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ON THE ZETA FUNCTION
FOR FUNCTION FIELDS OVER Fp

EMERY THOMAS

We consider here the zeta function for a function field defined over
a finite field Fp. For each inter y, ξ(j) is a polynomial over Fp, as is
ζ'(j), the "derivative" of zeta. In this note we compute the degree of
these polynomials, determine when they are the constant polynomial and
relate them to the polynomial gamma function.

In a recent series of papers D. Goss has introduced the notion of a
zeta function ξ(j) for rational function fields over Fn where r — pk, with/7
a rational prime. In particular, for each positive integer ι, with i ^ 0
(r - 1), ζ(-i) G Fr[t]. Goss also defines the "derivative" of ξ, ξ', with
ζ'( — i) E Fr[t] if / = 0 (r — 1). We combine these special values of ξ and
ζ' into a single function β(n) (with n — ~i) defined by:

(1) jβ(O) = O,

jB(Λ) = 1 - "2
i—\

i = n(s

where s = r- 1. Thus, by (3.9) and (3.10) of [2],

w), Λ = 0 ( 5 )

An important situation where these functions arise is in determining
the class numbers of certain extension fields over Fr[t] (modeled on
cyclotomic fields). If P is a prime polynomial in Fr[t\ Goss defines class
numbers h+ (P) and h~ (P) associated to P, in the classical fashion, and
shows that their study (a la Kummer) involves the polynomials ξ( — i) and
Γ ( ~ 0 Thus it is important that we know certain facts about these
functions, and hence about β(n). Specifically, when is β(n) — 1? What is
the degree of β(n)Ί When does β(n) factor? In this note we give some
answers to these questions, for the case r — p.

REMARK. I am indebted to Goss for bringing this material to my
attention.
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The function β(n). Let p be a rational prime, and for each integer

n > 0 , let β(n) £ Fp[t] be the polynomial defined above. Note that if

0<n<s( = p — 1), then β(n) — 1. For n > s we rewrite (1) as follows:

set k = [(n — l)/s]. Then (1) becomes:

(3) β(n) = \- Σ

Let n = 2,. #,/>' be the /?-adic representation of «; thus, 0

and almost all at are zero. Define

Our first result is:

THEOREM 1. Le/ /? be a positive integer with l(n) < s. Then,

β(n) = l.

The proof depends upon several simple facts about binomial coeffi-

cients mod p. Recall the result of Lucas:

(4) Ifm andn are givenp-adically by m = ^2dbtp\n = ΣaιP

i i

( m ) m o d ^ Ξ Π \b'\ mod p.

In particular,

^ ) ^ 0 mod ^ >̂ 0 < ^ < αz, all ι.

As an immediate consequence, we have:

If (^) ϊ£θ mod p, then I(n) = I(m) + I(n — m). In particular,

if I <m<n, thenl(n) > l(m).

Finally, note that since/? = 1 mod s, we have:

(6) n = l(n) mods.

Proof of Theorem 1. Let j be any positive integer. By (6), since js = 0

mod s, l(js) >: s. Thus, if n is an integer withes < n and ("s) ^ 0 mod p,

then by (5), l(n) > l(js) > 5. Therefore, if /(/i) < 5, then (J5) = 0 mod /?.

Thus, by (3), ̂ β(π) = 1, as claimed.
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We suppose now that n is an integer with l(n) > s; our goal is to

calculate the degree of β(n) — call this simply D{n).

Define an integer valued function p(n) by:

(η\ Ifl(n) — s> s e t p(n) = n — m, where m is the least

positive integer such that

l(m) = s and (^

Thus, if n is written/?-adically in the form

N

(8) n = 2 Pe'> w i t h e0^ ""<eN9

and with no more than s e/s with the same value, then

m = 2 Pe'
i = 0

If q is an integer (> 0) with l(q) < s, set p(q) = 0.

Set pi+\n) = p(fi(n)\ with p°(n) = Λ. Thus, for large /, /rf(/i) = 0.

E X A M P L E , p = 5 , n = 3 l + 4 - 5 + 2 - 5 3 . T h e n ,

Our result is:

THEOREM 2. Le/ w be an integer with /(/?)> s. Then

D(n) = degreeβ(n)= 2 P7(«)

The proof will be by induction on /(«). Suppose first that l(n) — s + 1.

If j is any positive integer with js < n and (n

js) ^ 0 mod /?, then by (5) and

(6), l(n -js) = 1, and so by Theorem 1, β(n - js) = 1. Therefore, by (2),

D(n) = n —js, where j is the feαsί positive integer such that (n

Js) ^0 (p);

i.e., £>(«) = ρ(π), as stated in Theorem 2.

We now make the following pair of inductive hypotheses: let k be an

integer > s + 1, and suppose that « is any integer such that

s+ 1 </(n) <Λ:.
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(A k) For any such integer n, D (n) is given by Theorem 2.

(BA) Let n be any integer as above. If c is the least positive

integer such that ( ^ ) ^ 0 (p) and d is any integer with

cs < ds < n and I , I 5£ 0 (/?); thenZ>(« — cs) >: Z>(« -

Claim 1. A^ implies B A : + 1 .

/. Write « as in (8) so that cs = Σ/=o pβi Thus, « — cs — ΣjLV /?^,

where /. = ^ z + 5 . Similarly, write n — ds — ΣfLQp8', where M < N — s.

Then, for / < M, /?^ >/**', and so D(n — cs) > D(n — ds), either by

Theorem 1 or by AΛ and Theorem 2, since /(« — cs) and l(n — ds) are

less than /(«).

C/tf/m 2. Ak and BA:+1 /m/?/y A Λ + 1 .

Proof. Let « be an integer with l(n) — k + 1. Write w as in (8) and

define cs as above, so that p(n) = w — cs. By (3) and B Λ + 1 ,

£>(/*) = A2 - c.y + D(n - cs) = ρ(w) + D(p(n)).

Since /(p(/i)) < /(Λ) = /: + 1, by A Λ

(«)) = Σ P^(p(π)) = Σ P/+1(«)

Therefore, D(n) — Σ, >i Pz(«), which proves

of Theorem 2. We showed above that A 5 + 1 holds, and so by

Claims 1 and 2, Ak holds for all k > s. This proves the theorem.

Note that (trivially) if n is positive, then β(n) ¥^0. Combining Theo-

rems 1 and 2 we have:

COROLLARY 1. If n is a positive integer, then β(n) — 1 //, and only if,

For certain values of n, D{n) can be written out explicitly.

COROLLARY 2. Let k and m be positive integers, with m < s. Then

k-\

D((m + \)pk - 1) = s - 2 ¥ + kmpk.
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Relation to the gamma function. We are interested in comparing the
function β(n) with the Gamma function Tn (see [1]). Combining Corollary
2 with (3.1.1) of [1], we find:

COROLLARY 3. Let n — (m + \)ρk — 1, where k and m are positive
integers with m < s. Then,

For certain values of n we have a stronger result.

THEOREM 3. Suppose that n = (m + \)p — 1, with 1 <m<s. Then,

β(n) = 1-Γ,,.

We are especially interested in divisibility properties of β(n). Thus,
we have:

COROLLARY 4. For 1 < k < s/2 andp an odd prime,

β((2k + \)p - \) = {\ - Tkp)(\ + Tkp).

In particular,

β(P

2-\) = (l-TSJ>/2)(\+Tsp/2).

Proof of Theorem 3. We will need the following (easily proved) fact:

I f O < / < * , then (*) = ( - l ) ' m o d / > .

Suppose that n — (m + \)p — 1, as above. Thus, π = J 1 + m/?, and so
by (3) and Theorem 1,

ι = 0

1=0

= l-(t>-t)m=l-Γn

by (3.1.1) of [1].



256 EMERY THOMAS

REFERENCES

[1] D. Goss, Von staudtfor Fq[T], Duke Math. J., 45 (1978), 885-910.
[2] , Kummer and Herbrand criteria in the theory of function fields, to appear.

Received May 22, 1981. Research supported by a grant from the National Science
Foundation.

UNIVERSITY OF CALIFORNIA

BERKELEY, CA 94720




