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AN ALGORITHM IN A COMPLEX FIELD AND
ITS APPLICATION TO THE CALCULATION OF UNITS

MALVINA BAICA

In the present paper the author develops a new periodic algorithm
for certain algebraic number fields and calculates units in these fields
from its periodicity. This algorithm (abbr. ACF) is a modification of the
Jacobi-Perron Algorithm, where for the first time the expanding of the
complex (not only real) numbers was possible. The ACF discloses new
units of which the already known ones are special cases, and it has the
advantage that many results in the theory of units can be derived by
means of a unified periodic algorithm.

0. Introduction. Hubert's dream and advice (Zahlbericht) of tailor-
ing a universal algorithm by means of which the expansion of any real
algebraic number (or any vector in En~\ n > 2) becomes periodic, thus
enabling a complete system of fundamental units in the corresponding
field to be calculated, still is, and probably will remain, far away from
realization. Though C.GJ. Jacobi invented an algorithm for totally real
cubic fields, generalizing ingeniously the Euclidean algorithm, he could
not prove or disprove the periodicity of his new tool nor calculate units by
its means. Jacobi's algorithm was later generalized by Perron [11] for any
total real algebraic field, but even he, the master of continued fractions,
did not succeed in proving or disproving the periodicity of his new
algorithm.

In his last scientific work Perron [12], though not successfully, shows
his efforts to solve the periodicity question of his algorithm. A partial
answer to this question in the case of cubic irrationalities gave E. Dubois
and R. Paysant-Le-Roux [6].

The title algorithm (abbr. ACF) can be interpreted as a modification
of Jacobi-Perron Algorithm (abbr. JPA), where for the first time the
employment of the complex (not only real) numbers was possible. The
choice of Di — s to be complex numbers implies also a slight modification
of the Γ-function in the companion vector.

This new algorithm ACF solves the problem of periodicity for in-
finitely many classes of algebraic numbers (but not for all of them) of any
degree, and states explicitly some units in the corresponding fields. The
periodicity of real algebraic numbers of degree n > 3 was first proved by
Bernstein [3] for the JPA, and later for its modification [3, 1].
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The ACF discloses new units of which the already known ones by

Bernstein [3], Halter-Koch [7], Halter-Koch and Stender [8] are special

cases. The latter were obtained by the last two authors without an

algorithm. This new algorithm ACF has the advantage that many results

in the theory of units can be derived by means of a unified algorithm. The

new units were also discovered by Neubrand [9], again without using an

algorithm. Neubrand's method is quite different from the other methods,

namely algebraic geometric or function theoretic oriented.

1. The ACF-definition, basic properties. We denote:

(1.1) Sn+ι = {d,DuD2,...,Dn}, n>2,

a set of any n + 1 algebraic numbers;

(1.2) %] = Q(d,Dx,D2,...,Dn)

the field generated by adjoining Sn+X to Q;

n

G(x) = 2 ctx"-1; c o = l ; c i e g C , , ι = l , . .
(1-3) 1 , =o

(1.4)

an irreducible polynomial in x over %x

%2 = %x(w); G(w) = 0

the field generated by a root of G(x) in

adjunction with %λ.

Thus %2 = β(w, d, Dv D2,...,Dn) is of degree n over %λ and of

degree n [%λ : Q] over Q.

DEFINITION 1. A vector a{0) in %2~
] (n>2) with components which

are functions of w is called a starting or fixed vector; the vectors

a(v) E %2~] obtained by an algorithm from aφ\

(1.5) a^ = {a\Ό\w)9 a™(w)9.. .,a£lλ(w)), t> = 0 , 1 , . . .

are called the current vectors; the vectors

b(v) = (b\Ό\biΌ\...9b}pι) eSCί1"1, derived from

(1.6) a(v) or given by any formula are called the

companion vectors of the a^v\ •

We shall introduce the notation

(1.7) 4°>,6< ϋ >=l, !> = 0, l , . . . .
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DEFINITION 2. The ACF of a starting vector a(0) is defined by the
recurrence formula

D

/ = l,...,

(1.8) a

From (1.8) we obtain

(1.9) fl}°) = 6<<'
an-\

We define the matrix entries

(1.10)

Ά\j) = δj; ij = 0, 1,... ,n - 1, δ/ the Kronecker delta;

n-\

From (1.10) we obtain easily by induction

(1.11)

fort; = 0,1, . . . .

We obtain formula

(υ + n-l)

(ϋ + Λ-1)

. . . A<f+ΓX)

\v(n-\)

(1.12) is correct for t? = 0, giving on the right side,

(0 + 0 + • +afU^ + 0 + +0)M°) - af\

Then substitute inductively on the right the values of α j υ ) from (1.10),

(1.9).
We shall need the formula

(1.13)
v n— 1

7 = 1 i=0

Proof by induction. (1.13) is correct for v = 1. Then proceed as in the

proof of (1.12).
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We shall need the basic formula

1 IX. C\ JM. (\

(1.14)

Λυ + n-X)
Λ0

(0)
n-\ n-\ Λn-\

= (-1)υ(n-\)l
n-\

, 7 = 0

Proof. Start with (1.11). Multiply both sides by Σnjlι

o a)v)A^+J\ add to

the first column the a^ multiple of they + 1st column. The result is

obtained by induction.

2. A periodic ACF—notations. In this section we begin preparation

for the periodicity of the most general a{0) G %2. This aφ) will be specified

later when we approach the central theorem. The choice of α ( 0 ) will result

from specification of the numbers d, Dx, D2,.. .,Dn E Sn+X and the

function G(x) from (1.3). We first choose

(2.1) GF(x) =
7=1

where GF(x) is irreducible over %v This polynomial was treated by

Stender in his dissertation, if the Z>7 are natural numbers.

(2.2)

GF( wt) = 0, / = 1,...,n Let wx, w2,..., wn be the roots

of GF(x) is an algebraic closure of %2( wλ,..., wn).

Thus w is chosen to be one fixed root of the H-roots of GF. We introduce

the notation

(2.3)

/ =
k

Π

In %2 we have of course

(2.4) fl,k=fl,M>
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and need not a d d / ^ = /(w, £>„• > Ak) W e h a v e > f r o m (2.1)-(2.3)

(2.5) Π (w-^)=/i,»=/i.» = rf.

The following operations will be useful

(2.6)

1 _ 1 _ /l,ί-lΛ+l,n

(w) flt d

,k d f,,n d

For the fixed vector α ( 0 ) we now choose

(2.7) ^ = (/ l t l l . 1 ,/ l f l l . 2 ,...,/ l i 2 ,/ 2 > 2 ).

We shall in the sequel conduct the ACF of α ( 0 ) from (2.7), getting the

current vectors a(v\ v — 1,2, The companion vectors of the current

vectors are derived from the current vectors by the formula, remembering

(2.4);

k o > = flίo>(A); * = l π - l ;

1 • j

The choice of Dx G Sn+λ for the derivation of Z>(t;) from α ( ϋ ) is, as we shall

later see, completely arbitrary. Any Dt E: Sn+V i = 1,...,«, would do.

The reader should pay priority-attention to the formula

(2.9) ί^ ^ . - ' t o ) =[( w ~ A) * (^ - A . - , ) ] ^ = 0,
I j = I,...,Λ - l.

We shall illustrate the first step in the ACF of α ( 0 ), working out all the

necessary details of (1.8). In the sequel the current vectors' result will

sometimes be enumerated directly without going into the details. We

obtain from (2.7), in view of (2.9)

(2 10) {*?* = / i . - ι ( A ) = 0, i = 1,2....,« - 2;

i
Thus

1,(0) _
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and by (2.6)

(n(P) — AίO)^"1 — L _ — ilhH — lH

αl° l , - 6<°2, = / 2 i 2 - (Z), - Z) 2) = M; - Z)2 - ( Z > , - Z>2) = w - Z>, = / „

α(0) _ fc<α> = α (o, _ 0 = Uι = / i > Λ _ i f / = 2 , . . . , π - 2

a n d f rom (1.8);

(2.11) « ( 1 ) =

3. The first fugue of the ACF of α<0).

DEFINITION 3. A sequence of n — 1 current vectors (including the

fixed vector), viz.

(3.1) fl«"-1)t+Λ υ = 0,l,...;j = 0 , 1 , . . . , « - 2,

is called the υ + 1st fugue (of the current vector) of the ACF of α ( 0 ); the

sequence of the corresponding companion vectors-the v + 1st fugue of

the companion vectors of the ACF of a(0>, is

(3.2) b<"-»v+J, ι? = 0,l , . . . ;y = 0 , l , . . . , / i - 2 . D

From (2.11) we obtain

(3.3) b(]> = {0,0,...,0,d-ί(D]-Dn)),

«{» - b\» = d-%n_2fn - 0; (flp> - fc( ))-1 =/„_„

(3.4) a& = {d-*fUa_3fn_lta,...,d-ιfιafn_Un,d

We can now prove the important

(3-5)

LEMMA 1. 77ιe / + 15/ current vector of the first fugue has the form

a l ~ 1 " f\,n-ι-\fn-ι+\,n> " f\,n-ι-2Jn-ι+\,ni' ">

" J\Jn-ι+\,n> " J\Jn-i+\,n-\> J\Jn-ι+\,n-2i- ' ">

/ = 2,...,w - 2; w > 4 .
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Proof. (3.5) is correct for / = 2, as can be verified from (3.4). By the
method applied in calculating α(1), α(2), the reader will now have no
difficulty in proving Lemma 1 by induction. The special cases n — 2,3
will be observed separately because of their importance.

α( ) = d~\w - D2);

Here we have a purely periodic continued fraction representation.

(w - Dx)(w - D2) - d = 0; w-Dz=[Dι- D2], d = \ .

w - D2=[DX - D2, d~ι(Dx - D2)]; d>\; d\ Dx - D2.

For n — 3, we obtain, dφ\.

a<°> = ((w - Dx)(w - D2), w - D2); b^ = (0, D{ - D2);

aO) = ( r f - i ( w - Dι)(w - D3), d-\w - 2>3)); 6<'> = (0, rf-'(A ~ D3))ι

β(2) = (rf->(w - D , ) ( W - £>2), w - D2); M2) = (0, D, - D2);

α<3> = ((w - Dx){w - D3), w-D3); b™ = (0, Dx - D3);

β(4) = ( d - i ( w - A ) ( w - Z)2), d- ( w - D2)); b*> = (0, d- (D, - D2))

fl(5) = ( d - i ( w - /),)(*, - i)3), w - D3); b^ = (0, Dx - Z>3);

fl(6) = ((w, - D,)( w - Z)2), w-D2) = α ( 0 ).

The ACF of α(0) is purely periodic, and the length of its primitive period is
m = 6.

For ί/= lwe obtain

«<°> = ((W - DX)(W - D 2 ) , w - D2); M°> = (0, Dγ - D 2 ) ;

«(1) = ((w - D . K ^ - A)» w-Ds); *>(1) = (0, D, - D3).

a(2) _ α(0). ( w _ ^ ^ ^ _ ^ ^ ^ _DJ_d=Qf g e n e r a l l y

As a numerical example in the case n = 2;

( w - 4 ) ( w - 2 ) - 2 = 0; choose w = 3 + /3 Dx = 4;

Z)2 = 2; rf=2. gC, = ρ; gC 2 =β(/3);

α (0) = w - 2 = [4 - 2,1/2(4 - 2)]

/3 + 3-2=[2, l ] ; /3=[l,ΪT2J,

a very simple way of constructing the periodic continued fraction of τ/3 .
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4. The first fugue of the ACF of a(0\ continued. From (2.7), (2.11)

and (3.5) we have completed the calculations of the first fugue of the ACF

of a(0\ viz.

(aV>9a«\...9a<'\...9a<"-2>)9 i = 2 9 . . . , n - 2

altogether the fixed vector α ( 0 ), followed by n — 2 current vectors. We

obtain for the n — 1st vector, substituting i = n — 2 in (3.5),

(4.1) at-* = (d-%JXn, d-ifj^.,, fjχn_2,...,fj3, f3).

From (4.1) we obtain, calculating (in detail because of its essential

pattern) the next current vector a("~X). For this purpose we have

(4.2) ft(»-2) = (0,0,0,...,0, Z), - D3)

and from (4.1), (4.2)

( 4 3 ) U b\~* = d~%J3,n; {a\"-*> - b\"-*>yι = f2;

From (4.1)-(4.3) we obtain, by virtue of Definition 1,

(4.4) fl(--1)=/2(rf-1/1/3>ll-1,/1/3lll-2,...,/i/3,/,,l)

(4.4) is important. If we compare the latter with (2.7) we obtain

(4.5) flW^flO -')

which means to say that a(0) = a{n~λ) in the case d — 1. We have thus

obtained the interesting

THEOREM 1. The ACF of the fixed vector a(0) from (2.7), with the

notations (2.3) and (2.5), is purely periodic in the case d — 1, and the length

of the primitive period equals m — n— 1.

The latter has the form

( ^ ° ) , ^ , . . . , ^ , . . . , ^ - 2 ) > , ι = 2,...,n-2.

a(0)from (2.7), a^ from (2.11), a{i) from (3.5) (/ = 2 , . . . ,/i - 2), substitut-

ing in these formulas d—\. The corresponding companion vectors have the

form'.

(4.6) 1 J

ft()() i = 2 , . . . , / i - 2 . D
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The reader is reminded that while d — 1 in Theorem 1, the other n

elements Dl9... ,Dn of the set Sn+X may still be any algebraic numbers. It

is surprising that in the case d = 1 the ACF of the fixed vector α ( 0 ) from

(2.7) indeed is purely periodic with the astonishingly short primitive

period m — n — 1. In the case d φ 1, the ACF of the same α ( 0 ) is also

purely periodic, but the length of its primitive period equals m — n(n — 1).

This will be proved in the next sections. But already, we have learned

from the previous section, that in the case n — 2 the ACF of α ( 0 ) from

(2.7) has primitive period of length m — 2 — 2(2 — 1) when d T M , and

m = 1 = 2 — 1 when d — 1; and in the case n — 3, m = 6 = 3(3 — 2)

when d T^ 1, and m = 2 = 3 — 1 when d — 1.

5. Periodicity of the ACF of tf(0)—completed. We shall use a new

manner of writing the vectors of the primitive period of the ACF of α ( 0 )

from Theorem 1 (with d — 1) and introduce

(5.1) g ( i ) = (g ί ' \g£\ . . . ,g ί '2 , ) , ί = 0 , l , . . . , / ! - 2 ; / ! > 4 .

It will be useful, for later purposes, to write out in full the values of g^

from (2.7), (2.11), (3.5) where d=l,

(5.2)

(0) _ / ((0)
\ \ , 2 9 J 2 / 9

~ \f\,n-2Jn'> f\,n-3Jn>' ' ' ?/l,2Λz> f\ fn ' ΛΪ J

\/l,« — /— \Jn — I + 1 , Λ ' J\,n — i — 2Jn — i-±-\,n>' ' '

J\,2Jn-i+\,n > /lΛi-/+l,/i> J\Jn-i+\,n-\

With the notation (5.2) we shall now write out in full a few of the fugues

of the ACF of α ( 0 ) from (2.7) with dΦ\.

(5.3)

(5.3) is the first fugue.
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(5.4)

(5.4) is the second fugue.

(5.5)

),... ,d-yr2),

(5.5) is the third fugue.

The reader will now have no difficulty in proving

LEMMA 2. The factors d~χ appearing before the g\^ in the current

vectors of the ACF of α ( 0 ) from (2.7) with dφ \ appear subsequently one

after the other starting with the first component of the vector; their frequency

of occurrence in a vector is k, 0 < k < n — I; if in a vector the frequency of

d~x is k, then in the next vector it is k — 1; if its frequency in one vector is

zero, then in the next vector, it is n — 1. D

For they'th vector of the / + 1st fugue we shall use the notation

( 5 . 6 ) *<'•<»

where (k) denotes the frequency of the factor d~λ in this vector gu\ Of

course, (5.6) does not say how to state explicitly any such vector a(i(n~1)+7).

For this purpose a functional relation between i,j and k is necessary and

most important. This is:

f 5 7 ) (i-j = k(n), fc = 0 , l , . . . , / i - 1;
1 * ; [ F o r f c < 0 , t a k e « - k. j = 0 , 1 , . . .,w - 2.

The proof of (5.7) is entirely based on Lemma 2.
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If in a certain fugue we have the vector ai(n~i)+J\ then in the next

vector we have j + 1, and since k decreases by one in this next vector, it

becomes k — 1, so that / — (j + 1) = k — \{n) or i — j = k(n), as should

be. If we look for the next fugue with the same row-vector j , viz.

Λ(ι+i)θ!+i)+^ t j i e n t h e frequency of k for the same./ is one greater, namely

k + 1, so that we have (i + 1) — j = k + 1(«) or again, i — j = k(n).

This proves (5.7) by induction, since it is correct for i — j — k = 0.

We are now able to write down any current vector in the ACF of Λ ( 0 ).

For example, let n = 9, m — 9 8 = 72, and we want to find α ( 6 1 ) =

α 7 ( 9 - i ) + 5 . i = z Ί j = 5 ; Ί _ 2 = 2 = k . H e n c e

We now ask the decisive question: Can ACF of α ( 0 ) become purely

periodic, and what is the length m of the primitive period? (Every periodic

ACF can be transformed into a purely periodic ACF.) In such a case we

must have

(5.8) j = k = 0, as inα ( O ) .

(5.7), (5.8) result in chooseing min. /,

(5.9) « = 0 (»), i = n.

We have obtained:

THEOREM 2. The ACF of the fixed vector a(0) from (2.7) with the

notation (2.3), (2.5) and d ¥= 1 is purely periodic and the length of its

primitive period is m — n(n — 1), consisting of n fugues. D

The length of the primitive period of the ACF is indeed very large

but, as it will be shown, it does not prevent us from calculating units.

6. Irreducibility and roots of polynomials. Bernstein [3, pp. 72-79]

has proved the following result which we state here with some slight

alterations:

THEOREM 3. Let

P(x) =
7 = 1

rf,V Λ-ι e Z ; d\kj(6.1)

Then P(x) is irreducible and has at least one real root. D
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If d is square free and \d\> 1, then irreducibility of P(x) follows
from Eisenstein's Criterion. But this would then exclude \d\ = 1. Bern-
stein's theorem is valid also for any algebraic integers d, kλ,...,kn_λ,
d\ kn_v This we could well use, but it would take us too long to prove it.

We introduce a polynomial which will be central to our investigation
on units, viz.

(6.2)

We prove

i=\

^ > 1 ; if all 5 f = 1, then k > 2;

0<Dx<D2< •" <Dk.

LEMMA 3. T(x) is irreducible in infinitely many cases and has, in these
cases, at least one real root. D

k

D
i=\

Π [(y + Dk)' - Df],

= χ-Dk.

(6.4)

T(y) = -d +

U [(y + Dk)' - D ]
k-\

π
1 = 1

n — sx + s2 + - +sk\

k-l

i=\

i = — 1

where d| ί. since all ί. are polynomials in Dl9 D2,...,Dk with rational
coefficients; further tn_λ contains the highest power of Dk, viz. sk — 1 +
sx + s2 + - +sk_x ^ n — 1. Hence we can choose sufficiently large Dk

so that I rπ_ j I > 2 I rf I ( # ! + 2), #! = 1 + ΣJ=? | *,-1 . Thus the polynomial
), hence also T(x)9 satisfies the conditions of the polynomial P(x)9



AN ALGORITHM IN A COMPLEX FIELD 33

and Theorem 3, so that T(x) is irreducible and has at least one real root in

infinitely many cases.

In case sk = n,T(x) becomes

T(χ) = xn - Dn - d,d\D,n> 2; Z> > 1.

7=1

and we have to choose

It suffices to choose D >2n+λ \d\\ n > 2. Concluding, we shall write

Γ(x) in the form of (2.1).

(6.5)
Pj = exp . ^We write y-1 to avoid

(6.6)

Let

(6.7)

confusion with the index /.)

— {DU D2,...,2)Λ}, for useful notation.

= s; p = exp

rτ(w) — 0; wreal ; (?(/> l 9 Z> 2 , . . . ,/>£, w) =

n n

(6.8) Gr(x) = -Λ+ Π [x-D,)\ -d+U (w-D,) =
7=1

7. Units, the main result.

7 = 1

DEFINITION 4. Let

ίfCbe an algebraic number field;

(7.1) a«» = {a?>9a¥>,...9aQll)e%»-l

9n>:2, and

a\°\ af\. ..,a<£l_] algebraic integers.

Then a{0) is called an integral vector.
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THEOREM 4. Let

%x,%2be algebraic number fields;

(7.2)

x

%x

^ 2 a n integral vector;

{ b{v)) v=0 a sequence of integral vectors E %x

A^ the matrix entries from (1.9).

// the ACF of <z(0), carried out with the companion vectors ό ( υ ) is purely

periodic with m = the length of the primitive period then the algebraic

number

(7.3) fl β£i = Am)

w α wmf in %2 (relative to%x). •

Proo/. Since, because of periodicity, we have a\m) = af\ i— 1 ? . . . ?

n — 1, we obtain (7.3) from (1.13). The af"> are algebraic integers by

hypothesis, so are the A(

o

m+j\j = 0 ,1, . . . ,n — 1, since the b(v) are integral

by hypothesis. Thus Σ"=o ̂ O ) ^ (

o

m + y ) in (7.3) is an algebraic integer.

We further note that, by virtue of the conditions of the theorem, all

entries in (1.14) are algebraic integers, so that (Σ"=o flj°)^om+l/'))'~1 * s a n

integer. This proves the theorem.

We now return to the vector α ( 0 ) from (2.7), substituting there α ( 0 ) for

aφ\ Dv D2,... ,Dn for D,, D 2 , . . . ,Dn from (6.6), and now let d have the

value from (6.2), viz. d a rational integer. Theorem 2 then becomes: The

ACF of the fixed vector ά ( 0 ) with d φ 1 is purely periodic and the length

of its primitive period m — n(n— 1), consisting of n fugues. From (5.3)-

(5.7) we learn a few important facts about the ACF of ά ( 0 ):

(i) for Dx we substitute Dx; altogether there are n such choices of

substitution;

(ii) the numbers Dl9 D 2 , . ..,/)„ are all algebraic integers, since Dj —

pjDj, (t — 0^1,... 9Sj — 1), and ρ7 and D} are integers;

(iii) d\ Dj (j = 1,... ,n - 1), since D \ D}\

(iv) the product of the last components of n — 1 of the n fugues of the

primitive period of ACF has the form:

(7.4) d-ιfH
7 = 2
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(v) One fugue out of the n fugues does not have among its last

components the factor d~ι. This fugue is that one whose first vector has

k — n — 2, so that

i - 0 = k - 2{n)\ i = n-2.

Thus the product of the n — 1st (/ + 1) fugue equals (with i — n — 2)

(7.5) ft (w-ζ)

(vi) All the entries of the companion vectors of the n fugues are either

zero or Dx — Dj or d~\D{ — Dj)y j — 2,...,«, (j φ n — 1). Hence they

are all integers (and so are the A^).

(vii) Because of (7.4), (7.5), we have

n{n-\)-\ I n

(7-6) Π *£x = d<"-* Π (*-DJY
7=0 \j=2

But because of periodicity α^LγX) — aflu hence from (7.6)

n(n-l)-l n(n-\)

(7.7) Π * A = Π Wu
7=0 7=1

so that, by virtue of (7.6), (7.7) and Theorem 4, we have obtained the

second main result in

THEOREM 5. With the meanings of w and p, D , as explained before,

(7.8) e = rfWπ ( ^ )
\y=2 /

β(w, p). •

8. Units from Theorem 5. The unit e from (7.8) has a complicated

form unsuitable to practicalities. We shall find simpler forms for units in

<2(w, p), and also disclose units in Q(w). Since we took w = w0 to be a

real root of Gτ(x), we could have taken any of the roots w09 wx>... ,wII_1

of G : r(x) (some, even all of which may be real) and still have obtained the

unit d-(n~l\llnj=2(wt - Dj))"9 t = 0 , 1 , . . . , « - 1. Also, since 2)j may as-

sume any of the values

(8.1) Dx = p?Di9 ί = l , . . . , / i ; u = 0, 5 1 ? . . . , ^ - 1 ,

we can obtain altogether n units of the form (7.8) for w constant, w = w0,

and altogether n2 units in β(w/ ? jδ) among them some units in β(w), w
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real, as we shall soon see. From (6.8) we obtain

Hence from (7.8), (8.2)

e =
(w-D,)"

(8-3) d

is a unit in ζ)(w, Z>,).

Since in (8.3) we can use any of the Dj, (j — 1,...,«) instead of Dλ, we
obtain

THEOREM 6. All the numbers

(8.4) ej j

are units in Q(w, jό). Among them

/ — n \n

(8.5) g<y> = d , / = 1 A:; k from (6.2)

are units in the real field Q(w). D

The product

d'

is a unit as a product of units. Hence

COROLLARY 1. The numbers

(8.6)

are units in the real field Q(w). D

From (8.5) we obtain
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so that

{eυψ,eis,)= PL.

is a unit, hence

COROLLARY 2. ΓΛe numbers

(8.7)

are units in the real field Q(w).

(6.2), s,

Let

(8.8)
in = stti9 si9ti

[for some i < /:.

Substituting « from (8.8) in (8.6), we obtain

(8.10) β(iv), A;from (6.2)

e ( ί ; ) = ^ , _ Ds,^ j = 1,... ,Jfe; J f

fe 1/1 rAe real field Q(w).

(6.2)

D

hence

C O R O L L A R Y 3 . L e t n = stti9 si9 tt> 1; si e {sl9 s29... 9sk}. Then

(„*, - Ds,γ.
(8.9) e(/<> - d

are units in the real field <2(iv). D

Let \d\— 1. Then we have

COROLLARY 4. The numbers

e , = w ~~Dj9 u — 1,...,« are units in β(w, p).

?(O — w —DJ9 i = \9...,k are units in the real field
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9. Derivation of previously known units. We return to the poly-
nomial T(x) of (6.2). In the case k = 1, T(x) takes the form, sx = n,

(9.1)
'T(x) = xn - Dn - d\ d,D G Z;D>0; n>2; d\ D;

T(w) = 0; iv real; iv" = Dn + J; iv of degree n over g.

But even in this case the method leading to the periodic ACF of α(0)(w),
and the derivation of units from it is the same. We obtain from (9.1)

(9.2)

(w-Dj)=0.

'D; j=\,...,n;D]=D;

2-πfA
p = exp d\ since d\D.

With the conditions of (9.2) those of Theorems 4 and 5 are satisfied, and
we have

THEOREM 7. Let conditions (9.1) and (9.2) hold. Then the n numbers

(9.3)
d

j = !,...,«

are units in Q(w, p). The real number

(w-D)"
(9.4)

is a unit in the real field Q(w).

e, =

(9.5) eu = w—D is a unit in Q(w). D

Let st = n, s > 1. We obtain from (9.1)

(9.6) (ws)'=(Dsy+d.

Since d \ D, we also have d \ D\ and all that was said in Theorem 7 about
w, D.

(9.7)
_ (ws - DSY
" 5
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is a unit in Q(w). From (9.4), (9.6) we obtain

1 * d [(w-D)sY \(ή-Dy

a unit in Q(w). Hence

COROLLARY 5. The τ{n) — 1 numbers

e\SJ) = - - , st = n9s>l.

If n — pυ, p prime, υ — 1,2,..., then instead of d, we have pd which
makes d | Z> valid.

Bernstein and Hasse [5] obtained the units (9.4), (9.8) with the
additional restrictions D > (n - 2)d for d > 0 and D > 2d(n - 1) for
J < 0; n>2. These were the restrictions Bernstein [1, 2] needed for the
periodicity of the Jacobi-Perron Algorithm with w = ]/DTΓ±~d, d, D > 0,

In his most remarkable Ph.D. thesis Stender [13] proved that in the
cases n — 3, 4, 6 the possible 1, 2, 3 units from (9.4), (9.8) form a system
of fundamental units in the respective fields. This was a breakthrough, but
did not prove in general that the units gained from (periodic) Jacobi-
Perron Algorithms are always fundamental.

The units are independent, whether they are fundamental or not, has
not been proved for the general case. This fact is also true for the units
obtained from ACF.

Later, Halter-Koch and Stender [8] proved that formulas (9.4), (9.8)
hold for a much wider class of units.

Another breakthrough in units of this kind came with an important
paper by Halter-Koch [7] who started with the polynomial

Gγ(*) = Π (* - A) Π2 (x-Dj)(x-Dj)-d9

η > 0 , r 2>0, n = rx+2r2, d,D^Z;

D} > D2> - > Dr'9 Dj, Dj complex conjugate,

d a divisor of pairs of Dt and the Di,
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Halter-Koch proves that Gτ(x) has exactly r, real roots. If w is one of
them then

</-V-D, Γ and d-2[{w - Dj)(w - Dj)]n

are units in Q(w). Of course these units can also be obtained from our
ACF of <2(0). Bernstein [4] used his so-called zero algorithm to gain these
Halter-Koch units.

The zero algorithm (abbr. ZA) is also a modification of JPA, and it is
different from ACF.

The author conjectures that many more known units can be calcu-
lated by ACF. This will be discussed in a further paper.
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