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TRANSFORMATIONS OF CERTAIN SEQUENCES
OF RANDOM VARIABLES

BY GENERALIZED HAUSDORFF MATRICES

DAVID BORWEIN AND AMNON JAKIMOVSKI

Sufficient conditions are established for a generalized Hausdorff
matrix to transform certain sequences of random variables into almost
surely convergent sequences.

1. Introduction. Suppose that {Xn}(n = 0, 1,...) is a sequence of
random variables defined on a probability space (Ω, ξF, P), and that
A = {ank}(n, k — 0,1,...) is an infinite matrix. Let

00

Tn= Σ ankXk
k=0

The following theorem concerning the almost sure convergence to zero of
the sequence {Tn} is due to Borwein [1].

THEOREM A. //1 < p < 2, 0 < M < oo and

(1) I Xn\< Ma.s. forn = 0 , 1 , . . . ,

(3) Σf=Q I ank I < oo for n = 0 , 1 , . . . , and

lim log/if f I ^ Γ

then Tn^0 a.s.

The sequence {Xn} is said to be multiplicative if the expectation
E(XiχXi2 - Xιn) — 0 whenever 0 < iλ < i2 < •••</„; in particular, it is
multiplicative if it is independent with EXn — 0 for n — 0,1, Condi-
tion (2) is trivially satisfied when {Xn} is multiplicative. The nature of
Theorem A is clarified by comparison with Kolmogorov's classical strong
law of large numbers which states that if {Xn} is independent with
EXn = 0 for n = 0 ,1 , . . . , and if

oo rp y " 2 -i n

2 ^-j < o°> then Σ ^ ^ ° a s

We shall denote by Γ̂  the set of matrices 4̂ such that Tn -> 0 a.s.
whenever the sequence {A^} satisfies conditions (1) and (2). Our primary
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object in this paper is to establish conditions which are both sufficient and
easy to verify for generalization Hausdorff matrices to be in Γ .̂ Included
in the class of generalized Hausdorff matrices are the matrices of such
well-known methods of summability as the Cesaro, the Euler, and the
weighted mean methods.

The matrix A is said to have the Borel property and we write
A G (BP), if almost all sequences of zeros and ones are A -convergent to
1/2. This amounts to (see [5])

I oo i

y Σ *„*(! - χk) ->^ a s

when {Xn} is the sequence of Rademacher functions on Ω = [0,1] and P
is Lebesgue measure. Since, in this case, {Xn} satisfies conditions (1) and
(2), it follows that

ifΣ™=oank is convergent for n = 0,1, . . . and l i rn , ,^ I%=oank = 1,

and if A G Γ,, then A G (BP).

Generalized Hausdorff matrices. Suppose in all that follows that
λ — {λ n } i sa sequence of real numbers satisfying

OO j

λ o > O , λn>0 foτn = 1,2,...,λw -> oo, 2 Γ " = o 0 '

and that a is a function of bounded variation on [0,1].
ForO <k<n,0 <t < 1, let

(4) KM = -

C being a positively sensed closed Jordan contour enclosing λk9

λ i k + 1,...,λ / I. We observe the convention that products such as λ Λ + 1 λn

= 1 when k — n. Let

(5) λnk=[lλnk(t)da(t) forO</c<«; λΛΛ = 0

and denote the triangular matrix {λnk} by H(λ,a). This is called a
generalized Hausdorff matrix.

Let

Z)0 = ( l + λ 0 K = l ,
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Then, for n > 0,

It is known (see [3]) that

(6)

(7)

(8)

(t)dt = ^- for 0 < / : < « ,

2 \λnk\*f\da{t)\.

Let

" 1
(9) Pnk= 2 Λ~> Σ -

j = k λ '

We shall prove the following theorems.

1/2

for 1 < k<n.

THEOREM 1. Let M, m be positive constants. If α(0 + ) = α(0) and
α(l-) = α(l), and ifλ satisfies either

(10) M l o g λ^ > λ ^ + λ—\k>m for all sufficiently large k

or

(11) M > λ ^ + 1 - λk > 0 for all sufficiently large k and log n/{λ^ = o(l)9

then H{λ, a) E Γ2. //, in addition, a(\) - α(0) = 1, ίδew i/(λ, α) G (BP).

THEOREM 2. Lei a(t) = /o

r
 JS(M) duforO<t< 1, am/ to 1 <^p < 2. //

β E Lp[0,1] and max <
0<kSn

(12)

or

(13) βGL~[0,l] and lognί 2 (^"

αjGΓj,. //, in addition, {λn} is non-decreasing and α(l) = 1,
then H(λ, a) E (BP).



18 DAVID BORWEIN AND AMNON JAKIMOVSKI

It is known that H(λ,a) E (BP) when a satisfies the conditions of
Theorem 1 and λn — n + c, the case c = 0 of this result being due to Hill
[6] and the case c > 0 to Liu and Rhoades [9]. On the other hand, Borwein
and Cass [2] have shown that H(λ,a) & (BP) when a(t) = t and λn =
clogO +1), 0 < c < l/log4. Borwein and Cass [2] have also shown
Theorem 2 to hold in the case p = 2, 0 = λ0 < λ, < λ2 <

2. Preliminary results.

LEMMA 1. / / 1 < k < n, 0 < λ* < < λ
then

Proof. Since 0 < λnk(t) ^ 1, we may suppose that

(14)

Jakimovski [6, Lemma 2.1] has shown that, for u > 0,

0 0 eiuv dυ

from which it follows that

dυ
1/2

Next, we have, by (14), that

j = k Aj

r=A: Λ r j=

Hence, for u > 0,

and this completes the proof of Lemma 1.
The case s = 0, 0 = λ 0 < λ{ < λ2 < of the following lemma is

due to Hausdorff [4].
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LEMMA 2. Let {λn} be non-decreasing, and let s be a non-negative
integer. Then

" f α ( l ) - α ( 0 + ) i/λ,>0,

and

ί°

Proof. It is known [3, Theorem l(iv) and Theorem 2] that (15) holds
with s — 0 when α(ί) is non-decreasing, and the general case of (15) with
s = 0 follows by expressing α(ί) as the difference of two non-decreasing
functions.

Next, suppose s >: 1 and let λΛ = λ^^ for k = 0,1, . Then, for

λnk being defined by (4) and (5) with {λ }̂ replaced by {λ^}. Hence, as
n -* oo,

k=s

by (15) with 5 = 0, since λ0 = λ5 > 0. This establishes (15) with s > 0.
To complete the proof of Lemma 2 we can deduce (16) from (15) by

observing that, for n > s > 0,

k=s k=s+\

LEMMA 3. Lβ/ 0 < λ0 < λx < λ2 < , 0 < 8 < 1/2, and let s be a

positive integer. Then there is an integer N and a positive constant M such
that, for n >N,

( f*Kk(t) I da(t) |) < Mmaz{Mx(n9 s), M2{n, s))

where

e-λsPnk

(17) Mλ(n9s)= max - ^
<k< Λ
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and

(18) M2(n,s)= max T .

δ/2<e-p»κ<\-δ/2

Proof. Case 1. Suppose that λ 0 = 0, s — 1. Let

λ \ I λ \ \1//λι

Then, in view of (6), we have

Σ (/'"'λ^Ol^ωif^Γ'V^Ol max

<Fδmax(/,,/2)

/, = max j λnk(t) I da(t) | ,
*nk - 1/2| >Γ/"2-3δ/4 S

/,

and

ί λ n A ( 0 I
\ωHk-\/2\< 1/2-35/4

To deal with /,, let /(/) be a twice continuously differentiable func-
tion on [0,1] satisfying 0 </(*) < 1, /(/) = 1 for 11 - \ |> ^ - f, /(/)
= 0 for δ < / < 1 - δ, and let

*«(/>')= Σ λπΛ(/)/KJ.

Then, by a result proved by Leviatan [8, Theorem 7],

/,<K, max |^(/,0-/(0|^
δ^t^ 1 —o

where i^ is a constant.
To deal with I2 we note that, by Lemma 1,

I2 < max
Vδ]f2

where k(n) is an integer satisfying 1 < / : ( « ) < « , 3δ/4 < ωnk(n) < 1 —
3δ/4. Since Σy )

= 1l/λy = oo, it follows that, for every fixed integer j 9

l i , ^ ωnJ = 0 and hence that \imn_^O0 k(n) = oo. Further, since

log(l - x) = JC + 0{x2) f o r | x | < 1/2,
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we have that, for k — k(n),

Hence, for n sufficiently large,

8/2 < e~p"^> < 1 - δ/2,

and thus

This completes the proof of Case 1.

Case 2. Suppose that λ 0 > 0, s > 1. Let

λ o = O, λk = λk+s_x fork = 1,2,...,

and define λnk(t), Mλ(n9 s), M2(n9 s) by means of (4), (9), (17) and (18)
with {λk} replaced by {λk}. Then, for n > k > s, 0 < / < 1, we have

and hence, by Case 1,

2 / M O I dα(/)| = 2 / K-s+ur(t)\da(t)\)

<Mmax(M,(« - s+ l,l),M2(/i - j + 1,1))

= Mmax(M,(«, s), M2(n, s)).

This completes the proof of Lemma 3.

LEMMA 4. Let 0 < λ 0 < λ} < λ 2 < , 0 < δ < 1/2, s > 2, λ 5 > M

+ 1, α«rf to λ satisfy either (10) 6>r (11) WJY/* /Λe 5flme Mfor k>s— 1.

lim log«2

Proof. Case 1. Suppose that λ satisfies (10) for k > s — 1, and that
n>k>s. Then λrt > λs + m(n - s), and

Σ Σ
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Hence

λJM

and so

Λ /», / 1 \

(20) Mλ{n, s) — O((log λ π + 1 ) ) = o .

Suppose now that

(21) f<^<l-|.

Then

/-, n \ \ n λ 7
2 V* 7 7"~! V^ /* J "X

m log _ ^ < WP«A — 2J Λ — 2J I — ~ 1°S

so that λ^_, < (1 - δ/2)wλΛ7 and hence, by (10), we have that

(22) λk < λΛ_, + Mlogλ, < (l - f )WA, + Mlogλ,.

Further, by (19) and (21),

and so

(23) λ , > λ

where ε = (8/2)M.
Next, let/(x) = l/xlogx so that

x logx

for x > λ5 where c = 1 + I/log λ, > 0. Hence, by (10), (22) and (23),

i=k }logλy

1 -
λ π + I logλ n + 1
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Consequently

(24) M2(n,s) =

1
= o log n ) '

The desired conclusion in Case 1 now follows from (20) and (24), by
Lemma 3.

Case 2. Suppose that λ satisfies (11) for k > s — 1 and that n>k>s.
Then

(25)
j=k txJ

Hence, since λs > M + 1,

t K/M i
< —

Λ, A. \ fl I I / λί

and so

(26) log n /

Suppose now that (21) holds. Then, by (25),

and hence

1/2 / i ^ \ 1/2

HI) ί*^.) λ-/2

Consequently

(27) M2(n,s)

The desired conclusion now follows from (26) and (27), by Lemma 3,
and this completes the proof of Lemma 4.

3. Proof of Theorem 1. Suppose that n>k>s and that r —
3,4,.... Let
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Let {Xn} be a sequence of random variables satisfying (1) and (2) with
p = 2, and let

n n

Tn — ZJ ^nkxk, T^ — 2J κnkxk.
k=s k=s

By Lemma 4, we have, subject to either (10) or (11), that

n

log n 2 (Kik)2 "* ° as « -> oo.
k = s

Hence, by Theorem A,

Tn

r -» 0 a.s. as n -> oo.

Let Ωr be the subset of Ω on which Tn

r -> 0 and | Xr \ < Af, and let
Ωo = n^ = 3 Ω r . Then

k = s

)λnk(t)da(t),
\~\/rl

and hence, in view of (6), on Ωo

I Tn - Tn

r\<M\ί r + f \\da(t)\^>0 a s r - > o o ,

Wθ J\-\/rl

since α(O 4- ) = α(O) and α(l-) = α(l). Thus

lim Γ/ = Tn on Ωo uniformly in n for w > 51.

On the other hand

lim Tn

r = 0 o n Ω 0 f o r r > 3 .

It follows that

lim Tn = lim lim Tn

r = lim lim ΓΛ

r = 0 on Ωo.

i.e., Tn ̂  0 a.s.
Since α(0) = α(0 + ) we have, by Lemma 2, that l i m ^ ^ λnk — 0 for

/: > 0. Consequently

, α) G Γ2.
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Finally, the additional condition α(l) — α(0) = 1 ensures, by Lemma
2, that

Λ-00 Λ =

and hence that //(λ, α) G (5P).

4. Proof of Theorem 2. Let 0 < A: < n. By (5), we have that

First, suppose that (12) holds. Then, by Holder's inequality and (7),

\P~λ

\KJ^

Hence, by (6) and (12),

/t=o

\\β\\p/(p']) i l
< max dh = o log n)

It follows, by Theorem A, that H(λ, a) G Γp.
Next, suppose that (13) holds. Then, by (7),

and hence

log n ]'

Thus, by Theorem A, we have that H(λ,a) E Tp.
In view of Lemma 2, the additional conditions {λ^} monotonic and

α(l) = 1, ensure that
n

Σλ,t = i,
/ I - 0 0 ^ = (

and hence that //(λ, α) G (5P).
This completes the proof of Theorem 2.
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