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ZEROS OF SUCCESSIVE ITERATES OF
MULTIPLIER-SEQUENCE OPERATORS

C. L. PRATHER AND J. K. SHAW

The authors study the zero free regions of iterates of multiplier-se-
quence operators for (i) functions analytic in the disc \z\< R and (ii)
functions analytic in \z\> T. Integral representations for the iterates of
each class of functions are given. As a consequence the authors give a
generalization of the Post-Widder inversion formula. Other applications
include an investigation of the zero free regions for iterates of fractional
integrals as well as connections between results obtained here and recent
final set results for iterates of operators on balanced sums.

1. Introduction. Let f(z) = 2f=0akz
k be analytic in a neighbor-

hood of 0 and define an operator 0, associated with a set of constants
{«A:}Λ°=O

 a n d a n integer p > 0, on the power basis by θ(zk) — akz
k+p,

k — 0,1,2, Thus for suitably restricted {ak} we may write (θf)(z) =
Σΐ=oakakz

k+'9 (θ2f)(z) = Σΐ=oakak+pakz
k+2'9 and so on. We call an

operator of this type a multiplier-sequence operator. For example, if
ak = k9 then (θf)(z) = zk+pf'(z)\ that is,

(i.i) θ = z X + P ί z '

In [13] (and in [14] for / analytic in a neighborhood of oo) the present
authors studied the differential operators (1.1) and their zero-free regions,
that is, regions Vn in the plane such that (θnf)(z) φ 0 for z E Vn and all n
sufficiently large. Through change-of-variable methods, descriptions of Vn

are transmitted to the classical context of zero-free regions for ordinary
derivatives. For instance, when p = 1 and F(z) =/(l/z), then f(z) —
F{\/z\ (θf)(z) = z2f\z) = -F\\/z\ and (θ"f){z) = (-l)»F<">(l/z) in
general. Therefore the regions Vn

ι = (z ι: z E Vn) are free of zeros of
F(n\ for large enough n. The regions Vn containing z — 0 are discs which
shrink with increasing n to 0. Their radii have orders of magnitude

K = v«
In the present paper we study zero-free regions for rather general

multiplier-sequence operators. In particular, we realize all of the results of
[13] and a portion of those of [14] as special cases. Additionally, we
present a result on the successive iterates of fractional integrals, and we
indicate a method which can be used for locating regions void of zeros of
certain Special Functions (not their derivatives). Included among the
applications and examples is a generalized Post-Widder transform inver-
sion formula for multilplier-sequence operators. Finally, we connect our
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theorems to some results in the literature ([10], [11]) on final sets for
differential operators of a certain type.

2. Main results. We shall work with more general operators θ and
functions f(z) than those indicated above. Fix an integer M (positive,
negative or zero) and let/(z) be given by

(2.1) f(z)= 1 akz
k, 0<|z|<#.

k = -M

If M < 0, z — 0 is allowed. Let p be a nonnegative number. Let a be a
function which is defined on all numbers of the form k + jp, for k — -M,
-M + 1, -M + 2,... and j = 0,1,2, If /? is an integer, α is of course
a sequence indexed by the integers k > -M. We will denote the value of a
at k + jp by ak+jP even though/? may not be integral. Let an operator θ be
defined by its action on powers of z by θ(zp) = avz

vJrp, where v is of the
form k + jp as above. The domain of a is such that the successive iterates
θ"{zv) = a9a¥+p • av+{n_X)pz

v+nP_ are all defined for n= 1,2,3,....
Viewed as an analytic function zv~np may be interpreted as the principal
branch of the power function, although this will not be important in what
follows.

Applying θ to (2.1), we have formally that (θf)(z) = Σf=_Makakz
k+p,

and introducing the notation

(2.2) Akn — <xkoιk+p «£+(„_ 1)/7,

k = -M,-M+ 1,..., n = 1,2,3,...,

we may write, again formally,

(2.3) ( * " / ) ( * ) = 1 Aktnakz
k+»*9 Λ = l , 2 , 3 , . . . .

k = -M

Note that the factors Akn — Λkn(p) depend on the number p, which we

omit to simplify notation.
We now state our first hypotheses and make rigorous the formula

(2.3). We will assume throughout this paper that

(2.4) «_M¥Ό,

and that

(2.5) ak Φ 0 implies thatα^+ y > φ 0 fory* = 0,1,2,. . . ,

where k = -Λf, -M + 1, We will assume that there is a first integer

P > 1 such that

(2.6) a_M+P Φ 0.
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Then it follows that

(2.7) A_Mn φ 0,a_M+Pn φ 0 n = 1,2,3,...,

but if P > 1 then the definition of Ak n implies that

(2.8) A _ M + λ n = A _ M + 2 n = ••• = A _ M + P _ h n = 0 , n = 1 , 2 , 3 , . . . .

Our assumptions on the growth of the function a come in the form of two
alternate hypotheses, the first of which we now state.

Hypothesis I. The set {α,,} satisfies 0Lk+jp ̂  0 for all k andy, and

(2.9)
α -M+P+j + np

a -M+np

a -M+np

ι-M+P+np

P+j

Under this condition, the factors Akn satisfy

(2.10)
A-M+P+j,n+l \ A_Mn+χ

A-M,n+\

«_Λ^4-P_U,:' * ' tt_U4P4-;4-Mn a-M' ' ' a-M+np J

*-M+P+j ^-M+P+j+np
a-M+P ' ' ' a-M+P+np \<*-M' ' ' a-M+np

< 1, fθΓ/I,./ = 0 , 1 , 2 , . . . .

Written another way, this becomes

( 2.n ) άψ^Jάψ±^V+\ „ = 1,2,3....;y = 0,l,2,....

Let S_M+P+jfn+x denote the term on the left of (2.10).

LEMMA 2.1. For each fixed j , the sequence {S_M+P+jn+x}™=0 is conver-
gent.

Proof. First, we have 0 < £_ Λ / + / >+ Λ l I + 1 < 1 by (2.10). To obtain
S_M+P+j n + 1 from S_M+p+j n we multiply it by the factor on the left of
(2.9). By this inequality, we see that {S_M+P+jn+x} is non-increasing for
n -> oo. This completes the proof.

We introduce now the notation

i? — A_M n _
κn — — , n — 1 , 2 , J , . . . ,

Λ-M+P,n
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and the function

Hn(w) = 1 + 1 S_M+P+j,nw
p+\ n = 1 ,2 ,3 , . . . , | w | < 1.

j=o

THEOREM 2.1. Assume Hypothesis I and let f(z) be given by (2.1). Then

(θnf)(z), as given by (2.3), is defined for 0 < | z | < (Rn/p) and is also given

by

(2.12)

(*»/)(*) = {2m)-ιA_M,Λz-»+">[ {\/t)M+Xf{\/t)Hn{zt/Rn) dt

n = 1,2,3,...,

where (1/ρ) < i?.

Proo/. We έfe/f/ie 0/, 02/> by ( 2 3). What we have to show is that
(2.3) converges for 0 < | z | < (ΛM/p) and that (2.12) holds there. By (2.7)
and (2.8), the series in (2.3) has partial sums

m
/ik,nakZ

k = -M

m + M-P
— A a z~M+np + y A a -M+p+j+np

j=o

m+M-P

a
a-M ^ ZJ Λ

Λ

M ZJ Λ

j = 0 Λ-M,n

In view of (2.11) we have

and this implies convergence of (2.3) in 0 <\z\< RnR. The convergence
is uniform and absolute on compact sets.

Now define the function Kn(w) = Σ™=_MAk nw
k+M\ this is defined

for I w I < Rn, according to (2.11). Writing w = zί9

\zt\<Rn,

and the Cauchy Integral Formula yields

(2.13) Aktnz»» = {l*ir(!$±A.
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This is valid when \z\< Rn/ρ. If we require (1/p) < R, then \z\< Rn/p
implies \z\< RnR also, and so (2.13) may be substituted into (2.3) when
0 < I z I < Rn/ρ. This gives

(2.14) (*"/)(*) = z-"+"> f Ak,Λakz*+»
k = -M

{Kn(zί)/tk+M+i)dt

~ - - " + "'>« *-1 t {\/t)M+xf{\/t)Kn{zt) dt,

where we have used uniform convergence of the series to integrate
termwise. Note that /(I/O is defined because | l / / | = ( l / p ) < j R . In
(2.14) put z = Rnx, note (2.7) and (2.8), and expand Kn{zt) to produce

) = A_M9Λz-«+*>(2πi)-1 f (\/t)M+λf(\/t)

which is equivalent to (2.12).

THEOREM 2.2 Assume Hypothesis /, let f(z) be given by (2.1), and let
a_M¥=0. Then there exists a constant γ, 0 < γ < ( l / p ) < Λ , such that for
all n sufficiently large (θnf)(z) has no zero in 0 < | z | < Rny.

Proof. Writing z - Rnx in (2.12), we have

( 2 1 5 ) z " ( β f ) ( z ) = j
Λ-M,n J\t\ = p

with In(x) defined in the obvious way. This is valid for 0 < | j c ί | =
R~] \zt\< R~\Rn/p)p = 1, and consequently In(x) is defined for | x | <
(1/p). By Lemma 2.1 and the definition of Hn(w), the sequence
{Hn(w)}™=ι converges uniformly on compact subsets of | w | < 1 to a
function

00

H(w) = 1 + HPw
p + HP+ιw

p+i + • • • = 2 Hmwm.
m = 0
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Holding x to a compact subset of | x \ < (1/p) and letting n -* oo in (2.15),
we obtain a limit function for {In(x)}™=u

(2.16) /(x) = (2»/)-7 (l/t)M+if(l/t)H(xt)dt,
ΊΊ=p

that is

( 2 , 7 ) 7
« °̂° [ Λ-M,n

with uniform convergence on compact sets. An easy calculation gives

I(x) = 1 Hma.M+mxm = 1 Imxm

and in particular Io = a_M¥=0. Thus we can find a neighborhood | x | < γ
< (1/p) in which /(x) T^ 0. The conclusion of the theorem follows from
(2.17).

If M < 0 the requirement z ^ O can be dropped from the theorem.
Also the assumption a_M φ 0 can be weakened to Hma_M+m φ 0 for
some m; i.e., I(x) does not vanish identically. For in this case we can find
a neighborhood | x | < γ in which I(x) has no zero other than (possibly)
x = 0. Finally, we remark that the multiple-valued nature of the terms znp

for non-integral p is immaterial in the theorem, for these can always be
factored out as in (2.14).

From one point of view, (2.17) may be regarded as a transform
inversion formula, in the sense of the classical Post-Widder formula
([9], [15], [16]). To illustrate, let us assume that P = 1 and that HmΦ0 for
all m, under Hypothesis I. Let a measure μ of bounded variation on [0, 00)
solve the Stieltjes moment problem

H-k

λ=Γτkdμ{τ), A; = 0,1,2,...;

see [16,p. 139] for details. If I(x) is an entire function, and/(z) is given
by (2.1), then we have

(2.18) zMf{z)= 2 akz
k+M= Σ (h+M/Hk+M)z

k = -M k = -M

00 QQ

= Σ 4+Λ/f (zτ)k+M'dμ(τ)

= f°I(zτ)dμ(τ),
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provided the integral exists and termwise integration can be justified. We
may interpret (2.18) as a transform equation: f(z) — zMf(z) is the "0-
transform" of I(x). The reciprocal relation is given by (2.16), which can
be written as

Ί (l/t)f(l/t)H(xt) dt.

Consider the example M — -\,ak — k, p = 1, P = 1. Hypothesis I is
easily verified, and we calculate that

e _ ( « + ! ) ( * + 2 ) ••• (n+j+1) 1
Sl+j'"~ (n + l)J+\j + l)\ O + D ! '

and so Hk

λ = k\ The corresponding moment problem is solved by k\ —
f™ τke~τ dr. Here (2.18) is easily justified and becomes after a change of
variable

implying that F(z) =/( l/z) is the Laplace transform of /(/). From
ak = k and /? = 1 it follows that θ = z2 d/dz. Now (θ"f)(z) =
(-l) r tF ( l f )(l/z) as noted earlier. Since i?rt = (w + I)"1, (2.17) reduces in
this case to

This was first derived by E. L. Post in 1930 [9, p. 772]. See [15], [16], [17],
[18] for further references.

3. Alternate hypothesis: If the terms {av} are negative or complex, the
previous results do not apply. We will modify them by using an alternate
set of growth conditions. We still assume (2.4), (2.5) and (2.6), so that
(2.7) and (2.8) hold. The following replaces (2.9).

Hypothesis II. There exists a number S > 0 such that

(3.1)
a-M+P+j+np

a-M+np

a-M+np

a-M+P+np

P+j

w,7 = 0,1,2

Instead of (2.11), but proving it in the same way, we now have

(3.2)
A-M+P+j,n

/ i = 1 , 2 , 3 , . . . ; y = 0 , l , 2 , . . . ,
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where Rn ~\A_Mn/A_M+Pn | as before. This time (0"/)(z), still given by
(2.3), is defined for 0 <\z \< RnR/Sn. The function Kn(w) will be
defined as before except that | w \< Rn/Sn, and for (2.13) we must insist
that \z\< Rn/(pSn) where (1/p) < R. Finally, we see that (2.14) will
hold under Hypothesis II when 0 < | z |< Rn/(pSn). Thus we have proved
the following.

THEOREM 3.1. Assume Hypothesis II and letf(z) be given by (2.1). Then
(θ"f)(z) is defined (by (2.3)) for 0 <\z\< Rn/(pSn) and is also given by
(2.12), where (\/p)<R.

THEOREM 3.2. Assume Hypothesis II and let f(z) be given by (2.1) with
d-M ̂  0 L^t τ and Ύ be constants with 0 < τ < 1 and 0 < γ < (1/p). Then
for all n sufficiently large (θnf)(z) has no zero in 0 < | z | < Rn(τn/Sn)y.

Proof. In (2.14) put z = Rn(τn/Sn)x, and write the result as

(0*f)(z) = A_M9Λz-»+"'(2*i)-1 f ( l /0 M + 7(1/0
Ί1=P

-M+n pτ ί \

with Ln(x) defined as indicated. This is valid for 0 < | z | < Rn/(ρSn); i.e.,
0 < τn I xt | = τn I x I p < 1. In fact, take 0 < | x | < γ < (1/p), which im-
plies τ| x |p < 1. For x so restricted, and 0 < T < 1, (3.2) implies that the
sequence {Ln(x)}™=ι converges uniformly to

(2«T7 (l/t)M+lf(l/t)A = a_M*0.
J\t\=p

This produces a revised version of (2.17), namely

zM-np(βn

1, 0<|z| = 1^7^/51 ^Λ Λ

and the desired conclusion follows.

4. Examples. We calculate here some examples to illustrate the
wide variety of situations covered by Theorems 2.2 and 3.2.

(i) M = - 1 , p = 0, ak = &, P = 1, 0 = z J/Jz. We can use Hypothe-
sis I since (2.9) reduces to

a, a
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which is equivalent to 2 + y < 2 1 + - / , which holds for all j^O. Now
Rn - A\,n/A2,n = 0/2)"> a n d therefore the discs | z |< γ2~π are free of
zeros of (θnf)(z) for w large enough. For this operator, the change of
variable z = ew, F(w) = f(z) = f(ew) leads to (θnf)(z) = (D"F)(w)
where D stands for ordinary differentiation. The half planes Re(w) <
logγ — wlog2 are free of zeros of DnF for such F. This example was
given in [13].

(ii) M — - 1 , p = 1, ak — k, P = \,θ — z2 d/dz. Hypothesis I applies
again, for (2.9) becomes

#1+7 + 2 .
« + 1 "

but this is the same as

n+ 1

which is true by the binomial theorem. We calculate that Rn = AXn/A2n

= n\/(n + \)\— (n + I)"1, and so the discs | z | < γ / ( n + 1) have no
zeros of (θnf)(z). Putting F(z) =/(l/z), we obtain the zero-free regions
for F(n\z) recently described by R. P. Boas [2].

(iii) M — \,p — Q,ak — k,θ — z d/dz. Since a_x — - 1 and α 0 = 0 we

have P = 2. Condition (3.1) specializes to 1 +j < S2+J

9 or S >
(7 + l ) 1 / o + 2 ) . The sequence (7 + l)1/(y+2) a t t a i n s a m a x i m u m at j = 3
and therefore Hypothesis II is satisfied for S = 41 / 5. Since /?n = 1, the
regions 0 < | z | < yτn/4n/5 are zero-free for θ. This bound is asympoti-
cally best possible because of the example/(z) = z"1 + z4, for which we
have(θHf)(z) = (- l)^" 1 + 4wz4.

(iv) M — 0, /? = 0, αk — 2~k, P = 1. Here the operator 0 is given by
(θnf)(z) = /(z/2M), « = 0,1,2,..., which is defined for | z | < 2nR. The
quantity on the left of (2.9) is

«o

so that both sets of hypotheses are satisfied, the second for S = 1. Since
Rn = 2", Theorem 2.2 says that the regions 0 < | z | < γ2" (γ < R) are
zero-free. Of course, this is equivalent to the fact that f(z) itself has
isolated zeros. This illustrates also the fact that the constant γ depends on

(v) M = 0, p = 1, ak = \/{k +1) , P = 1. In this case θ is the
anti-derivative operator, θ{zk) = zk+1/(k + 1), (θf)(z) = /o

z/(ί) ίfe.
Condition (3.1), dropping absolute values, becomes
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that is,

This inequality is false if S = 1 (in fact the reverse inequality holds) which
means that Hypothesis I fails. However Hypothesis II holds with 5 = 2,
which we get by setting n — 0 and y -> oo. Here Rn — n + 1, giving
zero-free regions of the form | z | < (n + l)γτ"/2w.

(vi) M = 0, p > 0, ak = T(k + 1)/T(k + p + 1), P = 1. Applying θ
termwise gives (θf)(z) = I%=oak[T(k + \)/T(k + p+ \)]zk+p, and it
follows that θ corresponds to the/?th order fractional integral. We use the
definition of [8, p. 67]. If p — 1 this example reduces to the previous one.
The left side of (3.1) is asymptotically

for large n and y, where we have used the asymptotic formula
[Γ(/i + a)/T(n + b)] - na~h ([l,p. 257]). Consequently, Hypothesis II
will hold for some S > 1, whose value we do not compute. After a
calculation, Rn — np + 1. The zero-free regions for fractional integration
are then \z\<(np+ \)yτn/Sn.

(vii) Let G(w) be an entire function of finite exponential type b, so
that \G(w)\= O(e ( 6 + ε )H), for ε > 0 and all large w. Fix the operator
δ = zd/dz and consider, as a differential operator, the expression
which is defined by

(4.1) G(δ)f= lim 2
n-oo J =

This operator is considered by Hille [7, p. 48] in connection with questions
on analytic continuation, and also by the first author [11]. One can show
that, for/(z) given by (2.1),

(4.2) G(δ)f(z)= 1 akG{k)z"9
k = -M

with uniform convergences on compact subsets of 0 <\z\<Re~b. Thus
G(8) is a multiplier-sequence operator, θ — G(δ), with ak — G(k) and
p = 0. If we assume G(-M) φ 0 and G(-M + P) φ 0, then Hypothesis II
will be satisfied for some S because of the growth condition G(k)—
O(e(h+ε)k). Since Rn = [G(-M)/G(-M + P)]n, then the zero-free regions
for θ = G(8) are of the form 0 < | z | < γ | τG(-M)/SG(-M + P) \n.

(viii) Now take θ = δ = zd/dz. The functions Pn(z) = Sn(ez)e~z are
known as Stirling polynomials ([11], [12]). By example (i) (the constant
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term disappears after one iteration, so we may as well take M = -1) the
nth Stirling polynomial, for n large enough, will have no zero inside
I z | < γ2"Λ The function H(w) is the constant 1, so that I(x) = ax = 1.
Then (2.17) reduces to the asymptotic formula

It is shown in [11] that θ"[exp(zr)] - Pn{zr) exp(zr) and that the final set
of exp(zr) for θ (the set of all ξ such that ξ = ίimk_>O0ξk where
0w*[exp(££)] = 0 for some sequence nk -> oo) consists of the rays from 0
going through the rth roots of - 1 . The fact, observed above, that Pn(zr) φ
0 for I z | < (y/2n)λ/r indicates the rate at which these rays are "filled in"
with zeros of Pn(zr). Closely related results on the final set for derivatives
of exp[-ez] are found in [6].

5. Reciprocal powers. A completely dual theory to that of §3 exists
for multiplier-sequence operators on power series

(5.1) f(z)= f akz-k = a_MzM + a_M+ιz^ + . ,\z\>T.
k = -M

We give a brief account of it in this section.
Let p >: 0 and let β be a function defined on all numbers of the form

-k + np, k = -M, -M + 1, -M + 2,... and n = 0,1,2,..., where M is
an integer. We continue to write β_k+np = β(-k + np). We assume that

(5.2) J B . ^ O , and

(5.3) β_k Φ 0 impliesβ_k+np Φ0, /i = 0,1,2,...,

where k — -M, -M + 1, Assume that there is a first integer P >: 1
such that

(5.4) β*i-P*0

We define the operator θ on the power basis by θ(zv) — βvz
yJtp, for v in

the domain of β9 so that θ\zv) = jβ,jβ,+/, βv+{n-X)pz
v+np. Letting

5,,π = βyβv+p ' ' * βv+(n-\)P

 a n d applying ^n termwίse to (5.1), we arrive at
the definition for θ"/, namely

(5.5) ( « " / ) ( * ) = I B _ K n a k z ~ k ^ ' , Λ = l , 2 , 3 , . . . ,

whenever this series converges. Conditions (5.2), (5.3) (5.4) imply that

ΰ M f Λ ^ 0, BM_Pn Φ 0, /i = 1,2,3,..., and

,„ = 0, i f P > l .
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We now state the condition corresponding to Hypothesis II. Hypothesis I
has no practical correspondent since the standard operators (θ =
zλ+p d/dz) involve negative βv.

Hypothesis III. There exists a number S > 0 such that

(5.6)
β^

PlW+np

It follows that

(5.7)

Sβ M+np

β^

f-P-j,n

BM,n BM-P,n

P+j

and introducing Tn — \ BM_P n/BM n | , (5.7) can be written

Bx
#!=

This condition implies that (5.5) converges and defines θnf for \z\>
TTn/S»,n= 1,2,3,....

The rest of the program parallels that of § 3, and we give no further
details except statements of pertinent theorems, which generalize corre-
sponding results for differential operators in [14].

THEOREM 5.1. Assume Hypothesis III and let f(z) be given by (5.1).
Then (θnf)(z) is defined by (5.5) for \z\> Tn/(pSn) and is also given by

(θ«f)(z) =

x ί
Ί Ί =Ί = P

+ ! BΛ

where (1/p) > T.

THEOREM 5.2. Assume Hypothesis III and let f(z) be given by (5.1),
with a_M φ 0. Let T and γ be constants with 0 < T < 1 and (1/γ) > (1/p)
> T. Then for all n sufficiently large, (θnf)(z) has no zero which satisfies
\z\>Tn/(S"τ"y).

EXAMPLE. If we take θ = G(δ) as in example (vii), where G(w) is
entire and of finite exponential type b, and f(z) a "balanced" Laurent
series

M

f(z)= Ckz
k, M>0, = \C_M\=l,
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then the results both §3 and §5 apply. We assume G(-M)G(M) φ 0 and,
for simplicity, G(-M + \)G{M - 1) φ 0 so that P - 1 for both sets of
hypotheses. We have a_k — βk — G(k), -M < k < M. From the growth
conditions on G(w) it is possible to choose a number μ > b so that (3.1)
holds for an S such that | G(-M + \)S/G(-M) | = e" and (5.6) holds for
an S' such that \G(M- \)/G(M)S' | = eμ. Since

Λ π =|G ! (-Λ/)/G ί (-M + 1)|M and Tn=\G(M - l)/G(M)\n,

the conclusions of Theorems 3.2 and 5.2 say that (θnf)(z) = (G(δ))nf(z)
is zero-free when either

0<\z\<y(r/eμ)n or \z\~l < y{r/e*)n.

These bounds become rather crude when one specializes G. Prather [11]
has shown that if G(w) = e lλMΊIJ?=1(l — /vv/vt̂ ), where λ is real and the
wk are real and satisfy Σ w~λ < oo, then the final set of a balanced f(z)
taken with respect to θ = G(8) lies on the unit circle. Consequently, the
sets 0 <I z I < /*! < 1, and | z | > r2 > 1 are zero-free for all large «.

In two very interesting related papers, Craven and Csordas [4], [5]
have results related to but not overlapping the results done here. In
particular, they consider multiplier sequences {yk}t=0 which do not in-
crease the number of nonreal zeros of real polynomials. An example of
multipliers which they take is yk = Q(k), where Q is a polynomial having
real negative zeros, or more generality an entire function of exponential
type having real negative zeros of the form

β(z) = exp(fe) Π (1+z/αJ,

say, where b > 0, Σ * = 1 | an \~λ < oo. We allow the same multiplier in our
example (vii) and the example after Theorem 5.2. When M < 0 in example
(vii) so that z = 0 is allowed and yk = Q(k) as above, the asymptotic size
of the zero free region shrinks to 0, as n -> oo. This is consistent with their
results.

Moreover, if in example (vii), we take G(w) to be an entire function
of exponential type b < π, and G vanishes at a set of integers from {-M,
-M + 1, } having density 1, yet not vanishing at all the integers (in
light of Carlson's Theorem), then the boundary of convergence \z\ —
R exp(-fe) of G(δ)/(z), given in (4.2), is a natural boundary, by the Fabry
gap theorem (see e.g. Bieberbach [3], Satz 2.21 or Hille [7], Theorem
11.7.2). Our hypotheses (G(-M) φ 0, G(-M + P) φ 0) do not allow G to
vanish at all the integers. Consequently, the boundary \z\— i?exp(-Z?m)
of the domain of convergence for (G(8))mf(z) is a natural boundary, for
all m — 2,3,
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