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TRANSFORMATIONS OF CERTAIN SEQUENCES
OF RANDOM VARIABLES
BY GENERALIZED HAUSDORFF MATRICES

DAVID BORWEIN AND AMNON JAKIMOVSKI

Sufficient conditions are established for a generalized Hausdorff
matrix to transform certain sequences of random variables into almost
surely convergent sequences.

1. Introduction. Suppose that { X, }(n =0,1,...) is a sequence of
random variables defined on a probability space (2,9, P), and that
A ={a, }(n, k=0,1,...) is an infinite matrix. Let

o0
T,= 2 a,.X.
k=0
The following theorem concerning the almost sure convergence to zero of
the sequence {7,} is due to Borwein [1].

THEOREM A. If 1 <p =2,0 < M < o0 and
M| X,|=Ma.s.forn=20,1,...,
(2) EOSi|<12<'~‘<i,,]E(X' X. .-.A’l")lp/(P—l)SMnforn = 1’2>'_.’

hog

(3) 2| a|< oo forn=0,1,..., and

1/(p—n)
) - 0,

lim logn( > lal
k=0

n— oo

then T,, - 0 a.s.

The sequence {X,} is said to be multiplicative if the expectation
E(X, X, ---X; ) =0 whenever 0 =i} <i, <---<i, in particular, it is
multiplicative if it is independent with EX, = 0 for n = 0, 1,.... Condi-
tion (2) is trivially satisfied when {X,} is multiplicative. The nature of
Theorem A is clarified by comparison with Kolmogorov’s classical strong
law of large numbers which states that if {X,} is independent with

EX,=0forn=0,1,..., and if
X EX}

2

k=0 (k + 1)2

We shall denote by T', the set of matrices 4 such that 7, - 0 as.
whenever the sequence { X, } satisfies conditions (1) and (2). Our primary

1 n
< o0, then P /E()Xk -0 as.

15
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object in this paper is to establish conditions which are both sufficient and
easy to verify for generalization Hausdorff matrices to be in I’,. Included
in the class of generalized Hausdorff matrices are the matrices of such
well-known methods of summability as the Cesaro, the Euler, and the
weighted mean methods.

The matrix 4 is said to have the Borel property and we write
A € (BP), if almost all sequences of zeros and ones are A-convergent to
1,/2. This amounts to (see [5])

1 1
3 > a,,(l—X,) ~5 as.
k=0

when { X} is the sequence of Rademacher functions on & = [0, 1] and P
is Lebesgue measure. Since, in this case, { X, } satisfies conditions (1) and
(2), it follows that
if 2¢_0a,, is convergent forn =0, 1,... and lim,,_, , 27_qa,, = 1,
and if A €T, then A € (BP).

Generalized Hausdorff matrices. Suppose in all that follows that
A = {A,} is a sequence of real numbers satisfying

b8

1
Ag=0, A\, >0 forn=1,2,...,A, > 0, T %
1 'n

Il

r

and that « is a function of bounded variation on [0, 1].
ForO0=sk=n0<t=<1,let

— oy ] t’ dz _
@ M= N A A e
Ank(o) = Ank(o +)’

C being a positively sensed closed Jordan contour enclosing A,,
Aiins---5N,. We observe the convention that products such as A, , -+ A
= 1 when k = n. Let

n

1
(5) AM:LNMQddﬁ for0<k=<n; A, =0 fork>n,

and denote the triangular matrix {A,,} by H(A, a). This is called a

generalized Hausdorff matrix.
Let

Dy =(1+Xy)d, =1,

(
1 1
D =(1+—) (1+}\—)=(1+}\n)dn forn = 1.
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Then, for n = 0,

A n
Dn :An+ldn+l = 1 +0}\0 + 2 dk‘

k=0

It is known (see [3]) that

(6) 0=A, ()= 2 A,(1)<1 for0<r=<1,0<j=<n,

k=0
1 d,
(7) j;}\nk(t)dtzfn for0 <k <n,
(8) S Aul=[lda(r)] .
k=0 0
Let
n 1 n 1 172
(9) pnk:‘E X Unk:('E —}\?) forl =k =n.
=k j=k Ry

We shall prove the following theorems.

THEOREM 1. Let M, m be positive constants. If a(0 + ) = a(0) and
a(1-) = a(1), and if X satisfies either

(10) MlogA, =\, ., — A, =m for.all sufficiently large k

or

(1)) M=X,,, — X, >0 for all sufficiently large k and log n/ A, = o(1),
then H(\, @) € T,. If, in addition, a(1) — a(0) = 1, then H(\, o) € (BP).

THEOREM 2. Let a(t) = [y B(u)du for 0 <t <1,andlet 1 <p <2 If
either

1
(12) BeLr(0.1] and max d;- Og‘” = o(1),

n

or

n p\ /(p— 1)
(13) B € L°[0,1] and logn( > (%’i) ) =o(1),

k=0

then H(A\, a) € T,. If, in addition, {\,} is non-decreasing and o(1) = 1,
then H(A, a) € (BP).
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It is known that H(A, a) € (BP) when a satisfies the conditions of
Theorem 1 and A, = n + ¢, the case ¢ = 0 of this result being due to Hill
[6] and the case ¢ > 0 to Liu and Rhoades [9]. On the other hand, Borwein
and Cass [2] have shown that H(A, a) & (BP) when a(¢) =t and A, =
clog(n + 1), 0 <c<1/log4. Borwein and Cass [2] have also shown
Theorem 2 to hold in the case p = 2,0 = A, <A, <A, <

2. Preliminary results.

LeMMA 1. If 1<k=<n, O<A =A< ---=A,and 0=t=1,
then

A(t) =

kan k

Proof. Since 0 < A, ,(¢) < 1, we may suppose that

(14) N3 S >2

Jakimovski [6, Lemma 2.1] has shown that, for u > 0,

s tuu dD
Aule™) = 2>\f 1+w/7\)
from which it follows that
1 o9 dv
Ale®) = f .
n 2\ i 1,2
T [11_ (1 + 02 /A2)

Next, we have, by (14), that

n
Iir+=
Jj=k

Hence, for u > 0,

0 2
A, (e) = 1 [ dov . \/— ’
29NV 1 + 0%2 /2 )\konk

and this completes the proof of Lemma 1.
The case s =0, 0 = A, <A, <A, < --- of the following lemma is
due to Hausdorff [4].
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LEMMA 2. Let {A,} be non-decreasing, and let s be a non-negative
integer. Then

. d _[ea(1) —a(0+) ifA; >0,
(19 Jim 2 M= {au) —a0)  ifA,=0;
and
0 ifA, >0,
(16) lm A, = {a(O +) —a(0) ifA,=0.

Proof. 1t is known [3, Theorem 1(iv) and Theorem 2] that (15) holds
with s = 0 when a(?) is non-decreasing, and the general case of (15) with
s = 0 follows by expressing «(#) as the difference of two non-decreasing
functions.

Next, suppose s =1 and let A, = A, for k=0,1,---. Then, for
s<k=<n,

}\nk = An—s,k—-s’

X, being defined by (4) and (5) with {A,} replaced by {A,}. Hence, as
n— o,

2 Ank = Z Xn—s,k - a(l) - a(o +)
k=s k=0

by (15) with s = 0, since A, = A, > 0. This establishes (15) with s = 0.
To complete the proof of Lemma 2 we can deduce (16) from (15) by
observing that, for n > s = 0,

Ans = 2 Ank - 2 }\nk‘
k=s

k=s+1

LEMMA 3. Let 0 <A <A, <A, <---,0<8<1/2, and let s be a
positive integer. Then there is an integer N and a positive constant M such
that, forn = N,

S ([Nl da0) ) = Mmax(b, ), Mo, )

where

e—kspnk

(17) M\(n,s) = max "
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and
1
>\ kon k ’

(18) M,(n,s) = max
s=k=n
8/2<ePri=1-5,2

Proof. Case 1. Suppose that A, = 0, s = 1. Let

— 1— }‘l _ﬁ i for0<k< =1
wnk—' Ak+l A Or _ n,wnn_ .

n

Then, in view of (6), we have

/él (fal_a}\,.k(t).l da(1) |)2 Sfalmﬂ da(t)] - el ja‘lﬂs}\"k(t) | det)]

= I/SmaX(IhIZ)
where V5 = [{ 7%| da(t) |,

1-6
I = max [ Nl0) | da(r)
l<k=n 8
|, —1/2]=1/2—38/4
and
1—-8
L= max [ A (o) | da(r) .
l=k=n 8
lw—1/2]<1/2—368/4

To deal with I, let f(¢) be a twice continuously differentiable func-
tion on [0, 1] satisfying 0 < f(¢1) <1, f(r) =1 for |t — 3 |= 3 — 3¢, f(1)
=0for6<t=<1—6,andlet

Bn(f9 t) = 2 }\nk(t)f(wnk)'
k=0
Then, by a result proved by Leviatan [8, Theorem 7],
L=V, max |B,(f,0) = f(t)|< V;KM(n,1)
=r<1-—

where K is a constant.
To deal with 7, we note that, by Lemma 1,

Va2 Va2

=k=n }\konk Ak(n)on,k(n)

where k(n) is an integer satisfying 1 < k(n) =n, 38/4 <w, (<1 —
38/4. Since 27 ,1/A; = oo, it follows that, for every fixed integer j,
lim w,; = 0 and hence that lim,_ , k(n) = co. Further, since

n—o0 “nj
log(l — x) = x + O(x?*) for|x|<1/2,



GENERALIZED HAUSDORFF MATRICES 21

we have that, for k = k(n),
= o Pt O "2
wnk~wn,k—l—e Pnk (Guk)
= e_pnk+0(pnk/)‘k) — e_pnk(l_’_o(l)).

Hence, for n sufficiently large,
8/2 < e Prkin <1 —86/2,

and thus
I, < Vy2 My(n, 1).

This completes the proof of Case 1.

Case 2. Suppose that A\; =0, s = 1. Let

Ag=0, A, =X, fork=1.2,...,

and define X,,‘k(t), 1\7[1(;3, s), Mz(n, s) by means of (4),(9),(17) and (18)
with {A,} replaced by {A,}. Then, forn =k =5,0 <t < 1, we have

Xn—s+l,k—s+l(t) = Ank(t)’

and hence, by Case 1,

S ] =S ([ o) a0
k=s "8

< Mmax(M,(n — s+ 1,1), My(n — s + 1,1))

= Mmax(M,(n, s), My(n, s)).
This completes the proof of Lemma 3.

LEMMA 4. Let 0 = A <A <A, <+, 0<6<1/2,s=2,A\,>M
+ 1, and let \ satisfy either (10) or (11) with the same M for k =s — 1.
Then

n—>oo

. n 1-8 2
lim lognkgs('/; Ank(t)'da(t)l) =

Proof. Case 1. Suppose that A satisfies (10) for k =s — 1, and that
n=k=s ThenA, = A, +m(n — s), and

n — n
J+1 )\+1 _ log }\n+1
(19) " Mo, = g log A, g fj xlogx = log logA, -~
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Hence
e_)“p"‘ <i( lOg }‘k )}\s/M
Ae A \dogA, ,
and so
_ ASMY\ 1
(20) Ml(n,s)—O((log)\nH) ) _0(logn)'
Suppose now that
(21) §<e—pnk<1 _é
27 - 2°
Then
2 AN & dx A,
mlog 35— < mp,, < gk Y < g f}\ . —log}\k_]
= J=k N

so that A, _, = (1 — 8/2)"A, and hence, by (10), we have that

(22) )\ks)\k_l+Mlog}\ks(l—g) A, + Mlog, .
Further, by (19) and (21),
2 1 gxn-}—l
Mlog 3 = log fog\, ’
and so
(23) >\k = AEn-}~1

where ¢ = (8§/2)M.
Next, let f(x) = 1 /xlog x so that

1 1 ) c
! = 1+ <
fx) leogx( log x x?log x
for x = A, wherec = 1 + 1/log A, > 0. Hence, by (10), (22) and (23),

"N A
CM(}\konk)2 ZC}\Zk 2 ——JZLl—__I
j=k NjlogA;

2)\2/(2 fkm cdx ZA%('[A"Hf’(x)dx
=k, Ak

x?log x

| — A log A,
log}\ A, logA,

(1 (1-8/2)" —M—l}\ﬂ)

n
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Consequently
(24)  My(n,s) = O(X;?log'/2A,) = O(X;7/%) = O(n~/*)

=o{ a3
~%\logn )

The desired conclusion in Case 1 now follows from (20) and (24), by
Lemma 3.

Case 2. Suppose that A satisfies (11) for k =s — 1 and thatn = k = s.
Then

N — A, N dx A
25 M > _j_t‘___i > Al iiid = 10 _ll_ﬂ..
( ) Pk jgk }\j jgkj;\j X g }\k

Hence, since A\, > M + 1,

e _ 1 N, A/ M _1
Ak - }\k }\n+l An
and so
(26) M (n s)<i=0 ! )
AR W logn )’

Suppose now that (21) holds. Then, by (25),
Ae=N,00(8/2)",

and hence
xkonkzxk(‘}’\": )]/2 Zkk(}\inlog 2 8)1/2
> (g)M(log 3 i 5 )1/2)\'"/2.
Consequently
(27) My(n, s) = O(X;'/?) =o(10;n).

The desired conclusion now follows from (26) and (27), by Lemma 3,
and this completes the proof of Lemma 4.

3. Proof of Theorem 1. Suppose that n =k =s and that r =
3,4,.... Let

1—1/r
Ny = f] Aui(2) daz).

/r



24 DAVID BORWEIN AND AMNON JAKIMOVSKI

Let {X,} be a sequence of random variables satisfying (1) and (2) with

p = 2, and let
T;x = 2 Anka’ an = 2 )\rnka
k=s k=s
By Lemma 4, we have, subject to either (10) or (11), that
logn 3 (N,)) >0 asn— .
k=s
Hence, by Theorem A,

T -0a.s. asn — o0.

n

Let @, be the subset of €@ on which 77 >0 and |X,|< M, and let

Q, = ﬂ°° Q . Then

r=3""r*

n

- 17= 3 [l da) = [0 dato)

éXk(fl/r / ) ai(2) da(t),

1—1/r

and hence, in view of (6), on &,

1/r 1
|Tn—7;,’|SM(f/+ )]da(t)|—>0 asr — oo,
0 1—-1/r

since a(0 + ) = «(0) and a(1-) = a(1). Thus

lim 7] = T, on £, uniformly in n for n = s.

On the other hand

lim 7, =0 on &, forr=3.

It follows that

lim 7,= lim lim 7] = lim lim 7, =0 on &,.

n— oo n—o00 r—oo r—>0o00 n—oo

ie, T, - 0as.

Since a(0) = a(0 + ) we have, by Lemma 2, that lim,_ A,

k = 0. Consequently

SA X, ~0 as.
k=0

and so H(A, a) € T,.

=0 for
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Finally, the additional condition a(1) — a(0) = 1 ensures, by Lemma
2, that

n
lim YA, =
n=0 k=0

and hence that H(A, a) € (BP).
4. Proof of Theorem 2. Let0 < k < n. By (5), we have that

=/ Mo (1)B(2) dt.

First, suppose that (12) holds. Then, by Holder’s inequality and (7),

il = ([N 18O P ae ) ['N,ul0) )

=1

- (&) w0 pa

Hence, by (6) and (12),

n 1/(p—1 1 1 n l/(p—D
(S k) =g f1swra S g )
k=0 n k=
< max d .‘_———“'3”1)/(1) ’ ( 1 )
~o=k=n X D, log n

It follows, by Theorem A, that H(A, a) € L,
Next, suppose that (13) holds. Then, by (7),

A= 1Bl fx (1) dt =181, Fk

and hence

n 1/(p—1) n dk p I/(p—1) 1
D p/(p—1) K =
(kgolxnkl) <1l (2 (D) ) 0(1ogn)-

k=0

Thus, by Theorem A, we have that H(A, a) € T,.
In view of Lemma 2, the additional conditions {A,} monotonic and
a(1l) = 1, ensure that

n
lim XA, =
n= p=0

and hence that H(A, a) € (BP).
This completes the proof of Theorem 2.
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