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ON SEMIGROUPS OF CONVOLUTION OPERATORS
IN HILBERT SPACE

JORGE D. SAMUR

Given an infinitely divisible probability measure on a real separable
Hilbert space H and the infinitesimal generator A of the associated
semigroup of convolution operators acting on the Banach space of
bounded uniformly continuous real functions on H, we describe the
action of 4 on certain classes of differentiable functions.

1. Introduction. For every infinitely divisible probability measure u
on a real separable Banach space E there is an associated strongly
continuous semigroup of convolution operators on the Banach space
C,(E), the class of bounded uniformly continuous real-valued functions
on E with the norm of uniform convergence. According to the general
theory of semigroups of operators, the domain of the infinitesimal genera-
tor of every such semigroup is dense in C,(E). As is well known, one of
the central aspects of the study of a specific semigroup of operators is the
description of the action of its infinitesimal generator on a class of
“smooth” functions which is large enough to characterize the semigroup.
In the case when F is finite-dimensional, a result of this kind was obtained
by Courrége [3], where the action of all generators of convolution semi-
groups on a natural class of differentiable functions is described. When E
is an infinite-dimensional Banach space, however, the scarcity of differen-
tiable functions (see [*] for a recent discussion) does not allow such a
description.

This difficulty can be surmounted in the case when E is a Hilbert
space; this is the object of the present paper. We consider the case in
which E is a Hilbert space H and describe the action of the generators on
certain classes of differentiable functions. We exhibit a natural class of
differentiable functions — the class C/?(H), defined below — on which
all generators of convolution semigroups can be characterized (Theorem
3.1); our result generalizes the work of Courrége [3]. However, in contrast
to the situation in the finite-dimensional case, C/?(H) is not dense in
C,(H) when H is infinite-dimensional.

It is possible to prove a stronger result for convolution semigroups
without Gaussian component; in fact, in Theorem 3.6 we describe the
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action of the generator of any such semigroup on a dense class of
differentiable functions. Finally, an extension for the Hilbert case of a
result of L. Gross ([4]) is stated (Corollary 3.7).

As a by-product, we obtain the well-known Lévy-Khintchine repre-
sentation in Hilbert space including limit formulas for the terms of the
representation which strengthen the known results.

At several points we use ideas and techniques of [2].

H will denote a real separable Hilbert space with || - || = ( -, - )%
the norm of C,(H) (defined above) is also denoted || - ||. If f: H — Ris a
continuous function which is Fréchet differentiable at x € H we denote
by f'(x) the point of H such that { f’(x), -) is the derivative of f at x;
analogously, f”(x) will be the symmetric bounded operator on H such
that { f”(x)(+), -) is the second Fréchet derivative of f at x, if it exists.
C®(H) will be the subspace of C,(H) of those twice Fréchet differentia-
ble functions f such that

Il = sup |lf'(x)ll < oo, |If"ll= supllf"(x)l| < oo
x€H x€H
and f” is uniformly continuous (again, we write || - || for different norms).

All measures considered are defined on the Borel o-algebra of H. We
refer to [6] for the definition and properties of weak convergence, sym-
bolized here by % . N denotes the set of natural numbers greater than

Z€1O0.

2. Semigroups of measures. A probability measure p on a separa-
ble Banach space E is infinitely divisible if for each n € N there exists a
probability measure g, ,, on E such that (g, )" = p (»" denotes the nth
convolution power of a finite measure »). The characteristic functional i
of p never vanishes on E’ (the topological dual of E) and, consequently
(see [2], §2), there exists a unique sequentially w*-continuous function /:
E’ — C such that i = exp/ and /(0) = 0. The nth root of pu is unique and
fyn = Xp((1/m)0).

Recall that a family {p,: # > 0} of probability measures on E is a
(weakly continuous) semigroup of measures if (1) py = 8y, (2) p, * b, = py,,
fors 20,¢t >0, and(3)p.,lv+u0ast - 0.

The following fact is well-known; we sketch a proof for the sake of
completeness.

PROPOSITION 2.1. For every infinitely divisible probability measure p on
a separable Banach space E there exists a unique semigroup of measures
{m,: t = 0} such that p, = p.
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Sketch of proof. We outline only the construction of {u,}. The
existence of /: E’ — C as above such that i = exp/ implies that for a
positive rational r = k/n (k, n € N) we may define p, = (p, /n)" depend-
ing only on r; let p, = §,. We have now a semigroup { 4, } with non-nega-
tive rational parameter such that p, = p.

In order to define p, for real positive ¢, observe that if {r,} is a
bounded sequence of positive rationals the semigroup property gives that
{, } is relatively shift compact (see Def. 2.1 and Th. 2.2 of Ch. IIl in [6])
and recall the following result: if {»,} is a sequence of probability
measures on E such that (1) {»,} is relatively shift compact and (2) {7, }
converges uniformly on the balls of E” to a certain functlon g, then there
exists a probability measure » on E such that », 5yand p = g (this is

proved as Th. 4.5, Ch. VI in [6]). a

Given a semigroup of measures { p,: ¢ > 0} on H, for each ¢ > 0 we
define the point x, € H, the bounded symmetric operator 7, on H and the
finite positive measure », on H by

w=J 1+{|x|)2(%) (),

_ (x, »)* (1
(Ty,y) = f m—)g(j)ﬂz(dx) (y € H)

and

nax) = (1) ().

1+ |lx|i? V2

The following two results may be proved along the lines of Theorem
4.1 of [2] (in [2] the converse Kolmogorov inequality for Banach spaces is
used; here we can use a similar inequality valid for the Hilbert space case
due to Varadhan — see [6], Th. 3.3, Ch. VI).

LEMMA 2.2. Let F be a closed subspace of H and q(x) = d(x, F). If
t>0ando, = (1/2)(p, + R&,) then

1 9 _
'/;r"q(x)<r} qz(?) d‘ut < (E)rz(l B 1201[1/'}+1({x: q(x) ~ r})) 1

holds for each r > 0 such that o/ "} ({x: q(x) > r}) < 1/12. (, is the
measure defined by ,(B) = u,(—B) for Borel sets B; [-] denotes the integer
part of a real number).
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THEOREM 2.3. {»,: t > 0} is relatively (weakly) compact.

As in [6] (Ch. VI, Def. 2.3) we call S-operator a symmetric, positive,
bounded operator S on H with finite trace, i.e. tr(S) = £%.,(Se;, ;) < o0
for some (every) orthonormal basis {e;: j € N } of H. Recall that a class &/
of S-operators is compact ([6], Ch. VI, Def. 2.4) if: (I) supgetr(S) < oo,
(II) im,, ,  supgc MZ‘}‘;,,( Se;, e j> = 0 for some orthonormal basis {¢;} of
H.

Let (L (H), || - |l) be the ideal, in the algebra of all operators on H,
of trace class operators endowed with the trace norm and denote by #the
class of all S-operators on H. The following proposition will be useful. We
remark in passing that it proves in particular that the notion of compact
class does not depend on the choice of orthonormal basis.

PROPOSITION 2.4. Let &/ C &. Then Zis a compact class if and only if &/
is relatively compact in (L, (H), || - [I1)-

Proof. For the sufficiency part, fix an (arbitrary) orthonormal basis
{ejJ€ N } of H, define for each n € N the function ¢,: ¥ — R by
¥, (S) = < Se., e > and apply Dini’s theorem.

Necessity. Let {e;: j € N} be the orthonormal basis of H for which
both conditions of the definition of compact class hold. Take a sequence
{S,} €. Wewrite|| - || (]| - ||,) for the (Hilbert-Schmidt) operator norm.

Observe that for § € its symmetric positive square root $*/? is of
Hilbert-Schmidt type and ||S*/?||3 = tr(S). The hypothesis implies that
sup,||S,/?|l, < oo; hence by a standard procedure we may find a sequence
{n,} and a bounded operator T on H such that { S,/*} converges to T in
the weak topology of operators.

Then T is symmetric, positive and of Hilbert-Schmidt type:

(o]
X e = £(Te;se)* < lim inf T (53/%; ¢,)
= J>1 Jst

“2 < sup tr(S) < .
Ses

Next we prove that S,}k/ 2 — Tstrongly ask = c. Forx e HLme N
we have

st ) = £ (st - Thxe)’+ T (s(sk2 - T)e)

j=m+1
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since the last term is bounded by
2
2”x“ ((Sﬁ%’g) +”T?M %

the weak convergence of {S,}k/ 2} to T and the compact class property
imply that S,/%x — Tx.

Having proved the strong convergence of { S, } to 7, we can deduce
from the inequality

- T“2 < f" “(Sr}kﬂ - T)ej”2 + 2' i ((Sn ej,ej> +||Tej”2)
j=1 Jj=m+1

that ||S,/* — T||, — 0 as k > co. From this we obtain that 7> € L,(H)
and ||S, — T?||; — 0, because
Sp, T2|| ”2 S’}k/z T”z T”z |17,

We have thus proved that {S,} contains a convergent subsequence in
(Ly(CHD, I~ 1) O

REMARK. Let us recall that a probability measure y on a Banach space
E is Gaussian if it induces a normal (possibly degenerate) distribution on
R via each f € E’. Consider the set I" of all Gaussian probability measures
on H with the topology of weak convergence and the set & with the
topology induced by || - ||;. Then the map which associates to every pair
(x, S) belonging to the topological product space H X & the unique
y € T such that ¥(y) = exp(i{x, y) — 3(Sy, y)) is a homeomorphism
(this follows from well-known facts — see [6], Ch. VI — together with
Proposition 2.4).

After these preliminaries, we return to the family of operators {7;}
associated to { p, }.

THEOREM 2.5. {T;: t > 0} is a compact class of S-operators.

Proof. Let {e,: j € N} be an orthonormal basis of H. We must prove:

(1 sup tr(7;) < oo,
>0
o0
(11) lim sup Y, (Te;,e;) =0

=0 >0 j=n+1

Claim (I) follows from Theorem 2.3 since

tr(m=fl+” 0(dx) = v (H).
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To prove (II) let F, be the subspace spanned by {e,,...,e,} and
q,(x) = d(x, F,). Observe that
(1) lim sup o1+ ({x:q,(x)>r})=0,

n—=0 re (0,1]
o, being as in Lemma 2.2 and r > 0. Putting A, = ¢/*/"7**, we obtain (1)
from the relations
A({x: 4, (x) > r}) <A ({x:q,(x) 2 r} N K) +A,(K°)

(¢ €(0,1]), the relative compactness of {A,: z €(0,1]} (see the proof of
Theorem 4.1 in [2]) and Dini’s theorem (note that g, | 0 pointwise).

Next, Lemma 2.2 and (1) yield: for every r > 0 there exists n, € N
such that

sup q,?(l)d,u,s 9r% forn > n,.
1>0 “{x: g (x)<r} t

This fact, Theorem 2.3, Dini’s theorem and the inequalities

d 1
2 <T;ej7ej>s 3('{) ap,
j=n+1 {x: qu(x)<r}
1 c
+ qi(—t-) dp, +v,(K)
(x: g(x)2r}NK

(¢ > 0) complete the proof through an easy argument. O

Next, we define some auxiliary functions; the proofs of their proper-
ties are omitted (use Taylor’s formula).

LEMMA 2.6. (a) Given f € CP(H), define for every x € H
Bf(x’ y)

[f(x+y)—f(x)—

0, y=0.

(=) 1)y, ) ] L+l y#0,

LHvl? 2 @)’ | P

Then the family { B,(x, -): x € H } is uniformly bounded and equicontinuous
ateachy € H.
(b) Fory € H let

i{x, y)
1+ ||x|?

1+ Jlx)?
2
l1xll

’ )

0, x = 0.
Then K(y, -) is bounded and continuous on H — {0}.
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(c) Fory € H let
1 (%)
2 Jlx (1 + [1x)1?)

for x + 0, M(y,0) = 0. Then for every r > Q the family { M(y, -): ||yll < r}
is uniformly bounded and equicontinuous at each x € H.

M(y,x)=K(y,x)+

The proof of the next theorem requires the following uniqueness
result (see [6], Ch. IV, Th. 8.1):

LEMMA 2.7. If x, xy € H, S, S’ are S-operators, v, v’ are positive finite
measures on H such that v({0}) = »'({0}) = 0 and

CXP[i<xo, )= %(Sy, n+ [ Ky, dV}

= exp

i<xa,y>—%<5’y,y>+fl<(y, -)dv’]

holds for all y € H, then x, = x{, S=S", v=v" (K is as in (b) of the
preceding lemma).

THEOREM 2.8. There exist x, € H, an S-operator T, and a positive
finite measure vy on H such that x, > x,, T, > T in || - ||, and v, > v, as
t— 0.

Proof. Given t > 0, y € H and taking M(y, -) as in Lemma 2.6(c) we
have

M (7)) =D =i ) =3 [Ty ) + [M(,) a,

Take a positive sequence { ¢,} such that z, — 0. Theorems 2.3, 2.5 and
Proposition 2.4 imply that there exist a positive finite measure », on H
and an S-operator 7, such that

@  T,-T |-y and oy, Sw (ko).

Nk

On the other hand, if /: H — C is the sequentially w*-continuous
function such that i, = exp/and /(0) = 0, the inequality

|1/0)(8,(y) = 1) = 1(y)| < 2 - expli(p)]
holds for ¢ € (0, 1], which shows that the left member of (1) converges to /
uniformly on the balls of H. Moreover { [M(y,-)d v,”k} converges in the
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same manner to [M(y, -) dv,, by Lemma 2.6(c) and a well known result
of R. Ranga Rao (see [6], Ch. II, Th. 6.8). The convergence of {(7; y, y)}
to (T,y, y) is also uniform on the balls of H. ’

Then (1) gives that {(x,”k, -} converges uniformly on the balls of H

and, consequently, there exists x, € H such that X;, ™ Xo in H. Hence

i (y) = exp[i(xo, y) —(%)(Sy, y) +/ K(y,-)d(v, — ({0})&)

forally € H(K(y,-) isasin Lemma 2.6(b)) with § = T, — U, U being
the symmetric operator defined by

_ (x,0)"
(O ) f{or (L + )

We prove now that S is an S-operator. Observing that U is positive, it
suffices to show that S is positive; to this end, fix y € H and define u:
H — R by

(x, y)*
w(x) = { x>+ |x01?)°
0, x = 0.

b

This function is lower semicontinuous and bounded; then
(Uy, y)= [ udvy <liminf [ udy,

= lim inf (7, y, y) =(Tyy, 7)

since v, 5 v,. This gives the positiveness of S.

Finally, we obtain the theorem by a standard argument involving
subsequences, the uniqueness Lemma 2.7 and the following remark: if »,
and S are obtained as above (from a sequence {¢,}) then »,({0}) = tr(S);
in fact, putting v(x) = (1 + ||x||*)7}, (2) implies

n({0) = [ vy~ [

= li dv, —t
{O}CUdVO 1/1(11/0 V. r(U)

=lim (7, ) - (V) = u(T;) - (V) = u(S). O

COROLLARY 2.9. (a) ( Lévy-Khintchine representation) Let p be a proba-
bility measure on H. Then p is infinitely divisible if and only if there exist
Xy € H, an S-operator S and a positive finite measure v on H such that
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v({0}) = O which satisfy

i(y) = expli(x,, y) = %(Sy,y>+f K(y, ')dV]

forally € H.

The objects x,, S and v are uniquely determined by w. (We will say that
[xo, S, v] is the Lévy-Khintchine representation of p.)

(b) Given the semigroup { u,: t > 0}, if [x,, S, v] is the Lévy-Khintchine
representation of u,, we have:

(1) x, = xo;

()T, > S+ Uin|| - ||;, U being the S-operator defined by

<x y)? .
W)= R+ )

(11') if the S-operators V, 5 are defined by

Vt'sy’y>='/]]'xlls (x, y>( )u,(dx

then
lmé lim sup||V; 5 — Sl; = 0;

=0
(iit) », S+ tr(S) - 8, (0, is the unit point mass at 0).

Proof of (ii'). Put By = {x € H: ||x|| < é}. Let Tj, »,, U as in the
proof of Theorem 2.8 and for # > 0, § > 0 consider the S-operators
defined by:

(x,y)> (1 8 — 7 _
R Areewrr o L
_ <x,y>2 o (dx S — 77 _
wrn=f, Ry T

Fix & > 0 such that yy({x: ||x]|=6})=0. Since S =T, — U, for
every t > (0 we have
Vieo=S=(Vs—T,) +(U=-T°) +(T, - T).
We know that lim,_,(||T; — T|l; = 0.
For each ¢ > 0, since V, ; — T, 5 is positive, one has

2 + |lx|

1+ |x |12) r(dx);

Voo = Toalh = eV = o) = [P
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hence the choice made of § gives

. _ 2
lim [V, = Tooll = [ 1]

2+ |ix? ) ().

L+ flx)f?

For the remaining term, observe first that {7,>: ¢ > 0} is relatively
|| - ||,-compact. Next, consider a || - ||,-limit 7y of a sequence {T,f} with
t, — 0; again by the choice of §,

(x,y)?
oy, y)=l dx)=(U%, y).
(2. 7) n-»oofas P+ )
This shows that T —» U®in|| - ||, as ¢ = 0. Then
th_{f(l)“U - T18”1 = ||Usll; -

The preceding argument proves that if § > 0 satisfies
vo({x:]|x] = 8}) = 0

one has
. 2+ ||xH
lim sup ¥, = Sl < [ 11<1P°| — e ) o(dx)
+/ —1—21/0(0')6).
B—(0) 1+ |lx]]
The finiteness of », implies the result. O

REMARK. Part (a) is due to Varadhan (see [6]). (b) may be compared
with the statement of the Lévy-Khintchine representation in Banach
spaces in [1] (Corollary 1.11); in particular, (ii") strengthens the limit
formula (2) in [1].

3. Semigroups of convolution operators. Given a probability mea-
sure p on H, we define the convolution operator P, on C,(H) by P, f(x) =
[f(x +y)u(dy) (f€ C,(H), x € H) and to every semigroup of mea-
sures {p,: ¢ >0} on H we associate the family { P: ¢ > 0} such that
P, = P, for each 1. It is a strongly continuous semigroup of operators; in
other words: (1) P, = I (the identity operator), (2) P,P, = P,_, for s > 0,
t >0, and (3) lim,_||Pf— f ]| = 0 for each f € C,(H). Let us remark
that every strongly continuous semigroup of convolution operators on
C,(H) may be obtained from a semigroup of measures as above.

Given such a semigroup { P: ¢t > 0} define A, = (1/t)(P, — I) for
t > 0 and the operator A by Af = lim,_,, 4,f on the linear subspace D of
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those f € C,(H) for which the limit exists in C,(H). A is called the
infinitesimal generator of { P,} and D its domain. Throughout this section
{m}, {P}, D and A are related in this manner and [x,, S, »] is the
Lévy-Khintchine representation of p,.

THEOREM 3.1. C2(H) C D and for every f € C*(H) and each x € H
Af(x) = (xo, f/(x)) + tr(Sf"(x))

(f(x),»)
1+ yl?

1+ |iylI?
llyII?

v(dy).

+f [f(x +y) = f(x) -

Proof. Fix f € C®(H); fort > 0 and x € H we have

0 A =)+ 3 [ TR i

+f B/(x, ") d,

(B, as in Lemma 2.6(a)).
First, we prove that for every symmetric operator A on H

(Ay. 9 (1
@ [ i) mla) = u(za),

If A is an orthogonal projection P, taking orthonormal bases {e;:
i€l)and{e:j<€J) of P(H)and P(H)", respectively (with I N J =
&), one has: {e;: i € I U J} is an orthonormal basis of H and for every
y€H

(y,e.>, iel,
Py,e;)= !
<ye> {O, ielJ,

(Py,y)y=I1PyII>= X (»,Pe)(y,e).
iefuJ
Hence

fziy’—y)—z(%)u,(dyh L (TPe, e)=u(TPp).

1+|y11?) ie1us

Given a symmetric operator A, the spectral theorem implies that there
exists a sequence { A,} of operators which are finite linear combinations
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of orthogonal projections such that ||A, — Al = 0 (n — ). Since (2) is
true for each A,, we may apply Lebesgue’s dominated convergence
theorem to the integrals and the inequality |tr(Z;A,) — tr(7;A)| < ||T}]; -
IIA, — Al in order to conclude that (2) holds for A.

Consequently, we can rewrite (1) as

A,f(x) = (5, f1(x)) + 5 u(T77(x)) + [ By(x) do,.

Let T, =S + U (U as in Corollary 2.9(b)) and », = v + tr(S) - §,.
For every t > 0 and x € H we have

[(x,, (%)) = (xo0 F/(x))] < Nlx, = Xoll - 11F1]s
(T (x)) = u(Tof " () < IT = Tolly - 1705

moreover { B,(x,-): x € H} is uniformly bounded and equicontinuous
(Lemma 2.6 (a)). Then Corollary 2.9(b) and the result cited in the proof of
Theorem 2.8 imply that

4,f(x) —><x0, >+ (T f"(x +/ Bf(x’ ) dv,

uniformly in x € H as ¢t — 0. This shows that f € D.

But
R 4 R e e
/ (f"(x)y, y>
VI3 + 11yl )
and the last integral equals tr(Uf”(x)) (argue as in the proof of (2)). This
gives the announced expression for Af. a

Let us mention now without proof two corollaries of Theorem 3.1
which are generalizations of results in [3] (Lemmas 8 and 6).

COROLLARY 3.2. { P: t > 0} is uniformly continuous on C,(H) (i.e. P,
tends to I in the operator norm as t — 0) if and only if there exists a positive
finite measure N on H such that p, = exp[t(A — ||A||6,)]. (For a finite
measure a, exp(a) is defined by the usual expansion, converging in the total
variation norm).

COROLLARY 3.3. The following conditions are equivalent:
(1) A is of local character on D (i.e. Af(x) = 0 when f € D vanishes in
a neighborhood of x € H).
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(2) p, is Gaussian.
(3) lim,_,,(1/t)p, (V) = O for every neighborhood V of 0.

REMARK. Theorem 3.1 includes results of Courrége for the finite-di-
mensional case ([3], Théorémes 1 and 2). In that situation CP(H) is
dense in C,(H), but this is no longer true when H has infinite dimension.
This fact was proved by D. Herrero (personal communication) who, using
arguments of [7] (§5, Th. 1), showed that C®(/?) is not dense in C,(/?)
(explicitly: if A = {x € I* x, < 0, ||x|| < 1} and f(x) = min{1, d(x, A)}
then for all g € C@(/?) one has ||f — g|| > 1/2).!

In view of this negative result it seems of interest to show that for a
special class of semigroups — namely, semigroups without Gaussian part
— there exists a dense subspace of C,(H) which is contained in the
domain of every generator. Again, the density result depends on [7].

Let us call C{) (H) the space of those functions f € C,(H) which are
Fréchet differentiable with a derivative f’ that satisfies: (i) ||f']| =
sup, eyl f(x)]] < oo, (i1) for some 6 > 0 and M > 0 it holds || f'(x) —
FDI < Mijx — y||when ||x — y|]| < d.

ProrosiTION 3.4. C{!) (H) is dense in C,(H).

Proof. 1t is proved in [7], §4, Corollary 4 that given closed subsets
A, B of H at positive distance, there exists a continuous function f:
H — [0,1] with Lipschitz derivative such that f |, = 0 and f |, = 1. For
such a pair of sets with d(4, B) = 46 > 0 we may prove, applying the
result to A" = {x: d(x, A) < 8} and B’ = {x: d(x, A) = 26}, that in fact
fcan be chosen with || /|| < oo and then f € C} (H).

The proof is completed by using the following modification of a well
known fact whose proof we omit (see [5], Ch. 7, Problem P): let M be a
metric space and L a linear subspace of C,(M). Suppose that for each
pair of closed subsets A, B of M at positive distance and for each real
interval [a, b] there exists f € Lsuchthata < f < b,f |, =aandf |z = b.
Then L is dense in C,(M). O

LEMMA 3.5. Let f € C{')(H) and define

B () 1+
A ST RTTE
0, y = 0.

# 0,
L(x,y)= 4

Then {L/(x,-): x € H} is equicontinuous at every y # 0 and uniformly
bounded.

I'We thank D. Herrero for many helpful conversations on this point and J. Eells, who
suggested that [7] might be relevant in a letter to A. de Acosta.
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THEOREM 3.6. Suppose that S = 0. Then C{')(H) C D and for every
f€ C)(H) and each x € H

x) = (xo, f'(x))

) — flx _(f’(x),y>}1+”y||2v
+f[f( ARG v e et Al

Proof. Letf € C{}(H); for t > 0 and x € H one has
x) ={x,, f'(x)) +f L/(x,-)dy,

(L, as in Lemma 3.5).

By the preceding lemma and the fact that », 5 and r({0})=0
(Corollary 2.9(b)) we may deduce that [L(x, -) dv, > [L/(x, ) dv uni-
formly in x as ¢+ — 0, which gives the theorem. The proof requires a slight
generalization of a result previously used: let M be a complete separable
metric space and { s, } a relatively compact net of positive finite measures
on (the Borel sets of) M, weakly convergent to p. Then if #is a set of
Borel functions from M to R which is uniformly bounded and
equicontinuous at each x € A°, A being a closed set with u(A) = 0, one
has

lim sup
o feF

[ tan.~ [ 7 =0. o

For our final statement, let us recall the construction of the Hilbert
space of a centered Gaussian measure y on a separable Banach space E
(see [1], §5). Let L?*(y) be the Hilbert space of (classes of) square
y-integrable functions on E and E’ be the closure in L*(y) of E’ endowed
with the L*(y)-norm, denoted || - || = = ( -, - )}4”. Define H, as the linear
subspace of E of those & such that f — f(h) is Lz-conunuous on E’. For
h € H, the Riesz representation gives a unique ¢(h) € E E’ such that
f(hy={(h), f),» for all f€ E’; it is verified that ¢: H, — E’ is an
algebraic isomorphism and H, becomes a Hilbert space 1somorphlc to E’
by defining (h, k), = <¢(h) ¢(k)),2 (h, k, € H,). The norm || - ||, is
stronger than || - || (the norm of E) on H, and H, Hi coincides with the
support of y.

When E = H is a Hilbert space with inner product { -, - ), one has
(o)) ={Sy, y") (», s € H), where S is the covariance
operator of v; h € H, iff y — (x, y) is continuous on H with respect to
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the bilinear form given by S and ¢: H, — H’ is characterized by (h, y) =
(¢(h),(-,y)) for heH, y € H. Moreover S(H) = ¢-'(H’) and
(Sx, 8x"), = (8§*x, Sl/zx’> for x, x’, € H; by the den51ty of S(H) in
H. it follows that

(%) (Sx,h),=(x,h) forxe H,heH,.

Given a real function f on the Banach space E, we say (as in [4]) that f
is twice H_-differentiable at x € E if the function g(h) = f(x + h), g:
H, — Ris twice || - ||,-Fréchet differentiable at 0; in this case, we denote
by D?*f(x) the operator on H, associated with the second derivative of g
at 0. This notion is weaker than | - ||-Fréchet differentiability. If 7T €
L,(H,) we denote its trace by tr, (T).

Now we can extend in the Hilbert space case Corollary 3.2 of [4].

COROLLARY 3.7. Let y be the centered Gaussian measure with covari-
ance operator S. The class of functions f which satisfy the following condi-
tions is dense in C,(H).

(i) f € COM(H),

(i) for each x € H, f is twice H -differentiable at x and D?*f(x) €
L(l)(Hy)a

(iii) D*f: H — Ly (H,) is bounded and uniformly continuous,

(iv) f € D and

= (x,, f(x)) + %—try(sz(x))

(L)) |1+ i
+f[ fe ) =1 =00 | e @)

for every x € H.

Proof. The proof of Corollary 3.2 in [4] and Theorem 3.6 of the
present paper show that the set of functions f(x) = [5°e /(I ,g)(x) dt,
with g € C{"}) (H) and {I,} the semigroup of operators associated to v, is
dense in C,(H) and satisfies properties (i)—(iv) (the results of [4] needed
are proved there only when H, is dense in H, but the proofs remain valid
in general). O

ReMARK. The class of functions defined in Corollary 3.7 contains
C?(H) and the expression for Af coincides with that of Theorem 3.1. In
fact, the following statement holds: if f: H — R is a continuous function
with second || - ||-Fréchet derivative f”(x) at some point x € H then f is
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twice H -differentiable at x, D’f(x) = Sf"(x)|y, € Lay(H,) and
tr (sz(x)) = tr(Sf"(x)).

To prove this, observe that we have the maps
3 [ , K , T
H,—-H, H-H —-(H) —H,,

o and 7 being the Riesz representations for H and H., « the inclusion map,
which satisfies [|e(x)|| < c[|x[, with ¢*> = [||y[|*> y(dy), & the injection
which to every € H’ associates its restriction to H,. Using (*) we may
check that 77 lko = S.

If f is twice | - |-Fréchet differentiable at x € H then it is twice
H -differentiable at x and in fact D*f(x) = 7-'kaf"(x)t = Sf"(x).. Take
now an orthonormal basis {e,: n € N} of H such that Se, = A e, with
A, >0 and put u, = A}/Pe, for n € N such that A, > 0; () gives that
{u, n € N with A, > 0} is an orthonormal basis of H,. In order to
conclude that D2f(x) is of trace class on H, note that §: H — H, is the
(Hilbertian) adjoint of «: H, — H, which is of Hilbert-Schmidt type (this
is well known: ||¢(u,)]|* = X,,).

To complete the proof, observe that by (*) we have

<D2f(x)u,,,un> = {f"(x)u,, u,) =N (f"(x)e,, e,

= (87"(x)e,. e,)
for every n € N such that A, > 0.

Thus we have for each semigroup { P,} a dense subspace of C,(H),
depending on the Gaussian part of p;, on which we can describe the
infinitesimal generator of { P,}. It is not known to us if in the infinite-di-
mensional case it is true that the intersection of the domains of the
generators of all such semigroups is dense in C,(H) (the finite-dimen-
sional case is solved by the cited result of Courrége, i.e. Theorem 3.1 for
H = R"). In view of Theorem 3.6, it seems that the Gaussian case must
provide the answer.
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