element g eG Π B* such that

( i ) the closures U\ Ό" in X of U', U" are contained in U
and are 7-small subsets of X;

(ii) |</' - /", g)\ > 1/n whenever f e Tx', f" e Tx" and x' e U'f
x" e U".

Proof of the lemma. As Z7Π Hn Φ 0 , there exists a pair x[9

xΌ' e U with inf{||/' - /" | | : / ' e Γ < f" e Txϊ) > 1/n. Since the images
Tx are convex and compact and since G is a norming subspaces of
F* we can find some geB*ΠG such that the number a: =
min{</', g): f e TxΌ} - max{</", g): f" e Tx'o'} is greater than 1/n.
Put β: = (α - (ί/n))/2 and consider the sets V and V", where V =
{/ e F: </, g> > min{</', g): f e Tx[) - β) and V" = {feF: </, g} <
max{</", g}: f" e Tx"} + β}. These two sets are w(F, G)-open in F
and TxΌ<zV',Tx'o'c:V". Since T: X -> (F, w(F, <?)) is upper semi-
continuous at X'Q and x", we find two open neighborhoods U' of a?J
and Ϊ7" of ^ ' such that Γ O J ' C F ' for every x* e Uf and Tx"aV" for
every x" e U". Since 7 is an open covering of the regular space
X, we may assume that the sets ϋr and U" are 7-small and lie in
U. Thus (i) is proved. To check (ii), we take any x' e Uf and
x"eU". Because of 2 V c F ' and Tx"czV", we have, for every
/ ' 6 2V, / " 6 Tx", </' - /", g) > min{</', fir>: / ' 6 ΓajJ} - max{</", ^>:
f" G jΓa ί'} — 2/3 = a — 2/5 = 1/n. Lemma 2.5 is proved.

Exactly as in the proof of Theorem 1.1 we construct (with the
help of Lemma 2.5) a sequence {gs)j^i in B*Γ\G and an uncountable
subset Xj of X such that

(a) Xx is a subset of some countably compact ΔaX.
(b) for every x\ x" e Xu xf Φ x", there exists g e (g/),-^ for

which
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(**) min{</', g): f e Tx'} - max{</", g): f" e Tx") > 1/n .

Put Y1 = (gj)feι and consider the quotient space (Q(Γj), || ||) and
its subset rTχoT{X^. By the hypothesis of Theorem 2.1 the latter
set must be norm-separable. On the other hand, by (**) this set
contains an uncountable "discrete" subset X,. This contradiction
proves the theorem.

We now give some applications of this theorem.
Let (£> || ||) be a Banach space which is generated by some

weakly-compact set KczE (i.e., the linear span L(K) of K in E is
norm dense in E). Without loss of generality we may assume that
K is convex and symmetric. Consider in E* the support function
of K: h(e*) = max{(e, e*): eeK}. It is a nonnegative, convex and
positively homogeneous function. Because L(K) is dence in (E, || |),
it follows from h(e*) = 0 that <e, e*> = 0 for every eeE. This
means that (!£*, fe( )) *s a normed space with norm h( ).

PROPOSITION 2.6. The dual of (E*, h(.)) is exactly L(K).

Proof. Let a(β*) be a continuous linear functional in (E*9 A(.))
Then β(.) will be continuous relative the norm topology of E*.
Hence seE**. It is no restriction to assume that the supremum
of s(e*) on the unit ball of the norm /&(.) in E* is less or equal to
1. Since the latter unit ball is just the polar of K in i£*, s will
belong to the second polar of K (taken in i?**). By the theorem on
bipolars s must belong to the closure of K in (j£**, w(E**f E*)). But
K is w(E, i£*)-compact subset of E and is already w(E**, i?*)-closed
in £7**. Therefore s will belong to K. Proposition 2.6 is proved.

DEFINITION 2.7. The (multivalued) mapping T:E-*E* from the
Banach space into its dual JK* is called monotone if (xι—x2, x? — xϊ)^0
whenever xf 6 Txif i = 1, 2. T is said to be a maximal monotone
mapping from E to E* if its graph is not properly contained into
the graph of any other monotone mapping from E to £7*. Using
Zorn's lemma it is not difficult to see that the graph of every
monotone mapping T is contained into the graph of some maximal
monotone mapping. D(T) will donote the set {xe E: Tx Φ 0} and
int D(T) will stand for the norm interior of the set D(T)aE.
Using some results of Rockafellar [15] and Browder [6] it is easy
to prove (see Kenderov [9]) that every maximal monotone mapping
T: int-D(T) —> (£7*, w(E*9 E)) is an upper semiconinuous mapping with
convex and w(E*f £r)-compact images.

THEOREM 2.8. Let E be a Banach space generated by the weak-
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compact, symmetric and convex set K. Denote the support function
of K by h(.) and suppose T: E —> E* is a monotone mapping. Then
there exists a dense Gδ-subset A of (int D(T), || ||) such that, for
each x from A,

( i ) Tx is a singleton.
(ii) T: (E, || ||) —> (E*, &(•)) is upper semicontinuous at x.

Proof. Without any harm T can be taken to be a maximal
monotone mapping. Then T: (Ef || ||) —> (E*f w(E*, L(K))) is an upper
semicontinuous mapping with convex and w(E*, Z/(ϋΓ))-eompact
images. Put X = (int D(Γ), || ||), F = (#*, /*(•)) and G = L(ίΓ). Pro-
positions 2.3 and 2.6 indicate that Theorem 2.1 can be applied to
the mapping T: X —> F. This yields a dense G.-subset A of
(int D(T), || ||) such that, for every ^06^4, the following is fulfilled:

. (for every ε > 0 there exists an open UaX, UBX0, with
{cp) linf{Λ(β/* - β"*): β'* e 2V, β"* e TV'} ̂  ε whenever x', x" e U.

The following lemma completes the proof and shows how the
(cp)-condition can be used in order to prove that T is single-valued
and upper semicontinuous at xoeA in the desired sense.

LEMMA 2.9. // x0 belongs to the above determined set A a
mtD(T)f then Tx0 contains only one point and T: (E, || |J) ~>
(E*, h{')) is upper semicontinuous at x0.

Proof. It suffices to show that the fc-diameter of the set TU
is less or equal to 2ε. We prove this by showing that, whatever
βf, ef e TU and e e K, <e, βf - e2*> < 2ε. Let e e K, e Φ 0, and eΐ e Txu

xt 6 U, i — 1, 2. When the number t > 0 is small enough, the points
%' = χι + ίe and cc" = #2 — ίe still belong to the open set C/cint D(T).
By (cp) there exist β'* e Γa/, β"* 6 Γa?" with fc(β'* - e;/*) - sup{<z, e'*-
β"*>: « G if} < 2ε. In particular

(a) 0, β'* - e"*> < 2ε.
By the monotonicity of T (with the inequality applied for the points
xr and xL) we get

(b) <β, J* - e?) ̂  0.
Again by the monotonicity (for the points x", x2)

(c) <β, ei - β"*> ^ 0.

The three inequalities (a), (b) and (c) give <β, βf ~ e2*> = <e, ef — β'*> +
<e, βf* - β"*> + <e, e"* - e2*> ̂  <β, βf* - e"*> < 2ε. Theorem 2.8 is
proved.

REMARK 2.10. That every monotone mapping T:E—>E*, de-
fined on the weak-compactly generated Banach space E, must be
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single-valued at the points of some dense G^subset of intD(Γ) was
proved in another way in Kenderov [9, 10]. We obtained here ad-
ditional information contained in (ii) of 2.9.

Let now f:E—>R be a continuous real-valued function. It is
called Gateaux differentiable at some x0 e E if there exists x* e E*
such that limt̂ o(/(α?o + te) — f(xQ))/t = (e, x*) for every eeE. When
K is a bounded subset of E, the function / is said to be ίC-smooth
(Borwein [4]) at x0 if it is Gateaux differentiable at x0 and
l((/(#o + te) — /(#o))/ί) " (fi9

 x*) I tends to zero uniformly for e in K
as t—>0. If K is the unit ball of E and / is iΓ-smooth at x0, then
/ is called Frechet differentiable at x0.

COROLLARY 2.11. (Borwein [4], Theorem 2.2). Let the Banach
space E be generated by the weakly compact set KczE. Then every
continuous convex function f:E~>R is K-smooth at the points of
some dense Gδsubset of (E, || | |). In particular (see Asplund [2]
and Trojansky [19] for another proof), if E is a reflexive space,
then f is Frechet differentiable at the points of some dense Gδ-subset
of E.

Proof. The subgradient d: E —> E* of the convex and continuous
function / is a multivalued monotone mapping assigning to each
x0 eE the nonempty set d(x0) = {x* eE*:f(x) - f(x0) ̂  (x - xQ, x*)
for every xeE). Since / is Gateaux differentiable at x0 precisely
when d(xQ) consists of only one point, it follows from Theorem 2.8(i)
that there exists a dense Gδ-subset AczE at each point of which f
is Gateaux differentiable (for another proof of the last assertion see
Asplund [2], Theorem 2). According to a known result (see Asplund
and Rockafellar [3]) the condition (ii) of Theorem 2.8 implies that,
at each point x0 of A, the function / is IΓ-smooth. For the sake of
completeness and to meet our needs in the following pages we give
a short proof of the auxiliary result. With no harm K can be
supposed symmetric and convex. By h(-) we denote again the sup-
port function of K.

LEMMA 2.12. // the subgradient d: (Ef \\ ||) -> (E*, A( )) is single-
valued and upper semicontinuous at some x0 e E, then f is K- smooth
at xQ.

Proof. Let e e K and ί be a number. Denote by x* some point
of d(x0 + te) and by x* the point d(jx0). According to the definition
of 3 we have f(x0 + te) — f(xQ) ;> (te, #0*> and f(x0) — f(xQ + te) :>
(-te, xty. Then 0 ^ f(x0 + te) - f(xQ) - (te, xt)^(te, xf - xϊ). The-
refore |((/(a?0 + te) - f(xo))/t) - (e, x*) \^\(e, xf - x^} \ £ h(xf - x*).
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By the upper semicontinuity of 3: (E, || ||) -> (E*f Λ( )) at x09 h(x* — atf)
can be made arbitrarily small (when t —> 0) independently of e e K.
Theorem 2.11 is proved.

In the next application of Theorem 2.1 the set K will play a
role quite different from the role it was playing till now.

DEFINITION 2.13. Let K be a subset of the Banach space E,
e*eE* and t > 0. Set once more ft(β*) == sup{0, β*>: eeK). The
set S(K,e*,t) = {eeK:<e,e*y>h(e*)-t] is called a slice of K
generated by e*eE* and t>0. The point eoeK is said to be a
strongly exposed point of K if there exists some e* 6 E* for which
(eύi β*> = Λ(e*) and limt_0 diam S(K, e*, t) = 0. It is said in this case
that e* strongly exposes the point e0 of K or, simply, that e*
strongly exposes K.

THEOREM 2.14. (Bourgain [5]). Let K be a weakly compact sub-
set of the Banach space E. Then there is a dense Gδ-set A in
(E*, || ||) such that each e* e A strongly exposes K.

Proof. Define a (multivalued) mapping T:E*->KaE by the
rule: Γ(e*) = {eeK: {e, β*> - h(e*)}. It is not difficult to see that the
graph of T is closed in (E*, || ||)x(iΓ, weak). Since (K, weak) is a
compact space, the mapping T:(E*, || ||) --> (E, weak) is upper semi-
continuous. Put X: = (£?*, || ||), î 7: = (E, || ||) and G: - £7*. Apply
Theorem 2.1 (this is possible by Proposition 2.3). This yields a dense
(• -̂subset A of (E*, || ||) for each point βo*eA of which the follow-
ing is true:

(cp)
for every ε > 0 there is δ > 0 such that \\e* — e'* \\ < δ
and I|β0* - β"*|| < δ imply inf{||/" - f'\\: f e Te'*, / " e
Γe"*} ^ ε.

From this "continuity property" we will deduce now that every
strongly exposes K. Indeed, take a slice S: — S(K, e*, t),

where t > 0. We have to show that the diameter of S in (Ef || ||)
tends to 0 as ί->0. To do this we take any x e S, e0 e Tef, e* e E*
and estimate | (x — e0, β*> |.

Let / ' e T{et + O and f" e T(et - β*). Then <x - /', e*> =
<ίc - /', e* + ^> + </' - βOf eo > + (eQ - x, e*). The first two terms
of the right-hand-side are less or equal to 0 by the very definition
of the mapping T. Since, in addition, x belongs to the slice S, we
have

( 1 ) < s - / ' , β * > < ί .

On the other hand </" - eQ, e*> - (e0 - / " , et - e*> + </" - e0, e*>.
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Again by the definition of T the right-hand-side is <; 0:

( 2) </" - eOf e*> ^ 0 .

From (1) and (2) we get

( Q N /<r — p p*\ <T f Λ- / f — f" p*\ < / 4- II f — f Ml . II p* II

Given ε > 0, by the last (cp) we find the corresponding δ > 0. For
an arbitrary w* eE* with | | u* | | = 1 put e* — <5w* and choose / ' e
Γ(β0* + e*) and / " 6 Γ(β0* - β*) in such a manner that | |/ ' - /" | | < 2ε.
Then, for 0 < t < eδ, we have by (3) (x - β0, δu*) <t + δ\\f - / " | | <
3εδ. This means that \\x — eQ\\ ^ 3ε. Theorem 2.14 is proved.

We add one more remark. It follows from the proof that Te*
is a singleton and that T: (E*, || ||) ~> (K, \\ \\)c:(Ef || ||) is upper
semicontinuous at e*.

Now it is clear how to prove the following result.

THEOREM 2.15. (Lindenstrauss-Trojanski). Every weakly com-
pact subset K of the Banach space E is the closed convex hull of
its strongly exposed points.

THEOREM 2.16. (Kenderov [12]). Let E be an Asplund space and
T: E —> E* be a monotone mapping. Then T is single-valued and
upper semicontinuous (with repect to the norm topologies in E and
E*) at the points of some dense Gδ-subset of (int D(T), || | |).

Proof. In [12] the author proved this theorem using the fact
that E is an Asplund space if and only if every bounded subset of
E* is dentable. We prove now the same theorem taking as a
starting point the fact (see Uhl [20] and Stegall ]17]) that E is an
Asplund space if and only if every separable linear subspace of E
has a separable dual.

It suffices to consider only maximal monotone mappings. Then,
as pointed out after Definition 2.7, the mapping T: (E, || ||) —> (E*,
weak*) is upper semicontinuous. Proposition 2.4 shows that Theorem
2.1 can be applied for X: - (intD(Γ), | |- | |) f F: - (£7*, || ||) and G: =
EaE**. We get in this way a dense G^-sύbset A of the strongly
countably complete space X = (int D(T), || ||) at each point x0 of
which the following is true:

I for every ε > 0 there exists such a δ > 0 that \\x' — a?0|| < δ
(cp) Jand \\x" - x,\\ < δ imply inf{||β'* - β"* ||: β'* e Tx', e"* e

How one can use this condition (cp) to prove that T is single-
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valued and upper semicontinuous at every point of A, is shown, in
fact, in Lemma 2.9 (where instead of the norm h(-) in E* we take
now the usual dual norm || || of E*). This completes the proof.

We give now a direct proof (without even mentioning the no-
tion of dentability or the Radon-Nikodym property) of the following
known fact (see Stegall [17]).

COROLLARY 2.17. // every separable subspace of the Banach
space E has a separable dual space, then every continuous convex
function f.E-^R is Frechet differentiable at the points of some
dense Gδ-subset A of (E, || | |).

Proof. As in the proof of Corollary 2.11 we consider the sub-
gradient mapping d: E -> E* of the convex function f:E->R. This
subgradient is a monotone mapping and, by the previous result,
there exists a dense G,rsubset A of (E, || ||) at each point of which
d:(E, || ||) -> (E*, || ||) is single-valued and upper semicontinuous.
That / is Frechet differentiable at every χ0 e A is proved, in fact,
in Lemma 2.12 (where the norm λ( ) of E* must be again replaced
by the usual norm | | . | | of E*).

3* Metric projections* We would like to describe here one
more situation where the "continuity property" (cp) provides new
information.

Let M be such a subset of the Banach space E that the cor-
responding metric projection P: E -» M acting according to the rule
x^P(x): = {yeM: \\x - y\\ = inf{||& - z\\: zeM}} has weak-compact
images and is upper semicontinuous as a mapping from (E, \\ \\) into
(M, weak) (for instance, this is the case when the intersection of M
with any closed ball is a weakly compact set in E; the latter is
fulfilled, in its turn, when £ is a reflexive Banach space and M is
weakly closed).

Define the mapping T: E -> E by the formula Tx: = closed con-
vex hull of the set P(χ). It is clear that T: (E, || | | )->(#, weak) is
an upper semicontinuous mapping with weakly compact and convex
images. Proposition 2.3 shows that Theorem 2.1 can be applied
with X and F identical with (2£, || ||) and G = E*. As a result we
get a dense G.-subset A of (E, || ||) such that, for every point x0 of
A, the following is true:

ίfor every ε > 0 there exists such a δ > 0 that
(cp) \\\x' - xo\\ < o and ||α?" - a?0|| < δ imply inf{||/ - y»\\ .

W 6 2V, y" 6 Tx"} £ ε.

The key point now is the following
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LEMMA 3.1. If the Banach space E is strictly convex (i.e., the
equality \\x + y\\ = \\x\\ + \\y\\ implies y = tx for some real number
t) and the point x0 belongs to the above defined set A, then the
metric projection P: E —> M is single-valued and norm-to-norm upper
semicontinuous at x0.

Proof. Let ε > 0 and 3 > 0 be as in the last (cp) and V\ —
{x eE: \\x — xo\\ < δ}. We prove now that the diameter of the set
P(V) = ϋ{Px: xe V} in (E, || ||) is smaller than e. This is enough
to conclude that P: E —> M is single-valued and norm-to-norm upper
semicontinuous at x0. Take xl9 x2eV and yt e Pfa), i = 1, 2. When
the real number t > 0 is sufficiently small, the points x' =
tyλ + (1 — t)xl9 x" — ty2 + (1 — t)x2 will still belong to the open set
V. By the strict convexity of the space E, P(x') = yx and P{x") = y?.
Therefore for Tx' and Tx", we have Tx' = y1 and Tx" = #2. It fol-
lows now from (cp) that \\yx — y2 | | ^ ε and the diameter of P(V)
will also be smaller than e. Thus we have proved:

THEOREM 3.2. Let E be a strictly convex Banach space and
suppose that the metric projection P: E —> M has weak-compact
images and is upper semicontinuous as a mapping from (E, || ||)
into (M, weak). Then there exists a dense Gδ-subset A of (E, || ||)
scuh that, at every point x e A,

( i ) P: E —> M is single-valued.
(ii) P: (E, || ||) —> (M, || ||) is upper semicontinuous.

It should be noted that (i) was already proved in another way
in Kenderov [11]. The new information (due to (cp)) is contained
in (ii) of the last theorem.
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