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ON THE ZETA FUNCTION
FOR FUNCTION FIELDS OVER F,

EMERY THOMAS

We consider here the zeta function for a function field defined over
a finite field F,. For each inter j, {(/) is a polynomial over F,, as is
$’(j), the ““derivative” of zeta. In this note we compute the degree of
these polynomials, determine when they are the constant polynomial and
relate them to the polynomial gamma function.

In a recent series of papers D. Goss has introduced the notion of a
zeta function §( j) for rational function fields over F,, where r = p*, with p
a rational prime. In particular, for each positive integer i, with i Z 0
(r — 1), §(—i) € FE[t]. Goss also defines the “derivative” of ¢, {’, with
${'(—i) € E[t]if i =0 (r — 1). We combine these special values of { and

{’ into a single function B(n) (with n = —i) defined by:
(1) p0)=0, B(1)=1,
n—1
By =1- 3 (7)), n=2,
i=1
i=n(s)

where s = r — 1. Thus, by (3.9) and (3.10) of [2],

@) B =15 s 2ot
¢(=n), n=0(s)

An important situation where these functions arise is in determining
the class numbers of certain extension fields over F,[7] (modeled on
cyclotomic fields). If P is a prime polynomial in F,[¢], Goss defines class
numbers A" (P) and h~ (P) associated to P, in the classical fashion, and
shows that their study (a la Kummer) involves the polynomials {(—i) and
{’(—i). Thus it is important that we know certain facts about these
functions, and hence about B(n). Specifically, when is 8(n) = 1? What is
the degree of B(n)? When does S(n) factor? In this note we give some
answers to these questions, for the case r = p.

REMARK. I am indebted to Goss for bringing this material to my
attention.
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The function B(n). Let p be a rational prime, and for each integer
n =0, let B(n) € F,[z] be the polynomial defined above. Note that if
0<n=s(=p—1), then B(n) = 1. For n > s we rewrite (1) as follows:
set k = [(n — 1)/s]. Then (1) becomes:

k

) Blm) =1= 3 (L) p0n— i)

Let n = 3,a,p’ be the p-adic representation of n; thus, 0 <a, <s,
and almost all @, are zero. Define

I(n) = Ya,.
Our first result is:

THEOREM 1. Let n be a positive integer with I(n) =< s. Then,

B(n) = 1.

The proof depends upon several simple facts about binomial coeffi-
cients mod p. Recall the result of Lucas:

(4) If m and n are given p-adically by m = X,b,p',n = X a,p’, then

1

a;
(1’711) mod p EH (b) mod p.
In particular,

(,71) Z0mod p « 0=<b,<gq,,alli.

As an immediate consequence, we have:

5) If(”;) Z 0mod p, then l(n) = I(m) + I(n — m). In particular,
ifl<m<n,thenl(n)>I(m).

Finally, note that since p = 1 mod s, we have:
(6) n=I[(n) mods.

Proof of Theorem 1. Let j be any positive integer. By (6), since js =0
mod s, /(js) = s. Thus, if n is an integer with js < n and (7;) = 0 mod p,
then by (5), I(n) > I(js) = 5. Therefore, if /(n) < s, then (%) = 0 mod p.
Thus, by (3), 8(n) = 1, as claimed.
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We suppose now that » is an integer with /(n) > s; our goal is to
calculate the degree of B(n) — call this simply D(n).
Define an integer valued function p(n) by:

Ifl(n) = s, set p(n) = n — m, where m is the least
positive integer such that

I(m)=s5s and (;’1) =z0(p).

Thus, if n is written p-adically in the form

(™)

N
(8) n = Epel, witheos "‘S@N,
=0

and with no more than s e;’s with the same value, then
s—1
m= Y p°.
i=0

If g is an integer (= 0) with /(g) < s, set p(¢) = 0.
Set p'*!(n) = p(p'(n)), with p°(n) = n. Thus, for large i, p'(n) = 0.

EXAMPLE.p = 5,n=3-1+ 4.5+ 2-53 Then,
p'(n) =3-5+2-5°,
p’(n) = 5%,
p*(n) = 0.

QOur result is:

THEOREM 2. Let n be an integer with I(n) > s. Then

D(n) = degree f(n) = X, p'(n).

i=1

The proof will be by induction on /(7). Suppose first that /(n) = s + 1.
If j is any positive integer with js < n and (') Z 0 mod p, then by (5) and
(6), I(n — js) = 1, and so by Theorem 1, B(n — js) = 1. Therefore, by (2),
D(n) = n — js, where j is the least positive integer such that () = 0 (p);
i.e., D(n) = p(n), as stated in Theorem 2.

We now make the following pair of inductive hypotheses: let k be an
integer = s + 1, and suppose that » is any integer such that

s+1=<I(n)<k.
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(A,) For any such integer n, D(n) is given by Theorem 2.
(B,) Let n be any integer as above. If ¢ is the least positive

integer such that ( ") = 0 (p) and d is any integer with
cs

es<ds=<nand (" ) =0(p);then D(n — cs) = D(n — ds).
ds

Claim 1. A, implies B, _ .

Proof. Write n as in (8) so that cs = 2523 p%. Thus, n — ¢s = I p/,
where f, = e, .. Similarly, write n —ds = I p&, where M <N —s.
Then, for i <M, p/ =p&, and so D(n — cs) = D(n — ds), either by
Theorem 1 or by A, and Theorem 2, since /(n — ¢s) and /(n — ds) are
less than I(n).

Claim 2. A, and B, | imply A, .
Proof. Let n be an integer with /(n) = k + 1. Write n as in (8) and
define cs as above, so that p(n) = n — ¢s. By (3) and B, _ |,
D(n)=n—cs+ D(n—cs) = p(n) + D(p(n)).
Since l(p(n)) <Il(n) =k + 1,by A,
D(p(n)) = X p'(p(n)) = Z p*'(n).

i=1 i=1

Therefore, D(n) = 3, p'(n), which proves A, .

Proof of Theorem 2. We showed above that A ., holds, and so by
Claims 1 and 2, A, holds for all kK > s. This proves the theorem.

Note that (trivially) if » is positive, then S(n) # 0. Combining Theo-
rems 1 and 2 we have:

COROLLARY 1. If n is a positive integer, then B(n) = 1 if, and only if,
I(n) <s.

For certain values of n, D(n) can be written out explicitly.

COROLLARY 2. Let k and m be positive integers, with m < s. Then

k=1
D((m+ 1)p*—1)=s- 3 ip' + kmp*.

i=1
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Relation to the gamma function. We are interested in comparing the
function B(n) with the Gamma function I, (see [1]). Combining Corollary
2 with (3.1.1) of [1], we find:

COROLLARY 3. Let n = (m + 1)p* — 1, where k and m are positive
integers with m < s. Then,

deg B(n) = degT,.

For certain values of » we have a stronger result.

THEOREM 3. Suppose thatn = (m + )p — 1, with 1 = m <. Then,

B(n)=1-T,.

We are especially interested in divisibility properties of B(n). Thus,
we have:

COROLLARY 4. For 1 < k < 5/2 and p an odd prime,
B2k + 1)p — 1) = (1 =T, )(1 + T,).
In particular,

,B(PZ - 1) = (1 - Fsp/2)(1 + rsp/l)'

Proof of Theorem 3. We will need the following (easily proved) fact:
If0 <i<s, then (“:) =(—1)"mod p.

Suppose that n = (m + 1)p — 1, as above. Thus, n = s-1 + mp, and so
by (3) and Theorem 1,
( n )tl+(m—i)p

Bn) =1~ s—i+ip

(e e by

~

I
l

(_ 1)’(’;’_1)t! . gm=Dp

~

Il
-
|
iMs Tds Tpds

=1-(?—-1)"=1-T,
by (3.1.1) of [1].
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