ON THE ZETA FUNCTION FOR FUNCTION FIELDS OVER F_n

EMERY THOMAS

We consider here the zeta function for a function field defined over a finite field F_p . For each inter j, $\zeta(j)$ is a polynomial over F_p , as is $\zeta'(j)$, the "derivative" of zeta. In this note we compute the degree of these polynomials, determine when they are the constant polynomial and relate them to the polynomial gamma function.

In a recent series of papers D. Goss has introduced the notion of a zeta function $\zeta(j)$ for rational function fields over F_r , where $r = p^k$, with p a rational prime. In particular, for each positive integer i, with $i \neq 0$ (r-1), $\zeta(-i) \in F_r[t]$. Goss also defines the "derivative" of ζ , ζ' , with $\zeta'(-i) \in F_r[t]$ if $i \equiv 0$ (r-1). We combine these special values of ζ and ζ' into a single function $\beta(n)$ (with n = -i) defined by:

(1)
$$\beta(0) = 0, \quad \beta(1) = 1,$$

$$\beta(n) = 1 - \sum_{\substack{i=1\\i \equiv n(s)}}^{n-1} {n \choose i} t^i \beta(i), \quad n \ge 2,$$

where s = r - 1. Thus, by (3.9) and (3.10) of [2],

(2)
$$\beta(n) = \begin{cases} \zeta(-n), & n \neq 0 \ (s) \\ \zeta'(-n), & n \equiv 0 \ (s) \end{cases}.$$

An important situation where these functions arise is in determining the class numbers of certain extension fields over $F_r[t]$ (modeled on cyclotomic fields). If P is a prime polynomial in $F_r[t]$, Goss defines class numbers $h^+(P)$ and $h^-(P)$ associated to P, in the classical fashion, and shows that their study (à la Kummer) involves the polynomials $\zeta(-i)$ and $\zeta'(-i)$. Thus it is important that we know certain facts about these functions, and hence about $\beta(n)$. Specifically, when is $\beta(n) = 1$? What is the degree of $\beta(n)$? When does $\beta(n)$ factor? In this note we give some answers to these questions, for the case r = p.

REMARK. I am indebted to Goss for bringing this material to my attention.

The function $\beta(n)$. Let p be a rational prime, and for each integer $n \ge 0$, let $\beta(n) \in F_p[t]$ be the polynomial defined above. Note that if $0 < n \le s$ (= p - 1), then $\beta(n) = 1$. For n > s we rewrite (1) as follows: set $k = \lceil (n-1)/s \rceil$. Then (1) becomes:

(3)
$$\beta(n) = 1 - \sum_{i=1}^{k} {n \choose is} t^{n-is} \beta(n-is).$$

Let $n = \sum_i a_i p^i$ be the *p*-adic representation of *n*; thus, $0 \le a_i \le s$, and almost all a_i are zero. Define

$$l(n) = \sum_{i} a_{i}.$$

Our first result is:

THEOREM 1. Let n be a positive integer with $l(n) \le s$. Then,

$$\beta(n)=1.$$

The proof depends upon several simple facts about binomial coefficients mod p. Recall the result of Lucas:

(4) If m and n are given p-adically by $m = \sum_{i} b_{i} p^{i}$, $n = \sum_{i} a_{i} p^{i}$, then

$$\binom{n}{m} \mod p \equiv \prod_{i} \binom{a_i}{b_i} \mod p.$$

In particular,

$$\binom{n}{m} \not\equiv 0 \bmod p \Leftrightarrow 0 \leq b_i \leq a_i$$
, all i .

As an immediate consequence, we have:

(5) If
$$\binom{n}{m} \not\equiv 0 \mod p$$
, then $l(n) = l(m) + l(n-m)$. In particular, if $1 \leq m < n$, then $l(n) > l(m)$.

Finally, note that since $p \equiv 1 \mod s$, we have:

(6)
$$n \equiv l(n) \mod s.$$

Proof of Theorem 1. Let j be any positive integer. By (6), since $js \equiv 0 \mod s$, $l(js) \ge s$. Thus, if n is an integer with js < n and $\binom{n}{js} \ne 0 \mod p$, then by (5), $l(n) > l(js) \ge s$. Therefore, if $l(n) \le s$, then $\binom{n}{js} \equiv 0 \mod p$. Thus, by (3), $\beta(n) = 1$, as claimed.

We suppose now that n is an integer with l(n) > s; our goal is to calculate the degree of $\beta(n)$ — call this simply D(n).

Define an integer valued function $\rho(n)$ by:

(7) If $l(n) \ge s$, set $\rho(n) = n - m$, where m is the least positive integer such that

$$l(m) = s$$
 and $\binom{n}{m} \not\equiv 0 (p)$.

Thus, if n is written p-adically in the form

(8)
$$n = \sum_{i=0}^{N} p^{e_i}, \text{ with } e_0 \leq \cdots \leq e_N,$$

and with no more than $s e_i$'s with the same value, then

$$m=\sum_{i=0}^{s-1}p^{e_i}.$$

If q is an integer (≥ 0) with l(q) < s, set $\rho(q) = 0$.

Set $\rho^{i+1}(n) = \rho(\rho^i(n))$, with $\rho^0(n) = n$. Thus, for large i, $\rho^i(n) = 0$.

Example.
$$p = 5$$
, $n = 3 \cdot 1 + 4 \cdot 5 + 2 \cdot 5^3$. Then, $\rho^1(n) = 3 \cdot 5 + 2 \cdot 5^3$, $\rho^2(n) = 5^3$, $\rho^3(n) = 0$.

Our result is:

THEOREM 2. Let n be an integer with l(n) > s. Then

$$D(n) = \operatorname{degree} \beta(n) = \sum_{i \ge 1} \rho'(n).$$

The proof will be by induction on l(n). Suppose first that l(n) = s + 1. If j is any positive integer with js < n and $\binom{n}{js} \not\equiv 0 \mod p$, then by (5) and (6), l(n-js) = 1, and so by Theorem 1, $\beta(n-js) = 1$. Therefore, by (2), D(n) = n - js, where j is the *least* positive integer such that $\binom{n}{js} \not\equiv 0$ (p); i.e., $D(n) = \rho(n)$, as stated in Theorem 2.

We now make the following pair of inductive hypotheses: let k be an integer $\geq s+1$, and suppose that n is any integer such that

$$s+1 \le l(n) \le k$$
.

- (A_k) For any such integer n, D(n) is given by Theorem 2.
- (B_k) Let n be any integer as above. If c is the least positive integer such that $\binom{n}{cs} \not\equiv 0$ (p) and d is any integer with $cs \le ds \le n$ and $\binom{n}{ds} \not\equiv 0$ (p); then $D(n cs) \ge D(n ds)$.

Claim 1. A_k implies B_{k+1} .

Proof. Write n as in (8) so that $cs = \sum_{i=0}^{s-1} p^{e_i}$. Thus, $n - cs = \sum_{i=0}^{N-s} p^{f_i}$, where $f_i = e_{i+s}$. Similarly, write $n - ds = \sum_{i=0}^{M} p^{g_i}$, where $M \le N - s$. Then, for $i \le M$, $p^{f_i} \ge p^{g_i}$, and so $D(n - cs) \ge D(n - ds)$, either by Theorem 1 or by A_k and Theorem 2, since l(n - cs) and l(n - ds) are less than l(n).

Claim 2. A_k and B_{k+1} imply A_{k+1} .

Proof. Let n be an integer with l(n) = k + 1. Write n as in (8) and define cs as above, so that $\rho(n) = n - cs$. By (3) and B_{k+1} ,

$$D(n) = n - cs + D(n - cs) = \rho(n) + D(\rho(n)).$$

Since $l(\rho(n)) < l(n) = k + 1$, by A_k

$$D(\rho(n)) = \sum_{i\geq 1} \rho^i(\rho(n)) = \sum_{i\geq 1} \rho^{i+1}(n).$$

Therefore, $D(n) = \sum_{i\geq 1} \rho^i(n)$, which proves A_{k+1} .

Proof of Theorem 2. We showed above that A_{s+1} holds, and so by Claims 1 and 2, A_k holds for all k > s. This proves the theorem.

Note that (trivially) if n is positive, then $\beta(n) \neq 0$. Combining Theorems 1 and 2 we have:

COROLLARY 1. If n is a positive integer, then $\beta(n) = 1$ if, and only if, $l(n) \le s$.

For certain values of n, D(n) can be written out explicitly.

COROLLARY 2. Let k and m be positive integers, with $m \le s$. Then

$$D((m+1)p^{k}-1) = s \cdot \sum_{i=1}^{k-1} ip^{i} + kmp^{k}.$$

Relation to the gamma function. We are interested in comparing the function $\beta(n)$ with the Gamma function Γ_n (see [1]). Combining Corollary 2 with (3.1.1) of [1], we find:

COROLLARY 3. Let $n = (m+1)p^k - 1$, where k and m are positive integers with $m \le s$. Then,

$$\deg \beta(n) = \deg \Gamma_n$$
.

For certain values of n we have a stronger result.

THEOREM 3. Suppose that
$$n=(m+1)p-1$$
, with $1 \le m \le s$. Then, $\beta(n)=1-\Gamma_n$.

We are especially interested in divisibility properties of $\beta(n)$. Thus, we have:

COROLLARY 4. For $1 \le k \le s/2$ and p an odd prime,

$$\beta((2k+1)p-1)=(1-\Gamma_{kp})(1+\Gamma_{kp}).$$

In particular,

$$\beta(p^2-1)=(1-\Gamma_{sp/2})(1+\Gamma_{sp/2}).$$

Proof of Theorem 3. We will need the following (easily proved) fact:

If
$$0 \le i \le s$$
, then $\binom{s}{i} \equiv (-1)^i \mod p$.

Suppose that n = (m + 1)p - 1, as above. Thus, $n = s \cdot 1 + mp$, and so by (3) and Theorem 1,

$$\beta(n) = 1 - \sum_{i=0}^{m} {n \choose s - i + ip} t^{i+(m-i)p}$$

$$= 1 - \sum_{i=0}^{m} {s \choose i} {m \choose i} t^{i} \cdot t^{(m-i)p} \text{ by (4)}$$

$$= 1 - \sum_{i=0}^{m} (-1)^{i} {m \choose i} t^{i} \cdot t^{(m-i)p}$$

$$= 1 - (t^{p} - t)^{m} = 1 - \Gamma_{n}$$

by (3.1.1) of [1].

REFERENCES

- [1] D. Goss, Von staudt for $F_q[T]$, Duke Math. J., 45 (1978), 885–910. [2] _____, Kummer and Herbrand criteria in the theory of function fields, to appear.
- Received May 22, 1981. Research supported by a grant from the National Science Foundation.

University of California Berkeley, CA 94720