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EXPLICIT PL SELF-KNOTTINGS AND
THE STRUCTURE OF PL HOMOTOPY COMPLEX
PROJECTIVE SPACES

DouGLAS MEADOWS

We show that certain piecewise-linear homotopy complex projective
spaces may be described as a union of smooth manifolds glued along
their common boundaries. These boundaries are sphere bundles and the
glueing homeomorphisms are piecewise-linear self-knottings on these
bundles. Furthermore, we describe these self-knottings very explicitly
and obtain information on the groups of concordance classes of such
maps.

A piecewise linear homotopy complex projective space CP" is a
compact PL manifold M?" homotopy equivalent to CP". In [22] Sullivan
gave a complete enumeration of the set of PL isomorphism classes of these
manifolds as a consequence of his Characteristic Variety theorem and his
analysis of the homotopy type of G/PL. In [15] Madsen and Milgram
have shown that these manifolds, the index 8 Milnor manifolds, and the
differentiable generators of the oriented smooth bordism ring provide a
complete generating set for the torsion-free part of the oriented PL
bordism ring. Hence a study of the geometric structure of these exotic
projective spaces CP" especially with regard to their smooth singularities,
may extend our understanding of the PL bordism ring. This paper begins
such a study in which we obtain a geometric decomposition of CP", into
(for many cases) a union of smooth manifolds glued together by PL
self-knottings on certain sphere bundles. We also obtain information on
groups of concordance classes of PL self-knottings from these decomposi-
tions and a number of fairly explicitly constructed examples of self-knot-
tings. I would like to thank by thesis advisor R. J. Milgram for many
helpful discussions.

I. Sullivan’s classification of PL homotopy % proceeds as follows:
Given a hoEOtopy equivalence A: CP" > CP" make h transverse regular
to CP’/ C CP", the standard inclusion. The restriction of 4 to the trans-
verse inverse image h~'(CP/) = N2/ C CP" is a degree one normal map
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with simply connected surgery obstruction

| Z, Jjeven
%€ P, = {Z/ZZ, j odd }

Forj = 2,...,n — 1 these obstruction invariants yigld a complete enumer-
ation —i.e. the set of PL isomorphism classes of CP" is set-isomorphic to
the product Z X Z, X Z X - - - X Py, _,, with n — 2 factors.

We will use the following notation to specify elements with this
classification:

(l) 5"9(02,03,...,0,,_1)

will denote the PL homotopy CP" with invariants 0, € P,; in Sullivan’s
enumeration.

We recall that a PL homeomorphism f: M — M is a “self-knotting”
and M is said to be “self knotted” if fis homotopic but not PL isotopic to
the identity. Also, PL homeomorphisms f, g: M — M are “PL concordant”
(pseudo-isotopic) if we have a PL homeomorphism F: M X I - M X I
with F(m,0) = (f(m),0) and F(m,1) = (g(m),1) for m € M. We then
define:

(2) SK(M) =“the group (under composition of maps) of PL concor-
dance classes of PL self-knottings of M.”

Unless otherwise noted “CP’/ C CP"” means the standard embed-
ding of CP/ onto the first (j + 1) homogeneous coordinates of CP" or a
smooth ambient isotope of this embedding. In this context we define:

(3) v4(CP/) =“the smooth tubular disc bundle neighborhood of the
embedding CP/ C CPN.”

Our results are as follows:

THEOREM A. For n = 4 and o, =0 (2) every CP" & (05, 03,...,0,_})
is PL homeomorphic to the identification space

[CP" —v,(cPY)] u,, _ [n(cPY)]

-1
where CP" < (0,, 0;,...,0,_,,0) and the identification is over a PL homeo-

morphism

@, _,: 9,(CP') > d»,(CP').

We prove Theorem A in Part II by a careful description of Sullivan’s
classification and an easy A-cobordism argument.
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An immediate consequence of Theorem A is the decomposition of
CP"*' & (0,...,0, g,) into

EP+ =[P — »(cP")] U, [v(CPY)].

THEOREM B. For every n =4 and non-zero T € P,, there is a PL
self-knotting

(p‘r: aVn+l(CP‘) - 8Vn+l(CP1)

which will suffice for the glueing homeomorphism in Theorem A.

We establish this theorem by an explicit construction of ¢, in Part III.

II. Here we prove Theore/rp' A by beginning with a constn’_l_c_tion
which shows how to obtain CP"*' < (o,,...,0,_,,0,) from CP" &
(0,,...,0,_,) forn =4:

Let h: CP" - CP" be a homotopy equivalence, and let M?" be the
compact (n — 1)-connected Milnor or Kervaire manifold of Index 8o, or
Kervaire-Arf invariant o, as the case may be [4]. Let r: M?*" > S?" be a
degree one map. Then h#r: CPr#M?" - CP"#S82" = CP" is a degree
one normal map with 1-connected surgery obstruction a,. We define H as
the D? bundle over CP"#M?" induced by h#r from H, the disc bundle
associated to the complex line bundle over CP". Let h: H — H be the
bundle mapping. We note that the map A#r is (n — 1)-connected with
homological kernel K, = 7,( M2") where M§" = M?" — D?". The bundle
H is trivial over M2" since M}" = (h#r)~ (point). In M#" X D? we can
represent 7 ( MZ") by disjointly embedded spheres S” = MZ" X S' with
trivial normal bundles. This follows by general position and the fact that
the normal bundles of the generating spheres S” C M;" are the stably
trivial tangent disc bundles 7(S"). We now attach a solid handle D"*! X
D" along S" X D"*' C M}" X S! for each generator of 7 (MZ") and
extend the map / across these bundles. This is possible since the em-
bedded spheres are in the homotopy kernel of A. Call the resulting PL
manifold A and the extended map A: H — H. In the process of extending
h across the handles, we may guarantee that / is a map of pairs (H, 9) —
(H, 0). We observe, then, the:

PROPOSITION. A: (H, 3) — (H, 9) is a homotopy equivalence of pairs.
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Th.lS follows directly from the construction as H deformation retracts
onto CP"#M*" U {ex} where the n-cells e are attached so as to kill the
entire homology kernel of (h#r). Hence h: H — H is a homology isomor-
phism, and as H is 1-connected we have by Whitehead’s theorem that it is
a homotopy equivalence. The restriction of 4 to the boundary is likewise a
homology isomorphism as the boundaries, D""! X S”, of the solid han-
dles are precisely the surgeries needed to cobord h: dH — dH to a
homotopy equivalence.

In particular as n = 3 we note that the boundary manifold, 0H, is a
PL (2n + 1)-sphere by the Poincaré conjecture. Thus, we attach D2"*2 to
H as the PL cone on dH and define:

CP™'=H U c(3H) and h: CP"' 5 CP™ ' = H U ¢(3H)

by radial extension of / into c¢(3H).
Observe that 4 has ‘built-in” transverse inverse 1mage CPr#M?n =
h~'(CP") with surgery obstruction o,. Hence, this CP""! & (o,,...,
6,_,,0,)1s the space we require.
Now, given CP" < (o0,,...,0,_,) let us consider a bit more closely the
suspension and generalized suspension constructions described above.
First, assume the homotopy equivalence

h: CP" - CP"
is the identity map on a disc D" C CP". Let CP0 = (P" — D>, M3" =

M?*" — D?" and observe that CP"#M2" = CPr Uy M2". Now, let CP”“
< (0,,...,0,_,,0) be the suspension' of CP" with homotopy equivalence

il'. CPn+l N CPn+l

and CP" & (05,...,0,_,, 0,) be the general suspension of CP" with homo-
topy equivalence
};: @n-’-l N CP”+1.

Let D?" C CP" be the image h(D?") and let CP' = §? C CP"*! be
represented as D2 U ¢(dD2) in CP"*! = H U ¢(dH) with D2 the fiber in
H over the center of the disc D?". Then », (CP') C CP""' may be
represented as the set D2 X D?" U ¢(dH), a D*" bundle over the sphere
$? = D} U c(3D3).

Now let ¥ = A~ '(»,, (CP") and ¥ = A~ '(»,, (CP") in CP"*! and
CPr+! respectively. We observe directly from the constructions that

'We say P o (05, 03,...,0,_,,0) in the “suspension” of 6':7 (03, 05,...,0,) as
it is precisely the Thom complex of the line bundle induced over CP”.
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CP"*' — V and CP"*' — ¥ are precisely the same spaces. To prove
Theorem A we must show that V' and V' are PL homeomorphic to
Y, +1(CP").

LemMA 1. V =, (CP") if o, is even.

We observe this from PL block bundle theory as follows: by construc-
tion ¥ is the union of two discs D2 X D" and c¢(dH) = D*"*? along
SL X D?". Hence V is trivially a block bundle regular neighborhood of
CP' = D2 U ¢(3D2). Assume the obstruction o, is even. Then as noted
by Sullivan ([23] p. 43) the splitting obstruction of the homotopy equiva-
lence

}; . é‘-ﬁn—i-l N Pn+l

along CP' vanishes as it is the mod2 reduction of o,. Hence, by a
homotopic deformation we may conclude that the transverse inverse
image of CP! by A is CP' ¢ CP"*!. Moreover, as any two homotopic PL
embeddings of CP' ¢ CP"*! are ambiently PL isotopic (for n =2 by
Cor. 5.9 p. 65 [21]), we see by appeal to the uniqueness of normal block
bundles (regular neighborhoods) [20] that V¥ is block bundle isomorphic to
the bundle induced from », H(CP ) by A. Conversely, the same argument
on the homotopy inverse of A implies » +1(CP") is block bundle induced
from V. As we are in the stable block and vector bundle range and
7, Bp, = m,B, = Z, we can conclude that C and »(CP") are block bundle
isomorphic; hence PL homeomorphic.

LEMMA 2. V =~ S? (homotopy equivalent).

Proof. By construction ¥ = D? X M§" U X U ¢(dH) where X repre-
sents the solid handles we attached along S' X MZ" to kill the homology
kernel of 4. The manifold D? X M2" U X is simply-connected with sim-
ply connected boundary and the homology of a point; hence by Smale’s
theorem (Thm. 1.1 [22]) it is a PL disc D?"*2. Thus, ¥ = D"+ U, D*"*+2
where W is the complement of the embedding

2 X S2n—l C S2n+l — 8D2n+2

and §?"~!' = 9MZ". By the Mayer-Vietoris sequence we know that W is a
homology circle. Then, by a second application of the Mayer-Vietoris
sequence to the union D>"*2 U, D?*"*? we see that V is a homology S2.
Finally, by the Van Kampen theorem V is 1-connected and we apply the
Whitehead theorem for CW complexes.



194 DOUGLAS MEADOWS
LEMMA 3. V =5, (CP").

Proof. 3V = 3[CP"*! — V] =[CP""' — V] =8V = d»,,(CP') by
Lemma 1. Let $2 C V¥ be a homotopy equlvalence and a PL embedding
via Whitney’s embedding theorem. Then S2 C ¥ € CP"*! is homotopic
to the standard embedding CP' C CP"*', and as before, the PL block
bundle neighborhoods of these two embeddings must be isomorphic. Let
v C V be this block bundle. We note that

=2, (CP)=V=29V

by the previous lemmas. Hence, if
V—pr=Y

we have Y = 9V U. d», two copies of the same manifold.
We consider the Mayer-Vietoris sequence for the union V=Y U »
overdv = Y N»:

H(3v) =" H(v) ® H(Y) "S"H(V) >

where

ii:ov=vw, jJlivsV,

iy dw=Y, jYeV.

Since » and V are homotopy 2-spheres and j, is a homotopy equivalence,
we see that for ¢ # 2, i, : H,(dv) > H(Y) must be an isomorphism.
When g = 2 the sequence becomes:

_12

+
Z S"zZ®A4 5°Z,  A=H(Y)

. . . . b,
from which we obtain i, are isomorphisms Z 34357 Thus, iy CY

is a homology 1somorphlsm and in fact, a homotopy equivalence since
V=YUv and V, », 3» are all 1-connected so that by Van Kampen’s
theorem Y is 1-connected.

We show next that 3% C Y is a homology isomorphism so that Yis a

n PL R
h-cobordism from d» to dV—ie. Y=0vr X and V=Y Upr=p=
Vv, (CP') as required.
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We know already that V=Y as OV =d» =~ Y. Moreover, dv =~
9v,, (CP") is an S?"~! bundle over S?. Hence, by the Serre Spectral
Sequence we have

ifp=20,2,2n—1,2n+1
1% np ’ ’
H, (Y)=H ( )= {O otherwise.

Then, the exact sequence of the pair v, 817) is:

0=H,(V,3V) = Hy(3V) » Hy(V) » H(V, V) =0
[ I
A z

where the first and last groups are 0 by Poincaré Duality. Thus, the
inclusion 3% C Y C V'is a homology isomorphism through p = 2.

Now, consider the composition f: V=Y - ¥ where the second
map is a homotopy equivalence. Then f,: H (BV) - H (BV) is an isomor-
phism for p < 2, and by Poincaré Duality so is f*: H' (6V) - H!(3V) for
q=2n—1,2n, 2n + 1. By the Universal Coefficient Theorem f, is an
isomorphism for p = 2n — 1, 2n, 2n + 1 and so for all p. Thus, fis a
homotopy equivalence, and so is i.

Theorem A is now an immediate consequence of the last lemma as we
have:

CP"*' o (oy,...,0,_,,0,) =[CP"™' = F] UV,
CP" <(0y,...,0,-,0) :[CPnH — 2,41(CP! )] Ua,, V,41(CP')
where we have identified ¥ with »,, ,(CP') by Lemma 1, and the PL
homeomorphism

@, 6[&"“ — V(CP')] - dv(CP")
comes from the restriction to the boundary of the PL homeomorphism
Vo +1(CP") of Lemma 3.
III. Construction of the self-knotting ¢,: Here we construct for
n = 4 a PL self-knotting
al,n-kl(c‘})l) - aVn+1(CP1)
with the property that it extends to a homotopy equivalence

P, n+1(CP)"”n+1(CP)
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which has a transverse-inverse image
2n — =—1 2
MO — @5 (D n)

on a fiber D?". Clearly such a ¢, will suffice for the map in Theorem A.

We begin the construction by defining
EZn—l C S2n+ 1

to be the smooth Brieskorn knot represented as the link of the singularity
on the hypersurface in C"*! defined by

Z§°“+Zl3+222+"'+23’ n even,
Z3+Z2+---+Z2, nodd.

p(Z) = {
It is well-known that $?"*! — 22771 js a smooth fiber bundle over the
circle with fiber M{", the smooth Milnor or Kervaire manifold with
surgery invariant o.

Now, let S' C §2"*! be a fiber on the boundary of the smooth
tubular neighborhood D? X 22"~! of the knot (a trivial bundle as
7,,_(SO(2)) = 0 for n>1). Since n > 1 this circle S' is smoothly un-
knotted in S>"*! so that the complement of a small tube S' X D?" about
it is diffeomorphic to D? X S?"~!'. Hence the knot Z2"~' lies in this
complement with a trivial normal bundle and we can therefore define:

B:D*X Z¥ = D*X g

as this embedding. Let W?2"*! be the complement of this smooth embed-
ding. Then we observe:

(oW =58'xX8§""y §' x 3L,

(b) W is a smooth fiber bundle over the circle S' with fiber F?" =
M}@" — D? and OF = S?77! Uzl

(c) the bundle projection is trivial on W - S'.

Now, using the smooth embedding B we define a piecewise-linear
embedding

.YG:DZ X S2n—l ;)D2 X S2n—1
as the composite map
D2 X S2n—lid>_<:¥°D2 X Egn—l E)DZ X S2n—1

where a,: $?"~! - 3271 js a specific PL homeomorphism.
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We now describe the normal bundle »,, (CP') in CP"*! as:
¥,.1(CP') = D2 X 82"~ U, D} X§*~!
(%) where p: S' X $2"7! - §! X §2"~ ! is a smooth bundle automorphism
representing an element in 7,(SO(2n)) = Z/2Z (n > 1). [We note in fact
that vy, ,(CP'") is trivial for n even and non-trivial for n odd as it is the
Whitney sum of n copies of the canonical line bundle over CP' = S2.]
In the above description we are expressing CP' as S? = D2 UD?2 .

Using this representation we will define the self-knotting ¢, by showing
that the PL embedding

Y,: DI XS8! = D} X 527!
may be extended to a PL homeomorphism on all of V, ,(CP'). We will
show this using the very agreeable bundle structure on the complement W
of the embedding v,.
The map
®,: DE Xs2n—l UpDﬁ— xs2n-l N DE Xs2n—-l UpD?i— Xs2n~]

will in fact be defined as the union of three maps —

(1) Yo: DI X 8?7 = DI X827,

(2) n: W2n+l - W2n+l’

(3) id X p: D2 X 3271 & p? X §2n!

where 7 is a bundle homeomorphism of bundles over S' and p: 22"~ -

S27~1is a PL homeomorphism and
DX 3271y W2t = D2 X §2H,

Essentially what we are producing in this construction is a map with the
symmetric property that ¢, embeds a fiber (the core of D3 XS?"™ )
piecewise linearly onto the smooth fibered knot ="' C D2 X§?"~!
while ;! embeds a fiber (the core of D2 X §2"~ 1) piecewise linearly onto
the smooth fibered knot 227! C D2 X §2"~ 1,

The construction will be completed by (a) defining the bundle W and
the bundle map 7 in (2), (b) showing that D? X =2"~! U W is in fact
D? X §?"~! by a PL homeomorphism which is the identity on the
boundary, (c) showing that the maps (1), (2), (3) agree on boundaries after
taking the defining automorphism p into account, and finally by (d)
showing that ¢, is homotopic to the identity.
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We define the bundle W over S' by defining its fiber F and its
monodromy map h: F - F.

Recall that the 2xn-manifold F (fiber of W) is (n — 1) connected and
that 9F = §*>"~' U 22"~ where the smooth exotic sphere is defined as
2=t = p2»ly, D3"*! and o: $?"7? > S?"7% is an exotic diffeomor-
phism.

Let I C F be a path connecting the centers of the discs D2"~! and
D2 1of 22"~ ! and §?"~!. Then a tubular neighborhood of 7is I X D2"~!,
We define F as the smooth manifold

F=[F—1xD¥» '|u[IxD¥ ]

where the union is taken over the diffeomorphism
id, Xo L IXS" 25X S 2,
Then 3F = 22"~ U §?""! as a smooth manifold and we can define a PL
homeomorphism
f: F—> F
where 1 is the identity on F — I X D2"~! and is id; X (cone extension of
o) on I X D3 !,
Then we define the monodromy /: F — F as the composite map
=4 ohoi

where h: F — F is the monodromy map defining the bundle W. Since dW
is a trivial bundle we know that 4 is the identiy map on dF. Hence, / is the
identity on 9F and the bundle W has the trivial boundary

W =8"'x32" y st x gL
Since % © A = h o % the PL homeomorphism 4: F — F induces a well-de-
fined bundle homeomorphism
n: W2n+l - W2n+l'
Restricted to the boundary 7 is a pair of bundle maps
idg XaZl: ST X 22" 5 ST §2n71
idg X a,: S'X §2"7 1 5 g x 3271

where the PL homeomorphism a_, and «, are the identity on D>*~' and
the cone extension of ™! and o respectively on D2"~ !,
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We next embed W in D2 X $2"~! as a knot complement which will
act as an inverse to W:

Recall the bundle isomorphism
(*) p: Sl X S2n—~] - Sl X SZn*l
which defines dv,_ ,(CP"). We define a PL bundle map
p: St X 22 g1 32l

as the composite: p = (idg X a__) - p - (idgt X a_,)”". We consider the
PL manifold

2 2n—1 772n+1
D? X S¥-u, W
where the union is over the appropriate component of 3% and show:

PROPOSITION. The PL manifold D* X 2"~' Uy W2"*! is isomorphic
to D* X S*"~' by a PL homeomorphism A\ which restricted to the boundary
S' X §2"~Vis an $*""! bundle isomorphism \.

Proof. We recall from the definition of W?2"*! that §! X D*" U w?n*!
is the knot complement of our original Brieskorn knot and so has the
homology of S'. A simple exercise with the Mayer-Vietoris sequence
implies then that the manifold W2"*!' U S' X D?" likewise is a homology
circle, and a second application of the sequence implies that the PL
manifold.

Pl =p2x 321U, WU S' X D

has the homology of S2"*!. Moreover, P?"*! is simply connected since
W U S' X D?" fibers over S' with fiber F2” U D?” which is (n — 1)-
connected. Hence (W U S' X D?") = Z and by the Van Kampen the-
orem on the union

[D? X 27 Ugiys [WU S X D]

we have 7,( P?"*!) = 0. By the Hurewicz and Whitehead theorems any
simply-connected homology sphere is a homotopy sphere, and by the
generalized Poincaré conjecture (2n + 1 = 9)P?"*! is a PL sphere.

The identification D? X 22! U WS' X D*" = $2"*! provides a PL

4

embedding S' C $?"*! and exhibits i(S' X D?") C $?"*! as a representa-
tive for the PL normal microbundle to this embedding. We apply a
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theorem due to Lashof and Rothenberg (Thm. 7.3 in [13]) to obtain a
piecewise differentiable homeomorphism g: S2""! - §2"*! 50 that g o i:
S!' X D?" - §2"*! is the smooth vector bundle to the smooth embedding
goi: S' > §2"*! By smoothly unknotting this circle and applying the
smooth tubular neighborhood theorem we obtain a diffeomorphism #:
S2n+l N S2n+l so that

hogoi:S'X D" -  §2ntl
AN 1)

S' X D"

commutes where j is the standard embedding and X is a vector bundle
isomorphism. Hence, the restriction map

ho gl :S2n+1 _ I(Sl X DZn) N S2n+l __](Sl X D2n)
I
D2 X S2n—-l
defines a piecewise differentiable homeomorphism
A:[D? X 327 U, W] - D? x §2!

which restricts as A = A on the boundary. Finally, we observe that (cf.
Cor. 10.13 in [19]) we may choose a smooth triangulation of D? X §2"~!
so that A is PL. Now, using the homeomorphisms A and 7 we define a PL
homeomorphism:

(1) q)org_)avn-f—l(CPl)
where ¢ is the $?”~! bundle over CP' = S? defined by A~ !:
§¢= D2 X§* ' U,-1 D2 X8 !

A7'uid -
n— 2n 2 2n—1
- D*XZEX-lu, Wl uy DI XS

(idXa_,)UnU@EdXa,)
- D2 xS 'y, wu D*x 22!

— D?_ XSzn—l UpD_2|_ XSZ"—I — 6Vn+,(CP').

From the next lemma to the effect that two non-isomorphic sphere
bundles over S? cannot be PL homeomorphic it follows that the existence
of the map g, itself guarantees that £ and d»,, ,(CP') are the same bundle.

LEMMA. For m = 3 the unique non-trivial orthogonal S™ bundle over S?,
&, is not PL homeomorphic to S* X S™.
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Proof. Suppose t: £ > §% X §™is a PL homeomorphism. Let E be the
non-trivial D! bundle over S? with 9E = ¢ and define the PL manifold

Mmt3=FEU,D? X S™
M isthe union of simply connected spaces over a path connected intersec-
tion. Hence, m(M) = {1}. For m = 3 the homotopy exact sequence of the
fibration S — 9E - S? implies that p,: 7,(0E) - 7,(S?) is an isomor-
phism, and by the Whitehead theorem so is the inclusion H,(dE) — H,(E).
Hence, in the Mayer-Vietoris sequence

¥,
> H(S*X S™) >H,(E) ® H(D> X S™) > H(M)
> H,_|(S*X8™) > -

¥, is an isomorphism for j < m + 1. Trivally, H,,, ,(M) = 0, and again we
have an (m + 2)-connected (m + 3)-dimensional PL manifold which is
consequently a PL sphere.

Then, E U, D> X §” = §™*3 defines the vector bundle E as a PL
normal micro-bundle to the embedding of its zero section S = §”*3, By
Zeeman’s PL unknotting theorem and the uniqueness [7] of stable PL
normal microbundles, we see that E and S? X D! must be micro-bun-
dle isomorphic. Let S? . B0 classify E as a vector bundle. Then S* —BO
- BPL is trivial, and as by smoothing theory the fiber PL/0 is 6-con-
nected we see that b is homotopically trivial. As E was assumed non-triv-
ial as a vector bundle the PL homeomorphism ¢ cannot exist.

Thus, we define

®,: 9y, (CP') =¢ > 9y, ,(CP') from (1) as required.

Next we show that the ¢, just constructed is indeed a self-knotting
and that it will suffice for Theorem A.

Recalling from bundle theory that every S" bundle over S? for N =2
has a section, we show

PROPOSITION. Any orientation preserving PL homeomorphism ¢: v — v,
. . J .
v an orthogonal S" bundle over S*, which embeds a section S* = v homotopi-

cally to itself is homotopic to the identity.

Proof. A tubular neighborhood of the section j(S?) is a DY bundle U
in the same stable bundle class as ». ¢(U) PL embeds this bundle in »
with an inherited smooth structure. By the main theorem of smoothing
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theory ([8] or [13], Thm. 7.3) and the uniqueness of smoothings on S? we
can piecewise differentially isotope this embedding to a smooth embed-
ding of U — ». We may easily make the isotopy ambient. Next, we
smoothly unknot the core sphere of U and apply the smooth tubular
neighborhood theorem. We have, therefore, P.D. isotoped ¢ so that
restricted to U it is a D" bundle isomorphism. Since 7,(SO(N)) = 0 we
can isotope this bundle mapping to the identity through bundle isomor-
phisms on U all of which extend to » as U is a sub-bundle. Thus, we have
isotoped ¢ so that it is the identity on U. Now, » — U = U as each fiber
of U is a hemisphere of a fiber in ». We isotope @ rel(U) so that it is the
identity on the zero section of the bundle » — U. Finally, we homotope ¢
to the identity by collapsing the fibers of » — U to the zero-section.

We observe that the ¢, constructed above satisfies the hypothesis of
this last proposition as follows: ¢, is orientation preserving by construc-
tion. Also, as the original Brieskorn knot embedded a fiber $2”*! homo-
topically to the usual embedding, we know that ¢, does also. That is
(9,)«[07] = [97] and (¢,)*(e*" ') = e2"~!, where e?"~' € H*""!(9v) is
the class represented by inclusion of a fiber. By Poincaré Duality, then,
(9,)«(e,) = e, for e, € H,(d») the class dual to e?"~'. This implies by
the Hurewicz Theorem that ¢, induces the identity homomorphism on
m,(9v), which is generated by the inclusion of a section.

The map ¢, constructed in section C embeds a fiber $2"~! onto the
image of the Brieskorn knot. Hence, in the decomposition

CP™* ' =[CP™! — 5, (CPY)] U, [5,,.(CPY)]
the identification is in the order:
@,: [CP"' — v] - dv.

To show, therefore, theLCFT’”“ < (0,...,0,0) we must extend ¢, ' to a
homotopy equivalence @, ': » - » with transverse-inverse image of a fiber
being the Milnor or Kervaire manifold MZ". Note that any extension will
be a homotopy equivalence as » ~ S? and ¢, ' induces the identity on
my(0v) = my(»).

PROPOSITION. The PL homeomorphism ¢, ': vy, (CP') - d»,, (CP")
constructed above extends to @,': v, (CP') - v, (CP') with
transverse-inverse image

(&) (D) = M
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Proof. (@, 1) "N(8*" 1) = ¢, (S?" ') = £2"~ C d» by the construction
of ¢,. Moreover, the restriction ¢, ' | : D2 X 227! - D3 X§?" ' is a
product map. Now, =2"! bounds a fiber F?>" C W?"*! whose other
boundary component is a fiber S2"~! of d». Let D*" C » be the fiber
whose boundary is this same sphere. Then, F?" U D*" = M}" by the
definition of F2”. By pushing F2" into » along a vector field normal to d»
and smoothing the corner at 2"~ ' between F?" and D?" we obtain a
smooth embedding M;" = v extending

aM2" = 3271 C dn.

Moreover, this embedding will have trivial normal D? bundle as
H'(M¢", Z) = 0. Hence, we can extend the product map

@, 't D* X 27 > D3 X§*7!

to a bundle map ¢, ': D? X MZ" —» D2 XD?" covering a degree one
extension MZ" — D?". Since [v — D2 ] X D% X D?" = D*""? there are no
cohomology obstructions to extending

¢, UG, ' tog, tv -y
with the required transverse-inverse image built in.
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