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RINGS WHERE THE ANNIHILATORS OF α-CRITICAL
MODULES ARE PRIME IDEALS

E. H. FELLER

For a ring R with Krull dimension a, we investigate
the property that the annihilators of α-critical modules are
prime ideals. If R satisfies the large condition then this
property holds iff RII0 is semiprime, where Jo is the maximal
right ideal of Krull dimension <a. The property holds in
the following rings, (i) R is weakly ideal invariant, (ii) R
satisfies the left AR property, or (iii) the prime ideals of
R are right localizable. In addition, if R is a hereditary
Noetherian ^-primitive ring, then R is a prime ring.

1*1* Introduction* This paper will provide conditions on a
ring R with Krull dimension a, which imply the property that the
annihilator of any α-critical module is a prime ideal. In the
terminology of [2], this property means the α-coprimitive ideals are
prime.

In §2, using the procedures of [2] and [4], we find necessary
and sufficient conditions for this property in rings which satisfy the
large condition. In addition, for a ring R with Krull dimension
this property is true under any one of the following conditions; (i)
R is weakly ideal invariant (ii) R satisfies the left AR-condition,
(iii) the prime ideals of R are right localizable. For right Noetherian
ring, the conditions (i) and (iii) are shown to imply this property in
[5], For Noetherian AR-rings the same is true from [5] and [13].
We extend the results of K. Brown, T. H. Lenagan, and J. T.
Stafford [5] for (i), (ii), and (iii) to rings with Krull dimension.
The proofs are short and direct, utilizing the procedures of [2] and
[4]. This should be helpful in the study of related problems.

One can show directly that if a right Noetherian ring R is
smooth and the α-coprimitive ideals are prime, then R has a right
Artinian, right classical quotient ring.

In §3, we shall investigate right hereditary α-primitive rings
R. We show that the associated α-prime ideal P is a direct
summand, and R/P is a right hereditary prime ring. This implies
from [6] and [11], that if R is a hereditary Noetherian α-primitive
ring, then J? is a hereditary Noetherian prime ring of Krull dimen-
sion 0 or 1.

All rings will have identity, and all modules are right unitary
modules. Ideal shall mean two-sided ideal, and a ring is Noetherian
if it is both right and left Noetherian. The injective hull of a
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module M is denoted by E{M), and | M\ denotes the Krull dimension
of M.

If S is a subset of a module M over R, then ann S = Sr =
{xeR\sx = 0 for all seS}. The Socle of M is the sum of the criti-
cal submodules of M, and is denoted by Soc M.

2Λ. What α-coprimitive ideals are prime* As in [2], an ideal
D of R is called a-coprimitive if D is the annihilator of an α-criti-
cal module C, where \C\ = \R\ — a. A ring R is a-primίtive provid-
ed 0 is an α-coprimitive ideal. If I is an indecomposable injective
module containing an α-critical module, then I is called an a-
indecomposable injective module.

The following is known and the proof direct.

PROPOSITION 2.2. If R is a semiprime ring, where \R\ = a,
then every a-coprimitive ideal is prime.

From §2 of [4], if \R\ = a, for every α-indecomposable module
I, there is a unique minimal α-coprimitive ideal D, such that D =
ann Soc /, and if C is any α-critical module in /, then D £ ann I £ P,
where P = ass /. Thus we can write.

PROPOSITION 2.3. If \R\ = a, then every a-coprimitive ideal is
prime iff for every a-indecomposable injective module I, we have
ann (Soc /) is prime ideal.

Since there is but a finite number of isomorphic classes of a-
indecomposable injective modules, then from 2.2 and 2.3 we have.

PROPOSITION 2.4. If \R\ = a, and M = 1,0 © In, where Ii9

for i = 1, 2, , n, is an a-indecomposable injective, and each iso-
morphic class of a-indecomposable injective modules is represented
in this sum, then every a-coprimitive ideal is prime iff ann (Soc M)
is a semiprime ideal of R.

A ring R with Krull dimension a is said to satisfy the large
condition, provided \R/L\ <\R\, for all large right ideals L of Rr

A ring R is a-smooth or a-homogeneous if \K\ — \R\ = a, for all
nonzero right ideals K of R.

PROPOSITION 2.5. Let R be an a-smooth ring with Krull
dimension a. Then R satisfies the large condition and every a-
coprimitive ideal is prime iff R is a semiprime ring.
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Proof. If R satisfies the large condition, then every α-
indecomposable injective module embeds in E(R). Hence, since R
is smooth, then JB = Λ 0 © /», where each It is an α-indecom-
posable injective module, and all the isomorphic classes are re-
presented. From Corollary 2.6 of [2, p. 61], we have Soc/* = 7* for
all i. Hence Soc E(R) = E(R). Now if every α-coprimitive ideal is
prime, then from 2.4, we have 0 = ann R = ann E(R) is a semiprime
ideal.

Since semiprime rings with Krull dimension all satisfy the large
condition the converse is true.

THEOREM 2.6. Let R be a right Noetherian ring with Krull
dimension a, then R satisfies the large condition and the a-coprimi-
tive ideals are prime iff Jo is a closed semiprime ideal, where Io is
the maximal right ideal of Krull dimension < a.

Proof. If D is an α-coprimitive ideal of R, then since R/D is
α-smooth, it follows that D 2 /0, which is an ideal of R. Thus the
α-coprimitive ideals of R/Io are just of the form D/Io, where D is
an α-coprimitive ideal of R.

From Proposition 3.4 of [3], we know that R satisfies the large
condition iff Io is closed and R/Io satisfies the large condition. Since
R/Io is smooth, the result follows from 2.5.

EXAMPLE 2.7. Let Z denote the integers and Zp the integers
modulo a prime element p. If

Z Z
and

z zP[χ]
o zp[x]

then Rλ and R2 satisfy the large condition, and Rx satisfies the con-
ditions of 2.6. However, R2 is smooth, but certainly not semiprime.

The ideal | p Q is coprimitive, and not prime.

If R is a ring with Krull dimension, an ideal T of R is said to
be weakly ideal invariant provided \T/IT\ < |22/TΊ for every right
ideal I oί R with \R/I\ < \R/T\. If every ideal of R is weakly ideal
invariant, then R is said to be weakly ideal invariant.

The proof of the following is direct.

LEMMA 2.8. // A, B, and C are right ideals of a ring with
Krull dimension a and if \A/B\ = a and \R/C\ < α, then
\Af)C/BnC\ - a.

THEOREM 2.9. Let R be a ring where \R\ — a. If N, the prime
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radical of R, is weakly ideal invariant, then the a-coprimitive
ideals are prime.

Proof. Let N= P±Π ΠPmnPm+1Π --nPn, where the P, are
minimal prime ideals, and \R/Pt\ = a for i = 1, 2, , m, and
liϋ/PJ < a for ΐ — m + 1, , w.

As in [4], let A be the unique minimal α-coprimitive ideal
contained in Pt for i = 1, , m, and ίίi = (A: P,) = {# eϋ!|#Pi £ A}
for i = 1, 2, , m. Then Ht/Dt is large in i2/A> since PJDt is the
assassinator for every uniform right ideal of JR/A From [2], we
have that .β/A satisfies the large condition. Hence \R/Hi\ < a.
From Corollary 1.3 of [9], for rings will Krull dimension, if W =
H, HmPm+1 Pn, then \R/W\ < a. Now TFiNΓc A ί l n ΰ . Π
P™+iΠ nP, . If D.ΦP, for some i, then |P xn ΠP./AΠ ΠAJ =
a since ϋ!/A Π ΓΊ A* is α-smooth, and Px Π Π Pm is not contained
in A Π ΓΊ A,. To show this last statement, suppose Px Π ΓΊ Pm =
A n ΠD,. Then P ^ - P^Λ+x P J C A However, A is
Pi primary, which means Px Pi^Pi^ Pm £ P*, and P5 £ Pi for
i Φ j , which is a contradiction.

Thus, by Lemma 2.8, we have \N/WN\ = a. However \R/W\< a,
which contradicts the assumption that N is weak ideal invariant.

It is not known whether the converse of this theorem is true
for rings with Krull dimension. However, Theorem 2.5 of [5] es-
tablishes this theorem and its converse for right Noetherian rings.

If I is an ideal of ring R, and C(I) = {c e R \ c + / is regular in
R/I}, then I is said to be right localizable provided C(I) is a right
Ore set.

THEOREM 2.10. Let R be an a-primitive ring with unique a-
prime ideal P, then P is right localizable iff P = 0.

Proof. If P = 0, the result follows from [7]. Suppose now
P Φ 0, and P is right localizable. Then [0: C(P)] = {x eR\xa = 0 for
some a e C(P)} is an ideal of R, and [0: C(P)] £ P.

Suppose [0: C(P)] = P. Now P\ the left annihilator of P, is a
large right ideal of R, hence Pι Π P Φ 0. There exists a e C(P), and
0 Φ x 6 Pι Π P, so that #(αi2 + P) = 0. However, \R/aR + P| < a,
which implies \xR\ < a. This is not possible since R is α-smooth.
Hence [0: C(P)] g P.

Since Pι is not contained in P, then P* ΓΊ C(P) Φ 0. Let α e P J n
C(P), and # e P , but #£[0:C(P)]. By the Ore condition, there exist,
d e R, b 6 C(P) such that αώ = #6. Thus de P, and since α e P\ then
as = 0. This implies xb = 0 and # e [0: C(P)], a contradiction.

Note that if P is right localizable in R, then P/iΓ is right
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localizable in R/K for any ideal K contained in P. Thus

COROLLARY 2.11. If R is a ring with \R\ = a, and if every a-
prime P is right localizable, then the a-coprimitive ideals are prime.

For right Noetherian rings this result follows from 2.5 and 3.1
of [5].

An ideal ί of a ring R is said to satisfy the left AR property
provided for every left ideal E of R, there exists a positive integer
n such that E Π In £ IE. A ring R satisfies the left AR property
if every ideal of R satisfies this property. The right AR property
is defined in a similar fashion.

THEOREM 2.12. // R is an a-primitive ring with unique a-
prime ideal P, then P = 0 iff Pι satisfies the left AR property.

Proof. If P = 0, the result is trivial. Suppose Pι satisfies the
left AR property. Since Pι is large, and Z(R) = 0, then (Pι)n is
large for all positive integer n. Thus, if P Φ 0, then O ^ P n (P1)* £
PιP = 0, a contradiction.

Note that if I satisfies the left AR-condition in R, then I/K
satisfies this condition in R/K for all ideals K contained in I.

COROLLARY 2.13. // a ring R with Krull dimension satisfies
the left AR property, then the a-coprimitive ideals are prime.

If R is a Noetherian ring with both the right and left AR-
condition, the result follows from 3.4 of [5], which is a consequence
of 3.4 of [13].

PROPOSITION 2.14. Let R be an a-coprimitive ring with unique
a-prime P, then P is nilpotent iff P satisfies the right AR-condition.

Proof. Now Pι Π Pn Q PιP = 0 for some positive integer n.
Since Pι is large, we have Pn = 0.

For an example of this type of ring see 4.3 of [4].

3Φ1* Right hereditary α-primitive rings* Currently, we have
no example of a Noetherian α-primitive ring Rf which is not prime.
If IRM\ = \MB\ for all (R, R) modules M, one easily shows R is
prime. Thus an example would likely depend on finding a Noetherian
ring, whose right Krull dimension is not equal to its left Krull
dimension.
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We show here that a hereditary Noetherian α-primitive ring is
prime. We begin with an investigation of right hereditary a-
primitive rings.

PROPOSITION 3.2. Let R be a right hereditary a-primitive ring
with faithful a-critical module C. Then

(1) If K is a right of R, then Kr is a direct summand of R.
(2) The ass C = P is a direct summand of R, and RIP is a

right hereditary ring.
(3) Pr = 0, and R is right Noetherian.

Proof. Since R is smooth, then for a right ideal K of R, we
have Kr = x\; Π Π α&, for xu x2, , xn e K. Thus RjK imbeds in
Rjxl 0 © R/xr

n, and by Proposition 7 of [10, p. 85], we have that
R/K is projective. Hence K is a direct summand of R.

If Co is a compressible right ideal of R, then Cl = P from [2].
Thus (2) follows from (1).

Since R is P primary, then PrQP. Thus (Pr)2 = 0. If PrΦ 0, then
(1) implies that Pr contains a nonzero idempotent, which is impossible.
The ring R is right Noetherian by Corollary 5.20 of [8, p. 149].

Since P is a direct summand of R, then R = eR © P, where
(1 — β) jβ = P. We can write J? as a formal triangular matrix ring.

IQ. - e)R(l - e) (1 - e)l

0 eR

where

_ /(I - e)R(l -e) (1 - e)l
P = \ 0 0

and

J O OX

" \0 eR)

is a right hereditary, right Noetherian prime ring, and (1 — e)R(l — e) =
(1 — e)P(l — e) = Hom^ (P, P) is a right hereditary ring. Theorem
4.7 of [8, p. I l l] provides a characterization of triangular matrix
rings of this type.

If p φ o, these rings do not satisfy the left or the right AR-
condition. Thus if R is a right hereditary α-primitive ring which
satisfies the right AR-condition, then R is a prime ring.

THEOREM 3.3. If R is a Noetherian right hereditary a-primi-
tive ring, then R is a hereditary Noetherian prime ring of Krull
dimension 0 or 1.
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Proof. We have R/P is a right hereditary prime ring, and by
Theorem 3 of [12], then R/P is a hereditary Noetherian prime ring.
Consequently, by 3.52 of [6, p. 310], then \R/P\ = 0 or 1. Since
\R\ = \R/P\, then | j?| = 0 or 1. If \R\ = 0, then the faithful critical
module C is simple. If \R\ = 1, the result follows from Lemma 3.5
of [11].

Prom 2.3, we have

COROLLARY 3.4. Let R is a Noetherian ring of Krull dimension
a and I denote an a-indecomposable injective module. If jR/ann Soc
/ is right hereditary for all I, then for every a-coprimitive ideal D
we have R/D is a hereditary prime ring. If a — \R\, then a = 0
or 1.

The upper triangular matrices over F[x], where F is a field, is
an example for this corollary.

PROPOSITION 3.5. Let Rbe a right Noetherian a-primitive ring
with faithful projective a-critical module C. Then R is right
hereditary iff C is hereditary. In this case, R is a direct sum of
critical right ideal, at least one of which is faithful.

Proof If C is projective, and R is right hereditary certainly
C is hereditary. If C is hereditary, then as in [2], there exists
xl9 x2, , xn e C, such that x\ Π ΓΊ xr

n = 0. As in 3.2, then R is
right hereditary, and is a direct sum of critical right ideals.

If C is projective, then C embeds in direct sum of copies of the
right hereditary ring R. Again by Proposition 7 of [10, p. 85],
since C is critical, then C embeds in R. If R = ΣίU Ci9 where
Ct is a critical right ideal for each i, then Cfi Φ 0 for some i.
Hence there exist a monomorphism of C-*Ct. Thus C* is faithful,
and the proof is complete.

COROLLARY 3.6. Let Rbe a Noetherian ring of Krull dimension
a, where all the a-indecomposable injective modules I are semi-
hereditary. If D is the ann Soc /, then R/D is a hereditary prime
ring, and the a-coprimitive ideals are prime.

The α-primitive rings which are the direct sum of critical right
ideals, at least one of which is faithful, is described in [1].

EXAMPLE 6.6. Let F be a field, and F[x] the polynomial ring
in x over F. Let
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F

0

0

F

F

0

F[x)

F[x]

F[x]

E. H. FELLER

and i?2 =

F

0

0

0

F

0

F[x]

F[x]

Fix]

B1 =

Then Rx and JB2 have faithful a critical module C = 0 0 0
0 0 0

Now Rx and R2 are right hereditary, by Theorem 4.7 of [8, p. 111].
Now C is hereditary over Rlf but C does not embed in R2. Hence
C is not projective over R2.
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