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A HARNACK ESTIMATE
FOR REAL NORMAL SURFACE SINGULARITIES

WILLIAM A. ADKINS

According to Harnack's theorem the number of topological compo-
nents of the real part of a nonsingular projective curve X defined over R
is at most g( X) + 1, where g( X) is the genus of X. The purpose of the
present paper is to present two estimates which can be considered
analogs of Harnack's theorem for normal surface singularities defined
over R.

1. Introduction. A simple example will suffice to illustrate the type
of result which one may expect. Suppose A c P2(C) is a projective plane
curve defined over R and let AR be the real part of A. Let V c C3 be the
cone over A and let (FR,0) be the germ at 0 of the real part of V. Then
(FR,0) is connected, but the punctured variety (VR \ {0}, 0) may have two
components for each connected component of AR. Thus the number of
components of ( F R \ (0},0) is bounded by 2 + 2g(A) = bo(A) + bλ(A)
+ b2(A) where bt(A) is the /th betti number of A. If one resolves the
singularity (F,0), the exceptional curve E is just the curve A9 so we
conclude that the number of components of (VR\ (0},0) is bounded by
the sum of the betti numbers of the exceptional curve in a resolution of
(F,0). It is in precisely this form that one may obtain a Harnack estimate
for an arbitrary normal surface singularity defined over R. Specifically, let
(F, p) be a normal surface singularity defined over R and let π: M -> V
be the minimal normal resolution of Fwith exceptional curve E = π~ι(p).
Then the following three results will be proved.

1.1. THEOREM, π: M -> V is a real resolution, i.e. it is defined over R.

1.2. THEOREM. bo(VR\ (0},0) < Σ;L0Z>,(£).

1.3. THEOREM. By Theorem 1.1, E is defined over R and there is the
estimate bo(ER) < 1 H- pg(E) where p(E) is the geometric genus of E.

After recalling some definitions and preliminary results in §2, Theo-
rem 1.1 is proved in §3, while §4 contains the proofs of the two Harnack
estimates.
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2. Preliminaries. All complex spaces are assumed to be reduced,
second countable and pure dimensional. By surface we will mean a
complex space of dimension two. Let V be a normal surface and let π:
M -> V be a resolution of F, i.e. Λf is nonsingular, π is proper and π:
Λf XflT^SiK)) -> F \ S ( F ) is biholomorphic, where S(V) denotes the
singular set of F. The minimal resolution of F is the unique resolution
through which all other resolutions factor. This can be obtained from an
arbitrary resolution by successively contracting exceptional curves of the
first kind (Laufer [6] page 87). A normal resolution of V is a resolution in
which the exceptional curve has nonsingular components which intersect
transversely and no three components intersect. There is a unique minimal
normal resolution obtained from the minimal resolution by means of
quadratic transforms [6] page 91.

Let A = Όf=ϊAi be a curve with irreducible components At. Associ-
ated to A is a graph G, called the dual graph of A, formed as follows. The
vertices of G are the irreducible components At of A, and each point of
At Π Aj gives an edge joining the vertices A{ and Aj. If V is a normal
surface and π: M -> V is a resolution, then the dual graph of the
resolution is the dual graph of the exceptional curve.

The exceptional curves of normal resolutions will be used frequently,
so we give them a name. An N-curve is a projective curve in which the
irreducible components are nonsingular, intersect transversely, and no
three components intersect. The topology of an TV-curve is completely
determined by the topology of the irreducible components and the dual
graph, as in the following result, which is easily proved by a Mayer-
Vietoris argument (or see Brenton [2]). For homology we will always use
Z 2 coefficients. Thus bt{X) = dimZ2 Hέ(X9 Z2).

1.2. PROPOSITION. Let A = Όf=ιAi be an N-curυe with dual graph G.
Then

(2.1.1) bι(A)= ΣbiM + ^G),

(2.1.2) b2(A) = k,

(2.1.3) Pg(A) = d i m c ^ U , 0Λ) = Σ g(A,) + bx(G),

where g(At) denotes the genus of the nonsingular curve Ar

The basic estimate we shall use in our proofs is the following "Smith
theory" inequality.
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2.2. THEOREM. Let X be a finite cell complex and T: X -> X a

continuous involution with fixed point set F. Then

dim H*(F) < dim H*(X).

The symbol dim H*() refers to the sum of the betti numbers. For the

proof of this result see Wilson [9] page 72.

3. Real resolutions. A complex space with conjugation is a complex

space X together with an antiholomorphic involution σ: X -> X. The fixed

point set of σ is called the real part of X and will be denoted XR. If (X, σ)

and (Γ, T) are complex spaces with conjugations, then a holomorphic map

f:X-+ Y is sήdtobe real if τ o f = f o σ.Thusf(XR) c YR.

3.1. THEOREM. Let (F, σ) be a normal surface with conjugation and let

π: M -> V be the minimal resolution of V. Then M has a conjugation τ such

that π is a real map.

Proof. It will first be proved that there is some real resolution of V.

According to a classical theorem of Zariski (see Lipman [7]) a resolution

of each singular point of V can be obtained by means of a finite sequence

of quadratic transformations at singular points, followed by normaliza-

tions. Each of these two operations will be considered separately.

3.2. LEMMA. Let (W, σ) be a reduced complex space with conjugation

and let θ: W -> W be the normalization. Then there is a conjugation τ on

W with respect to which θ is a real map.

Proof, θ: W'\Θ-\S(W)) -> W\S{W) is an analytic isomorphism

so define τ on W'\Θ-\S(W)) by τ = Γ ^ σ o ί . If p e S(W) then

θ~ι(p) is in one-to-one correspondence with the irreducible components

of the germ (W9 p). Since σ must give a bijection between the irreducible

components of {W, p) and the irreducible components of (W, o{p)), use

this bijection to define T: θ~1(p) -> θ~1(σ(p)).

Now consider conjugations under quadratic transforms. Thus let

(W,σ) be a (normal) complex space with conjugation. Then S(W) is

invariant under σ. Let/? e S{W). Then σ(p) e S{W) and there are two

cases which will be considered separately.

3.3. Case l.p^ WR, i.e. σ( p) = /?.
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In this case a holomorphic imbedding (W9 p) c (C",0) may be cho-
sen which is conjugation invariant. Recall that if Γ c (Cn, 0) X PΠ"1(C) is
defined by

Γ = { ( ( z l 9 . . . 9 z n ) , [ w i , . . . , w n ] ) : z i w J = ZjWi f o r 1 < i , j < n )

then C'2 \ {0} c Γ and the quadratic transform of {W9 p) is the closure of
W\p in Γ. Since Γ is defined by real equations and W\p is conjugation

invariant, it follows that the strict transform of (W, p) is also conjugation
invariant and this gives an extension of σ to the quadratic transform of W
at/?.

3.4. Case II. σ(p) Φ p.

In this case one may choose an imbedding of (W9 p) in (CΛ,
(i, 0,... ,0)) via holomorphic coordinates ξl9... ,£„. Then ξt ° σ (1 < / < n)
are holomorphic coordinates on (σW, σ(p)) which give an imbedding of
{oW, σ(p)) into (C2, (-/, 0,... ,0)). Thus there is a commutative diagram

(W9p) c (C,(/,0,. . . ,0))

I a I conjugation

{aW9σ(p)) c (C",(-/,0,. . . ,0))

Now perform simultaneous quadratic transforms at (/,0,...,0) and
( — i,0,...,0). It is then clear from the construction that the strict trans-
form of (W9 p) is taken via conjugation to the strict transform of
(σW, o(p)). Hence σ extends to a conjugation on the space obtained by
doing simultaneous quadratic transforms at/? and o(p).

We now return to the proof of Theorem 3.1. By Zariski's theorem
some resolution of V will be obtained if one alternately does quadratic
transformations and normalizations. If, in addition, one is careful to
simultaneously do quadratic transformations at both p and σ(/?), then
(3.2)-(3.4) show that a real resolution TΓ': (M\ T') -> (F, σ) is obtained.
By Theorem 5.9 (page 87) of Laufer [6], the minimal resolution of V is
obtained from Mf by successively collapsing exceptional curves of the first
kind in Λf. But the condition for a curve to be exceptional of the first
kind is purely topological (genus 0 and self intersection -1). Thus if A is
exceptional of the first kind, then τ\A) is also exceptional of the first
kind, and if one simultaneously collapses A and τ'(A), (this is possible
because A Π τ'(A) = 0 by negative-definiteness of exceptional sets) a
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new surface is obtained which also has a conjugation map. Since one
eventually arrives at the minimal resolution of V by this process, the proof
of 3.1 is complete.

3.5. REMARKS. (1) Further applications of (3.3) and (3.4) show that the
minimal normal resolution of V also supports a conjugation with respect
to which the resolution map is real.

(2) If (V,0) c (CΛ, 0) is a conjugation invariant variety and π: M -> V
is a real resolution, then the exceptional curve π~ι(0) may have no real
points. A necessary and sufficient condition for π~\0)R to be nonempty
is that (KR,0) % (S(F),0). See [5] for an algebraic version of this result.
In the analytic case it is an easy consequence of the properness of π:
M -> V. For example, the cone z\ + z\ + z\ = 0 is resolved by a single
quadratic transformation at 0 and the exceptional curve is the rational
curve w\ + w\ + w3

2 = 0 in P2(C) which is conjugation invariant, but
which has no real points.

4. Harnack estimates. If (X, p) is the germ of a topological space
at p then bt(X, p) denotes the ίth betti number of a sufficiently small
representative of the germ (X, p) near/?.

4.1. THEOREM. Let (V, p) be a normal surface singularity with conjuga-

tion and let π: M -> V be a real resolution of V with exceptional curve E.

Then

bo(VR\{p},p)<Σt>,(E).
1 = 0

Proof. If VR = {p} the inequality is trivially satisfied since the left
hand side is 0. Thus assume that VR Φ {p). Let X = MR and A = ER.
Then F R \ {p} — X\A so it suffices to compute bo(X\A). First note
that H0(X, X\A) = 0. This is because A is one dimensional and every
connected component of X has dimension 2. Thus every connected
component of X intersects X\A. Also Hλ(X, X\A) = Hι(A) by
Alexander duality (Spanier [8], page 296). (All homology and cohomology
is computed with Z 2 coefficients.)

The exact homology sequence of the pair (X9 X\A) contains the
segment Hλ(X, X\A) -> HQ(X\A) -> HQ(X) -> 0. Thus bo(X\A) <
bo(X) + b^A). But it is easy to see that if one chooses a sufficiently small
neighborhood of /?, then the resulting X will satisfy bo(X) = bo(A).
(Simply triangulate M so that X, E, and A are all subcomplexes and then
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take a sufficiently fine barycentric subdivision.) Since A = ER an applica-
tion of Theorem 2.2 gives

2

bo(X\A) < bo(A) + bx(A) < Σ

4.2. REMARK. The example presented in the introduction shows that
the estimate in Theorem 4.1 is probably the best that can be obtained.
For a concrete example, the cone F = { z 2 = j ί 2 + / } c C 3 will have
bo(VR\ {0}) = 2 while E is the protective line so the sum of the betti
numbers of E will also be 2.

Let (V, p) be a real normal surface singularity and let π: M -> Fbe a
real resolution. Theorem 4.1 gives an estimate of the number of topologi-
cal components of VR \ {p}. A second natural question is to ask for the
number of topological components of the real part ER of the exceptional
curve E of (F, p). The next result gives such an estimate. It is essentially
an extension of Harnack's theorem to curves which are not necessarily
irreducible. The specific curves to be considered are the iV-curves intro-
duced in section 2.

4.3. THEOREM. Let A = Uf=1 At be a connected N-curve with a conjuga-
tion σ. Then bo(AR) < 1 + pg(A).

4.4. REMARK. If G is the dual graph of A, recall from Proposition 2.1
that the geometric genuspg(A) = Σf=1 g(Af) + bλ(G).

Proof, (of 4.3) The conjugation σ determines an involution of the dual
graph G of the curve A by sending the vertex of G corresponding to the
irreducible component Aι oί A to the vertex corresponding to the irreduci-
ble component σ(^4/). Consider first the special case in which σ induces
the identity on G, i.e. σ(yί/) = At for 1 < i < k. By the Smith theory
inequality and Proposition 2.1,

(4.1) bo(AR) + b^Aj,) < 1 + bx(A) + b2(A)

= 2 +

Claim. b,(AR) - bo(AR) > (k - 1) -
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Substituting this inequality into formula (4.1) gives Theorem 4.3 in

the special case in which σ induces the identity on G. The claim will be

verified by induction on k, the number of irreducible components of the

curve A. If k = 1 then AR consists of a disjoint collection of circles so

bλ(AR) = bo(AR) and the claim is satisfied in this case. Now let A' be an

TV-curve with k — 1 irreducible components and suppose A = A' U Ak.

Let G' be the dual graph of A' and consider separately two cases.

In this case Ak Π Af must consist of a single point p and p e AR.

Thus a circle of (Ak)R and a circle of AR are connected at the point p, so

that bo(AR) = bo(A'R) + V ( A ) R ) - 1 and ^ ( ^ R ) = bλ{A'R) +

R) H e n c e

bλ(AR) - bQ(AR) = bλ(A*) ~ *OMR) + 1 > (k ~ 1) -

Case2.bι(G)> bx{G').

It will always be true that bo(AR) < bo((Ak)R) + bo(AR) and

> ^ ( ^ R ) - 60(^'R) > (Λ - 2) -

since bγ{G) > bγ{G').

Thus the claim is verified and hence Theorem 4.3 is proved in the case

in which every irreducible component of A is conjugation invariant.

Now consider a second special case. In this case A will consist of two

irreducible components Ax and A2 which are interchanged by the conjuga-

tion map σ. Then the fixed point set AR consists of finitely many points

which are contained in Aλ Π A2. The dual graph G of A consists of 2

vertices joined by e = #(Aλ Π A2) edges. Thus bo(AR) < e = 1 + bλ{G).

We now proceed with the general case. Thus let A be a connected

TV-curve with conjugation σ and with dual graph G. The involution σ on A

induces an involution Γ o n G . Extending T to be a simplicial map on the

topological space G, Theorem 2.2 may be applied to conclude that

(4.2) bo(F) + bι(F)<l + bι(G)

where F is the fixed point set of T. The fixed points of T are of two

distinct types. Type I are the vertices of G fixed by T (i.e. the irreducible

components of A which are invariant under the conjugation σ) together

with the edges joining fixed vertices. The fixed points of type II are the

centers of the edges joining two adjacent vertices which are interchanged

by T.
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Let C 1 ? . . .,C r be the connected components of F of type I and let
Dly... ,DS be the pairs of adjacent vertices of G which are interchanged by
T. Then corresponding to each C] is a connected curve Ac c A whose
irreducible components are the vertices of Cr Each irreducible component
of Ac is conjugation invariant. Similarly, for each Dt there is a connected
curve AD c A consisting of two irreducible components which are inter-
changed by σ. Then

By the two special cases done above,

bo(AR)<r + Σ

< Σ g(Aj) + bo(F) + bλ(F)

The third inequality comes from formula (4.2) while the second inequality
comes from Proposition 2.1 and the fact that each Dt contributes exactly
1 + b^D^ isolated fixed points to F since that is exactly the number of
edges joining the two vertices of Dt. Thus the proof of Theorem 4.3 is
complete.

4.5. REMARK. A special case is worth mentioning. Suppose that A is a
connected iV-curve with a conjugation and assume that H^A.R) = 0.
Then pg(A) = 0 by Proposition 2.1 so in this case the theorem says that
AR is connected. This occurs for example if A is the exceptional set in the
resolution of a rational singularity (Artin [1], Brieskorn [4]). Furthermore,
from the explicit formulas in Brieskorn [3], which are formulas with real
coefficients, one sees that all of the rational double points admit conjuga-
tions.
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