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THE OSCULATORY BEHAVIOR OF SURFACES IN P5

THEODORE SHIFRIN

This article focuses on a certain class of surfaces in P \ exploiting
the interplay between local projective differential geometry and global
algebraic geometry. These are the so-called hypo-osculating surfaces,
which have the property that at every point there is a hyperplane which is
doubly tangent. The first main result of the paper, obtained by applying
£. Cartan's method of moving frames, is that locally any such surface
arises as a vector solution of one of the classical partial differential
equations of physics (the wave equation or a generalized heat equation).
Such equations were studied from a similar vantage point by G. Darboux
and C. Segre, among others. The remainder of the paper is concerned
with the global classification problem. Standard techniques in singularity
theory yield formulas for the inflection cycles, and in the case of ruled
surfaces there is an explicit numerical formula. By combining the earlier
differential geometric results with Kodaira's classification of surfaces,
one is able to arrive at a fairly complete understanding of the inflection-
ary behavior of hypo-osculating surfaces. In particular, the embedding of
P1 X P1 as the quartic scroll is conjecturally the unique such smooth
surface which is totally uninflected.

Introduction. In this paper we examine a class of surfaces in P5

which we call hypo-osculating. From the point of view of differential
geometry, they arise as natural generalizations of classical developable
surfaces in R3, i.e., flat surfaces. From the point of view of algebraic
geometry, one seeks an algebraic surface M and a very ample linear
system (of dimension 5) on it with the property that through each point p
of M passes an element of the linear system with at least a triple point at
p; for then it follows that when we embed M in P5 by the linear system,
for each p e M there is a hyperplane H in P5 which is "doubly tangent"
to M at p. That is, H contains the osculating plane at p of any curve in
M passing through p. Now it is natural to define the osculating space (or
second-order tangent space) of M at p to be the linear span of the
osculating planes of all curves in M through p\ ordinarily this is a
five-dimensional space at most points of a general surface in P^, N > 5,
but evidently for our special surface M it can be everywhere at most
four-dimensional. We call such a surface M hypo-osculating; we call it
perfectly hypo-osculating if its osculating space is exactly four-dimensional
at every point.
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The study of the osculatory behavior of submanifolds has a venerable
history, the Plϋcker formulas for algebraic curves (cf. [9]) being a prime
example. C. Segre [18], and E. Togliatti [22] approached the question for
surfaces by studying the partial differential equation (which Togliatti calls
Laplace's equation) satisfied by the coordinates of the surface. In particu-
lar, let (x, y) e U c C 2 be local coordinates on M c P " and f:U^>
C" + ι be a local holomorphic representation of M; then the osculating
space is spanned by

f
U
 3JC' 3J>' dx2' 3 x 3 ^ ' 9 j , 2 '

and M 's being hypo-osculating corresponds to a differential equation

(0.1) *?{ + »gr + . » ϊ + (/|ί + . | ί + rf-0
dx2 3^9j dy2 9* 9j>

where #, 6, c, d, e and g are holomorphic functions of JC, j . Darboux [6]
also studied surfaces in three-space satisfying such equations. Pohl in his
thesis [16] defined higher order abstract osculating bundles in an attempt,
among other things, to generalize the Plϋcker formulas to varieties of
higher dimension. And studying the behavior of higher order osculating
spaces has led recently to many beautiful results in theory of minimal
surfaces (cf., for example, [5]), differential geometry/topology ([7]), and
algebraic geometry ([10]).

We begin in §1 with the requisite local differential geometry and some
elementary results on the geometry of the Gauss map. We also discuss the
relationship between the osculating spaces and the (protective) second
fundamental form II, as in [10]. It then becomes clear that one needs a
more subtle invariant than the rank of the Gauss map, namely the
dimension of the linear system |II| at a generic point. In particular,
hypo-osculating surfaces are characterized by the condition

dim|IIJ= 1.

Following E. Cartan [2,3] we give in §2 a local characterization of

analytic (or, indeed ^°°) surfaces in P 5 which are perfectly hypo-osculat-

ing:

(0.2) THEOREM. Let M c P 5 have the property that its osculating spaces
are everywhere four-dimensional. Then in a neighborhood of a generic point,
M is either

(i) of translation type
(ii) of "heat equation type"

or (iii) ruled.
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That is, in appropriate local coordinates, we can arrange that the partial
differential equation (0.1) takes the forms

(i) ^ 7 = °

(HO

It is rather striking that the geometry of the problem leads to such a
pretty reduction to the classical partial differential equations of physics.
Note that from the point of view of differential equations case (i) is the
generic one (i..e, the symbol is invertible); this is echoed by the algebro-ge-
ometric interpretation, as this is the case where the linear system |II| is
base point free.

In §3 we consider the global situation, discussing the osculating
bundle and its associated Euler sequence. We give the Chern classes of the
pertinent bundles, and then apply the Thom-Porteous theorem on singu-
larities of bundle maps to compute the cycles of inflection points. Here,
by inflection point we mean a point where the osculating space has less
than generic dimension in M. In particular, one has the following

(0.3) PROPOSITION. Let M c P 5 be a smooth algebraic surface.
(a) / / the osculating space of M is generically of dimension 5, then the

one-cycle along which it drops rank is given by 6H + 4K, where H is the
hyperplane class and K the canonical divisor.

(b) / / M is hypo-osculating and we assume that the line bundle generi-
cally defined by the differential equation (0.1) extends to a global line bundle
J? on M (as in the case of ruled surfaces), then the locus of inflection points
is a zero cycle of degree

(0.4) i = UK 2 - 5c2 + + l\d +2SK-H + cx{&) -(6H + 4K)

where d = degree of M, c2 — topological Euler characteristic.

As a consequence of (a) we deduce that the only smooth surface in P5

whose osculating space is everywhere five-dimensional is the Veronese
embedding of P2 (this has been proved independently by Tai [21], and, in
arbitrary dimension, by Fulton-Kleiman-Piene-Tai [8]).
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The remainder of the paper is devoted to specific applications of the
numerical formula (0.4). In §4, we deal with ruled surfaces, proving that a
ruled surface of genus g and degree d in P 5 with finitely many inflection
points has precisely i = \d + 4(g - 1)) such. From this we deduce the

(0.5) THEOREM. There is a unique uninflected ruled surface in\P5,

namely the image of P 1 X P 1 under the mapping

(s9t)>-> (s,t,s2,st,s2t).

Indeed, we offer the following

(0.6) Conjecture. The unique smooth perfectly hypo-osculating surface
in P 5 is the rational ruled surface above.

Even if we do not know in general whether J5f globalizes we can still
use formula (0.4) to classify perfectly hypo-osculating surfaces. For in this
case <£? is globally defined and, by definition, one must have no inflection
points at all, i.e., i = 0. The classification problem then reduces to relating
the numerical characters of the surfaces.

In §5 we begin with two global examples, one of wave equation type
and one of heat equation type, essentially the two simplest possible. As
evidence for the conjecture, we point out that in these cases either the
surfaces inflects or it acquires singularities. Now, how might a non-ruled
surface be perfectly hypo-osculating? It might be globally of wave or heat
equation type, or it might be generically of wave equation type, but of
heat equation type along a subvariety. The latter case is particularly
troublesome, and we can deal with it only when the degeneration involves
the surface's acquiring lines. In this section, regardless, we compute the
number (0.4) of inflection points for the various surfaces on Kodaira's list
([13], [9]). Using an assortment of methods, we are able to provide good
evidence for the conjecture, but there are some cases which remain
unresolved here.

The author would like to thank Michael Artin for suggesting the
problem to him, and Phillip Griffiths, Robert Bryant, Woody Lichten-
stein, Clint McCrory, and particularly Robert Varley for helpful conversa-
tions.

1. Projective geometry: the Gauss map and second fundamental form.
Let M c P " b e a smooth surface, and let π: Cn+1 - (0) -> PΛ be the
canonical projection. We define the frame bundle J^(M) -> M as the
fiber bundle whose fiber over z e M consists of all bases Z o , . . . , Zn for
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C' ί + ι satisfying
(i) 7Γ( Z 0 ) = Z

(ii) Zo A Zx A Z 2 is the P 2 c P" tangent to M at z;
we write the latter tangent space as PΓZM, letting TZM = span(Z0, Z l 9 Z2)
represent its lift to C Λ + 1 . This frame bundle evidently has as structure
group 6 c G l ( n + l,C) all matrices of the form

*

*

0 0
*

0
0
0

•••0
•••0
•••0

*

we refer to a local section of J^(M) as a (local) adapted frame field on M\
note this makes sense in both the smooth and the analytic categories.

Using 0 s /, j \ k < n, 1 < α,/?,γ < 2, and 3 < μ, v < n, we define
1-forms ω/ on &(M) by viewing Z, as the obvious vector-valued
function on ^{M) and setting

(1.1) dZ^Σ^r

We write ω£ = ω7 and observe that property (ii) above implies that
ωμ = 0. Differentiating (1.1) gives the crucial structure equations

(1.2) dω/ = Σ<*ΪΛ<*i\

in particular, differentiating ωμ = 0 and applying the Cartan lemma, we
infer that

Following classical differential geometry, define the (projectiυe) second
fundamental form of M by

considered with values in Cn+ι/TM. We claim II is an intrinsically
defined quadratic form on M with values in the normal bundle N(M9 P")
of M.

For let a = (<zz/) be a local map from M to G; then

Z * _ ^0-7
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Put ω = (ίo/); then we have the transformation rule ω* = aωa~ι +
da a~ι. Therefore, computing the effect on II,

z; =

^ Z1 ? Z 2 );

since Z o is a local section of the tautological bundle 0M(-1), we infer that
this is indeed a well-defined section of (Cn+1/TM) <8> 0M(1). The Euler
sequence ([19]) gives

(0 -> 0(-l) -> C Λ + 1 -> ΓP" 0 0(-l) -> 0

10 -> ^ ( - 1 ) -+TM-+TM® ΘM{~1) -> 0,

whence JV(M,Prt) = TV/TM s (CΛ + 1/ΓM) ® ̂ M ( l) , and so II is in-
deed a well-defined map Sym2(ΓM) -> JV(M, Pπ).

We observe that I P = Σhμ

aβω
a ® ωβ, μ = 3,...,«, give a family of

quadratic forms on TZM parametrized by N*M9 hence a linear system of
conies on P(TZM) = P1. Since the complete linear system of conies on P 1

is (projectively) two-dimensional, the linear subsystem |II| spanned by
{IP} has dimension as most two; so by a change of basis in NZM, we
may assume that <o£ = 0 for μ > 3 + dim|Π|. Letting 3 < p, σ < 3 +
dim|H|, we see that dZa = 0mod(Z0,Zβ,Zp), and we set ^Z

{2)M =
span{Z0, Zα, Zp}. Note that P(^ ( 2 ) M), the projectiυe second-order tan-
gent space of M at z, contains the osculating planes at z of all curves on
M passing through z. For let C = {Z(/)} be such a curve with Z(0) = z,
and let Z0(ί), Z^t),..., Zn(t) be a section of J^(M) over C with
Zx(/) = Zό(ί). By definition, the osculating plane of C at z is Z0(0) Λ
Z£(0) Λ Z^(0), and Z '̂(0) = (dZλ/dt)(0) G ̂ ( 2 ) M . Note it follows im-
mediately from our definition that the projective second-order tangent or
osculating space P(^ ( 2 ) M) has dimension 3 + dim|IIz|.

Now, if dimP(# ( 2 ) M) < n, then we may analogously define the third
fundamental form III: Sym3(ΓM) -> (C"+ 1/#~ ( 2 )M) β ΘM(1) by differen-
tiating the equations ωr

a = 0, T > dim(P# ( 2 )M):

(1.5) III = 1 > ; ® coα

p β ωα β Z τ .

Since we will need III only briefly later in our work, we refer the reader to
[10] for details.

Classically, surfaces in R3 with zero Gaussian curvature were char-
acterized (at least locally) as ruled surfaces whose tangent plane is
constant along rulings; such surfaces were called developable. Interpreting
Gaussian curvature as the Jacobian of the Gauss map γ: M -> S2, we
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find that the same result holds projectively, and in higher codimension as
well.

Let M2 c P π be smooth. Let G(2, n) be the Grassmannian of P 2 ' s in
P" (which is naturally G(3, n + 1)), and define the (projective) Gauss
mapping γ: M -* G(2, n) by γ(z) = ΓZM. Then we have the following

(1.6) PROPOSITION. Let M 2 c P " and suppose the Gauss map y has
rank one. Then M is developable.

Proof. Choose an adapted frame field Zo, Z 1 ? . . . , Zn so that π*Zι e
ker dy. Since γ(z) = Z o Λ Zx A Z2, we find that

(1.7) dy = Σ"ΐZo ΛZμΛ Z2 + ω%Z0 A Zγ A Zμ (modγ).

Therefore ω£ = 0mod(ω2). From the symmetry (1.3) of the second funda-
mental form, we infer that cof = 0 and ω£ = hμω

2. Since 0 = ωf = ω2 A
ω£, it follows that ω\ = 0mod(ω2), and thence that the line Zo Λ Zx is
ruling of M, for

d(Z0 A Zλ) = ω2Z2 Λ Zλ + ω\Z0 A Z2 + Σωϊzo Λ z

μ

= 0 mod(ω2). D

It now becomes clear that for surfaces in P", n > 4, we need
something more refined than the rank of the Gauss map. Since the
derivative of the Gauss map, as we saw in (1.7), is captured by the second
fundamental form, it is natural to look at the next simplest numerical
invariant—the dimension of the linear system |Π| at a general point of M.
As we pointed out earlier, dim|II| < 2, and so there are four possibilities.
The generic case, of course, is that dim|II| = 2, and here there's nothing to
say. If dim|II| < 2, we say M is hypo-osculating, and if, moreover, it is
constant on M, we say M is perfectly hypo-osculating.

Case (i). dim|II| = - 1 , i.e., |II| = 0 so ω£ = 0 for all α, μ. Therefore
the tangent plane to M is constant, and M is a subset of a plane.

Case (ii). dim|II| = 0. Choose Z3 spanning &Z

{2)/TZ, and then II =
Σh3

aβωa <S> ωβ ® Z3. Now the quadratic form (h3

aβ) has rank either 1 or 2.
In the former case, we may take h\x = h\2 = 0, h\2 = 1, and II = ω2 0 ω2

<8> Z3; this is the second fundamental form of a developable surface (cf.
the proof of (1.5)). In the latter case, we may take h\λ = h\2 = 0, h\2 = 1,
and so ω\ = ω2, ω\ = ω1, ωa

a = 0 for σ > 4. Using the structure equation,
we find 0 = dωσ

a = ωl A <o3; therefore, <o3 Λ ω1 = ω3 Λ ω2 = 0, and so
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ω° = 0. We conclude that the osculating space JI{2)M = Z o Λ Zλ Λ Z 2 Λ

Z 3 is constant, from which it follows that Me. P 3 .

Case (iii). dim|II| = 1. This is the interesting case to which this paper

is devoted. As examples of this phenomenon we have non-developable

ruled surfaces (here |II| = \(ωι)2,ωιω2\) and surfaces of translation type

(here |II| = \(ωι)2,(ω2)2\). However, there are yet others, and it is to the

local classification problem that we turn next.

2. Local theory. We are seeking a (local) characterization of surfaces

M in P 5 with the property that dimP^7 ( 2 )M = 4 for generic z e M. From

an analytic point of view, represent a local lifting of surface as the image

of a function /: U c C 2 -> C 6; then there are functions a,b,c,d,e, g

with

dx2 3xθy dy2 3x 3j>

(and no further relations should exist). One might then hope to find a

local analytic change of coordinates transforming (2.1) to one of the

following forms:

d2f
(a) wave equation: ~ ^ = 0

/ u . d2f ( , 9 /
(b) Aw/ equation: —^ = φ (x, j^) - ^

82/*
(c) degenerate heat equation: — ^ = 0.

3 ^
Our goal in this section is to obtain such a local classification by using the

methods of Elie Cartan (cf. [2], [3], [4]).
We begin with an elementary

(2.2) LEMMA. After a change of coordinates, a pencil of conies on P 1 is

either of the form \x2, xy\ {a pencil with base point) or of the form \x2, y2\

(base point free).

Proof. If the linear system has a base point, by a change of coordi-

nates on P 1 we may assume that it is x = 0. Then clearly x2, xy are a

basis for the subspace of quadratic polynomials which are divisible by x.

On the other hand, if the linear system has no base point, then consider



«?
«!

= <Λ
= 0, «2

= ω 2 , = 0

= 0
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the 2-to-l map P 1 -> P 1 given by the linear system; by the Riemann-

Hurwitz formula, it has two branch points, which we may take to be 0 and

oo. D

We begin our study with the case that |II| has a base point, i.e., we

assume |II| is given by Kcυ1)2, cAo2|, or, more specifically that II = (ω 1 ) 2 ®

Z 3 + 2ωιω2 ® Z 4 . This limits us to frame fields Z o , Z l 9 . . . , Z 5 with

More precisely, we work on the integral submanifolds of (2.3) in

Soon we shall cut these down even further.

Differentiating ω\ = 0 gives

0 = dω\ = ω\ A ω\ + ω2 Λ ω\ + ω\ A ωl + ω\ A ω\

= (ω\ — CO4) Λ co1,

and so we deduce that

(2.4) ω\-ω3

4 = 0 modΐω1).

Similarly, differentiating ω\ = ω2 gives

ω\ A ω\ -h ω\ A ω\ 4- ω\ A ω* + ω\ A ω*

= (00° Λ ω1 + ω1 Λ co1! + ω2 A ω\,

(ωj - c4 - ω^ + ω\) Λ ω1 + (2ω\) A ω2 = 0".

Therefore, by the Cartan lemma, there are functions a, b, c on

such that

(2.5) -ω% + ω\ + ω\ - ω% = aωι + 26ω2, ωx

2 = * ω 2 + cω2.

Differentiating the latter equation in (2.5), we find

ω^ Λ ω1 +(u>\ - ω\) A ω\ = (db 4- b(ω% - ω\) - cωj) A ω1

+ (dc - bω\ + c(ω°0 - ω\)) A ω2.

Therefore

ω°2 + b(ω2

2- «\) - db + biύ- ω°) + cωl = 0

That is,

ί / C + C('°O + ω l l - 2 ω 2 ) Ξ θ w 1 2
(2.6) . n ,N / , ΛΛ mod(ω\ω z
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At this point, there are two possibilities: (i) the function c is identically

zero, or (ii) the function c is never zero (locally on M).

First we dispense with the first case. If c = 0, then, ω\ = Omodΐcυ1),

and this implies the surface is ruled, for from

d(Z0 A Z 2 ) = ωιZι A Z 2 4- ω\Z0 A Zλ 4- ω\Z0 A Z 3

+ ω^Z0 Λ Z 4 mod(Z 0 Λ Z 2 )

and (2.3) we infer that Z o Λ Z 2 is constant along integral curves of Z 2 ;

i.e., the integral curves are lines.

In the second, and more interesting, case, we claim that we can refine

our frame so as to have ω2 = ω2 (i.e., b = 0, c = 1). This follows im-

mediately from (2.6). For example, at a fixed point z in Λf, note that

replacing Zx by γZ x and keeping the other vectors fixed results in the

transformation ω\ -» ( l / γ ) ω 2 , and so with this 1-parameter group we can

choose a frame at z with c = 1. Now by moving along an integral

manifold of ω° + ω\ — 2ω2 = 0, we guarantee c = 1. The case for the

function b is treated similarly, noting here that the 1-parameter group acts

by affine transformations. More specifically, consider the transformation

Z 2 -> tZ0 + Z 2 , fixing Z o , Zl9 Zμ. Then this results in ω2 -> co2 + dt, and

the second equation in (2.6) reduces to db — dt = 0. By solving, we clearly

can arrange for a frame so that b = 0 at z\ now move along integral

manifolds of ω^ — ω\ = 0, ω\ + <o2 = 0 (inside the integral manifolds of

(2.3), of course), and we obtain b = 0. One checks that we have imposed

independent conditions on &r(M); at this point there is no subtlety

involved.

In order to pin down the geometry further, we examine the third

fundamental form, i.e., the forms ωf and (04. From differentiating ω^ =

ω\ = 0 we see

ω\ A ω\ + ω^ Λ ω\ = 0, i.e.,

(2.7) ω\ A ω1 + ω5

4 A ω2 = 0,

and

ω 2 Λ CO3 4- ω 2 Λ CO4 = 0 , i .e . ,

(2.8) ω\ A ωι = 0.

From (2.7) we obtain the usual symmetry condition, which, together with

(2.8), allows us to conclude that

ω3

5 = aω1 + βω2

[ ' } 5 β\



OSCULATORY BEHAVIOR OF SURFACES IN P 5 237

Proceeding as above, we differentiate ωl = βωι to obtain

dβ + β(ω% - ω\ - ω$ + ωf) = 0 modΐίo1).

Now either β is identically zero, or, if ω% — ω\ — co* + ω| is not already

horizontal, we can, as above, choose a frame so as to make β identically

equal to 1. From earlier refinements, co£ = ω\9 but now setting β = 1

forces CO4 = co|.

Keeping the two possible values of β in mind, we next set to work on

CO3. Differentiating co* = aωι + βω2, we obtain

da + αίcog - ω\ - ω\ + cof) - β(co^ + CO3) = 0 mod(co\ co2),
1 e

J α + α ( ω ^ - ω | ) - j β ( ω ? + ω j ) s 0 d ί 1 2 )

(i): β = 0. If a = 0, then one checks easily that M c P 4 , in

analogy with the case with dim|Π| = 0 discussed in §1. If not, proceeding

as before, we may arrange α = 1, and this results in the normalization

(2.10) <o3

5 = ω\ ω5

4 = 0.

Note that in this case we have (cf. (1.5))

(2.11) IIΠl

Case (ii): β = 1. Then, assuming the form ω\ + co4 is not horizontal,

we may refine the frames to obtain a = 0. However, there is something to

check here. Differentiating the equation ω\ = ω 2 gives us the fact that

2ω 2 — ω 4 is horizontal; moreover, we have imposed the equality ω\ 4- ω\

= 0. So, clearly, ω2 + ω\ is horizontal if and only if ω^ if horizontal, and

it clearly is not (cf. discussion of case (ii) following (2.6)). So now we

obtain

(2.12) ω3

5 = <υ2, ω\ = co1.

In this case, we have

(2.13) IIIII-K^VI.
Regardless of the nature of their third fundamental forms, we now

wish to characterize the surfaces with |Π| = Kω1)2, ω1^2!.

(2.14) THEOREM. // |II| has a base point, then in a neighborhood of a

generic point, either the surface is ruled or there are local coordinates x, y

and a local lifting/: U -> C 6 - {0} of M such that

for some (analytic) function φ.



238 THEODORE SHIFRIN

Proof. We have seen that if ω\ = Omodίω1), then M is ruled. If not,

then we have the following:

ω{ = ω1 ω\ = ω2 ω\ = 0

CO2 = ω 2 CO2 = 0 G>2 = CO1 6O2 = 0

Fix now a particular frame field Z o , . . . , Z 5 with respect to which these

formulas hold, and pick local coordinates x9 y on M so that ω1 =

dx/p(x9y), ω2 = dy/q(x, y), p, q * 0. Then setting Zo = f(x9 y)9 we
have

Zx=Pfχ and Z2 = , | ,

and comparing coefficients of ω2 in the equation

dZ2 = Σω{Zj = ω2Zλ 4- ω xZ 4 m o d Z 0 ? Z 2

we infer that

(The Z o term could be eliminated a priori by further refining our frame

field to annihiliate u%.) It follows from an easy application of the

Cauchy-Kowalewski Theorem that we can replace / by ψ(x, y)f to

remove the (•••)/ term. Then an easy calculus exercise shows we can

eliminate the ( ) df/dy term by a change of coordinates. This proves

the theorem. D

We now turn to the case that the linear system |II| has no base point.

We may assume that |II| = [(co1)2, (co2)2 |, and therefore take

ω\ = ω\ ω} = 0, ω\ = 0

ω\ = 0, ω$ = ω 2, ω^ = 0.

Differentiating ω\ = 0 gives

-CO3 Λ ω1 + ω\ A ω2 = 0 ?

whence ω2 is horizontal; in a similar fashion we find the same is true of

ω\. Letting ω2 = aωι + bω2 and ω^ = aωι + jβω2 and doing the same

calculations as before, we obtain

da + a(ω% - 2ω\ + ω\) + ω\ = 0

(2.16) \ °Λ Vx π

J/ϊ 4- ^(ω^ 4 ω1! - 2ω2) - f w ^ O
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It follows, as before, that we may choose frame fields so that ω\ = ω\ = 0.

Set ω1 = dx/p(x, y), ω2 = dy/q(x, y), Z o = (1, f(x, y)) with /:[/-> C5;
then from

dZλ = ω\Z2 + ω\Z3 + ω*Z4 mod Zλ

dZ2 = ω\Z1 + ω3

2Z3 + ω\ZA mod Z 2

it follows that d2f/dx dy = 0 mod Zλ and mod Z 2 , whence 32//3x dy = 0.

Thus the surface may be represented (in affine coordinates) locally by

solutions of the wave equation.

We summarize the results in the following

(2.17) THEOREM. Let M2 c P 5 be a hypo-osculating surface,

i.e., d i m P ^ ( 2 ) M < 4 for all z e M, which does not lie in a hyperplane.

Then in a neighborhood of a generic point M is either ruled (developable if

dim PJ^(2)Λf = 3) or of heat or wave equation type. Π

REMARK. While our major interest is in the complex analytic case, this

result is equally valid in the (real) smooth case. In fact, it is worth

pointing out that a general minimal surface M2 c Sn is of wave equation

type. Recall (cf. [5]) that a minimal surface is defined by the condition

that t r l l = 0. This constraint forces dim|II| < 2, and reasoning as in §1,

dim|II| = -1 implies that M2 = S2 = Sn Π R3; dim|II| = 0 implies that

M2 c S3. If dim|II| = 1, we may take II = |(ω x) 2 - (ω2)2,ωW\ and this

system is clearly free of base points.

3. Global Theory: Chern class formulas. Given a surface M c P 5 ,

we would now like to calculate its inflection locus, i.e., the subvariety

along which the osculating space JI{2)M drops rank. The key is to

compute the Chern classes of various bundles which arise naturally from

the geometry we've been discussing. To begin, we introduce some sys-

tematic notation and basic exact sequences.

Let M be an abstract /^-dimensional (complex) manifold. Let TM

and T(2)M be the abstract tangent bundle and second-order tangent

bundle respectively (cf. [16]). In local coordinates z1, . . . , z Λ , one should

view sections of TM as first-order differential operators Σi ί (z)(3/3z ί )

and those of T(2)M as second-order differential operators

^ dz'dzJ ^ dz1

Then there is an obvious exact sequence (in general, non-split)

(3.1) 0 -• TM -» T(2)M -» Sym2(ΓM) -> 0.
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Now if M c C n , there is a natural geometrization map

(3.2)

obtained by applying the formal differential operators to the position

vector on M\ since M is embedded, 3"M is naturally isomorphic with

TM. However, ^ r ( 2 ) M , whose fiber ^ ( 2 ) M at z e M is the geometric

second-order tangent space (cf. §1), is in general not a vector bundle.

Similarly, if M c P Λ , we let M c Cn + ι - {0} be the cone τr'ι(M)

and note that there is a canonical vector field 9/9/ on M (the so called

Euler vector field, 9/9/ = Σx'id/dx'), where x°9...9x
n are the standard

coordinates on C " + 1 - {0}). Since the tangent plane to M is constant

along rulings, we define the vector bundle TM on M by associating to

z G M the tangent space to M at α«y point of π~1(z). Note that then

P(TM) is the bundle of tangent P ^ ' s t o M i n P " , and so we call TM the

abstract projective tangent bundle of M. The Euler sequence relates TM

to the abstract tangent bundle of M (cf. [19]):

(3.3) 0 -* ΘM(-1) ̂ TM^TM® ΘM(-l) -> 0.

Again interpreting sections of TM as operators, observe that if U c M is

open and /: U -> C is holomorphic then (9/9/)(/° π) = 0, accounting

for the kernel above.

Note that if /: U -> C" + 1 is a local holomorphic lifting of M9 with

local coordinates z 1 , . . . , zk on [/, then z 1 , . . . , z*, / give local coordinates

on π~\U) and since (9/9/)(/ o π) = 0, it follows that

a 2 a 2

Since 9/9/ is intrinsically defined on M, the submodule 9/9/ ® ΓM c

T(2)M is intrinsically defined as well, and we define T(2)M to be the

vector bundle on M with fiber

for any Z E T Γ X ( Z ) .

This is the abstract projective second-order tangent bundle of M. As

before, we again have the geometrization maps

= (J <^(2)M C M χ
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g: TM -» 3ΓM is an isomorphism, once again, since M is embedded;

however, g: T(2)M -> #" ( 2 )M is a surjection but has kernel at any inflec-

tion point.

Analogous to the classical Euler sequence (3.3), we also have a

second-order version:

(3.4) 0 -> ΘM(-ί) -> T{2)M -> T(2)M β 0 M ( - l ) -> 0.

Let us now return to the study of surfaces in P 5 . Suppose M 2 c P 5

has the property that dim P ^ ( 2 ) M = 5 at a generic point z e M; we

would like to determine the locus of points at which M is inflected, i.e.,

the set Z = [z e M: dim: P^(2)Λ/ < 4), If we could reembed M ^ Mr

c P*, N > 6, so that Λf is totally uninflected a/irf so that M = /?(Af)

for some (linear) projection p: P ^ -> P 5 , then we could reason as follows.

Clearly z = p{zf) e M will be an inflection point if and only if P ^ ( 2 ) M '

meets the center of the projection /?, which is a suitably chosen P0^~6.

Consider the second-order Gauss map γ ( 2 ): Λ/r -» G(5, N), γ(2)(z) =

3Γ{2)Mf. The Schubert cycle σx c G(5, N) consists precisely of those P 5 ' s

meeting a fixed PQ^" 6; σx is Poincare dual to -cλ(E\ where £ is the

tautological bundle on G(59N). We therefore deduce that -c^f^M)

represents the divisor of inflection points of M, since ^(2)M' =p*T(2)M.

The flaw in this argument is, of course, that if M is projectively normal,

then it can be the image of no projection whatsoever; for example, if M is

a complete intersection, no such re-embedding exists. Interestingly enough,

this does lead to the right formula; we now prove a beautiful result from

singularity theory which gives us this formula directly.

Let M be a compact, smooth manifold. We work in the formal group

K(M) of vector bundles on M; in particular, i f 0 - ^ £ " - > £ ' - > £ " ' - > 0

is an exact sequence of vector bundles, we set E = E' + E", and the total

Chern class gives a homomorphism c(E' + E") = c(E')c(E"). We also

write E" = E - Er and c(E") = c(E)/c(E').

(3.5) LEMMA. Let F be a vector bundle of rank /, and L a line bundle.

Then c({L <8> F) = c^F - L*).

Proof. This is a formal calculation. Write c(F) = Π = 1 ( l 4- γf) and

c(L) = 1 -f β. Then c(L ® F) = Π(l + γ, + j8), whence

C 7 ( L β F) =
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(where $,- are the elementary symmetric functions). On the other hand,

SO

c,(F-L*)= ΣΦi,--;Ύι)β'-'>
i-O

as required. D

Let M be a compact, smooth manifold, and E, F vector bundles of

ranks k and / respectively, k < I. Let φ: E -> i 7 be a bundle map, and

let Z = {jt e M: φ^: 2^ -> i^ is not injective} be the singular locus of φ.

Let IT : P(E) -> M and consider the tautological exact sequence of vector

bundles on P(E):

0 -> L -> ττ*£ -> β -> 0.

Then φ induces a bundle map φ: L -> ττ*F which is zero precisely at

those points Z c P ( £ ) lying over Z c M.

(3.6) THEOREM. (Thom-Porteous, [17].) Lei M, φ: E -^ F be as above,

and suppose φ w transverse to the zero section of Hom(L, π*F). Then Z is

Poincare dual to Cj_k+1(F — E).

Proof. With our transversality assumption it is standard (cf. [9]) that

Z is dual to c^L* 0 τr*F), and so Z is dual in M to π^(ct(L* 0 τr*F)).

Since the class of the fiber of π is ck_1(Q), we compute, using (3.5):

^(^(flr F - L)) = ^ ( ^ ( ^ ( F - £) + β))

/=o /

REMARK. The transversality condition in (3.6) can be weakened con-

siderably. So long as Z has the correct dimension, the result is still correct

if one includes appropriate multiplicities (which is particularly straightfor-

ward in the algebraic category). This is in essence the setting of the

Poincare-Hopf Theorem.

In order to apply this result, we will need to know the Chern classes

of TM and Γ ( 2 )M, and so we compute these next.



OSCULATORY BEHAVIOR OF SURFACES IN P 5 243

(3.7) PROPOSITION. Let M c P " be a smooth surface, let cl9 c2 denote

the Chern classes of its tangent bundle, and let H denote the hyperplane

class. Then

= 3cl9 c2(Sym2TM) = lc\ + 4cx

cγ(fM) = cγ - 3H, c2(TM) = c2-2cιΉ + 3H2

= 4cγ - βH c 2 (Γ ( 2 ) M) = 5(c 2 + c2) - 20cλ H + 15H2.

Proof. These are derived in a straightforward fashion using the exact

sequences (3.1), (3.3), and (3.4) above. D

Using this information, we can now obtain the characterization of the

Veronese surface in P 5 to which we referred in the introduction.

(3.8) PROPOSITION. Let M c P 5 be a smooth surface with the property

that d imP*^ ( 2 ) M = 5 at all z Ξ M. Then M is the Veronese surface, i.e.,

the embedding of P 2 in P 5 under the complete linear system of conies.

Proof. If d imP^; ( 2 ) M = 5 for all z e M, then we clearly have T(2)M

= &&>M s C 6 . Therefore cλ{t(2)M) = c2(f^M) = 0, so by (3.7), we

have (using K = -cx)

(3.9) 4K=-6H

c\ + c2 = 3H2 = 3d,

where d = degree M. By the Riemann-Roch theorem for surfaces, χ{ΘM)

= 1 — q + pg = 3d/12 = d/4. Since, by (3.9), the canonical bundle is

n e g a t i v e , p g = h \ Θ M ) = h ° ( 0 ( K ) ) = 0, a n d s o χ ( Θ M ) = l - q ί l 9

whence d < 4. Since M lies in no hyperplane, we must have d = 4, and

AT2 = 9, c 2 = 3. The hyperplane sections of M are quartic curves in P 4 ,

hence rational, and so M itself must be rational; since the (topological)

Euler characteristic is 3, M must be P 2 , embedded as the Veronese. (For

more details, cf. [9, p. 525].) Indeed, the only other smooth surface of

degree 4 in P 5 is a rational ruled surface which we shall encounter

shortly. D

REMARK. This can be interpreted as the first generalization of the

classical Pliicker-type result that the only curve in P " which is totally

uninflected is the rational normal curve; cf. [8] for higher-dimensional

results.
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We now derive a simple formula which will be the key to our
remaining work. Suppose M c P 5 is a hypo-osculating surface, i.e.,
d imP^ ( 2 ) M < 4 for all z e M . I f dimP^ ( 2 ) M < 3 it follows that M is a
plane or else developable, and there exists no smooth developable variety
(cf. [10]). Therefore, we assume this dimension is generically 4, and would
like an expression involving Chern classes for the locus of inflection
points, i.e., {z e M: dimP^ ( 2 ) M < 3}.

Since M is hypo-osculating, we know that the geometrization map

g: T(2)M -> M X C 6

generically has one-dimensional kernel; let us assume moreover that this
extends to give a one-dimensional smooth subbundle oS? of T{1)M. (This is
a nontrivial condition, as the example

yV2 a t ( x , j O ( 0 , )
dy1

shows.) To apply (3.6) we observe that the map

φ: Q = t^M/Se^ C6

induced by g is generically an injection, and so its singularities are
represented by c2(C6 - Q) = (cf - c2)(Q).

In this event we find the following count:

(3.10) PROPOSITION. Suppose M c P 5 is degree d and hypo-osculating
with dim P ^ ( 2 ) M = 4 generically, and suppose the kernel 3? of the geome-
trization map globalizes smoothly. Then the degree of the inflection locus is
given by

i = l i e 2 - 5c2 + 21d - 28q H + q(jS?) (6H - 4q) .

Proof.

^ ( c 6 - Q) = (c2 - c2)(β) =

Now we substitute the formulas from (3.7) to obtain

t = (4cx - 6H)2 -(5(q 2 + c2) - 20cx H + 15d)

= Wcl - 5c2 + lid - 28Cl H + cλ{<£) (6H - AcJ. D



OSCULATORY BEHAVIOR OF SURFACES IN P 5 245

REMARK. This result may be viewed as a generalization of work of
Pohl [16, §IV].

In the sequel the following remark will prove useful.

(3.11) Since M c P 5 is embedded, the line bundle J? projects, by
means of the sequences (3.1) and (3.4), to an isomorphic bundle oδfc
Sym2(TM)®ΘM(-l).

This map JŜ—> JSf is essentially a twisted symbol map. In particular,
so far as Chern class calculations are concerned, of course, we have

The crucial point for much of our remaining work is the observation
that if φ: E -> F is a vector bundle map of constant rank, then kerφ c E
is a subbundle; this is a straightforward consequence, for example, of the
rank theorem (either smooth or holomorphic). In the event that M c P 5

is perfectly hypo-osculating, the geometrization map g has rank five
everywhere, and so JSP = kerg is automatically globally defined. In this
case, our formula (3.10) must yield i = 0, since there can be no inflection
point. If the numerical characters appearing in (3.10) are such that ϊ = 0
is arithmetically impossible, then it follows that no such perfectly hypo-
osculating embedding of M c P 5 exists. Of course, to perform this
computation one needs to get one's hands on J§? in some intrinsic manner,
and this is easily done only in the case of ruled surfaces, to which we turn
next.

4. Inflection points of ruled surfaces. From our discussion of the
local theory in §2, it is clear that a ruled surface M is hypo-osculating; on
the other hand, we should expect, according to our results of §3, that for
most ruled surfaces the dimension of the osculating space will drop at a
finite number of points. Our aim in this section is to compute the number
of inflection points and classify the ruled surfaces which are uninflected,
using the formula at the end of the preceding section.

We being with the case of rational ruled surfaces, recalling here the
salient facts (cf. [9]). First of all, any such surface is abstractly the blow-up
of one of the relatively minimal models Sn = P(Θ Θ Θ(n)) -> P\ n > 0.
Since we know M is geometrically ruled, there can be no exceptional
curves. Next, Pic(5'rt) = Z Θ Z, with generators the base Co and the fiber
F; the intersection pairing is given by Co Co = «, Co F = 1, F F = 0.
In order to embed Sn in P^ as a geometrically ruled surface by the linear
system \kC0 + IF I we see that we must have k = 1. Then it is easy to
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check, using the Riemann-Roch Theorem, that under the complete linear
system \C0 + IF\9 Sn embeds in P^, n = n + 2/ + 1, as a surface of
degree (Co + IF)2 = n + 21; by definition, H = Co + IF. A straightfor-
ward application of the adjunction formula yields the formula K = — 2C0

+ (« — 2)F for the canonical bundle of Sn.
In order to evaluate the formula (3.10) for the number of inflection

points, it remains for us to determine the line bundle <£?. Let E c TM be
the subbundle whose fiber at z is the tangent space to the ruling through
z. Since this tangent space is constant along the ruling, we see that
E2 c Sym2(TM) is the twist by ΘM(l) of the bundle & appearing in
(3.11). Therefore, J*= E2 β 0M(-l), whence J8?s E2 ® GM(-\)9 and so
cx{Se) = 2cλ(E) - H. Recalling that M is a P^bundle over P1, we have
the sequence

0 -> E ^ TM -* p*TPλ -> 0,

and so it follows that cλ(E) = cx — 2F. Therefore

= 2(q - 2F) - ( Q + /F) = -2ΛΓ - (4 + Z)/1 - Co

= -2(-2C0 +(n- 2)F) - ( 4 + /)F - Co

Plugging this into the magical formula (3.10), along with c2 = 4 and the
expressions for AT, H, d, we obtain the number L = 3(« + 2/ — 4). Now,
we pointed out earlier that the complete linear system |C0 4- IF\ embeds
M in p " + 2 / + 1 . When we restrict to a five-dimensional sub-linear system
(or project pn+2l+ι to P5), nothing in the above computation is changed.
We therefore have the following

(4.1) PROPOSITION. Let Sn c P 5 be embedded as a ruled surface of
degree n + 21. Then if the inflection locus is zero-dimensional, it has degree
i = 3(Λ + 2 / - 4 ) = 3(rf-4). D

It is now easy to characterize the uninflected surfaces. In order to
have d = n + 2/ = 4, there are three possiblities:

(a) n = 4, / = 0. The corresponding map fails to be an embedding, as
the infinity section (i.e., the unique curve on S4 of self-intersection -4)
collapses to a point. (To see this, note that in order to have self-intersec-
tion -n on the surface Sn9 C^ must be linearly equivalent to Co — nF. In
this case, we have Q = Co - 4i% and Q H = (Co - 4F) Co = 4 - 4
= 0.)

(b) n = 2, / = 1. This surface is unacceptable for more subtle reasons.
Note that in this case, Q = Co - 2F and Q H = 1, so that Q maps
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to a line. But along this line, P^ ( 2 ) M can be only three-dimensional, and
so this surface has (at least) a line of inflection points.

(c) n = 0, / = 2. Here we embed So = P 1 X P 1 by the linear system
\Θ(1) <8> 0(2)|; in coordinates, we have

(42) P^P1-?5

(s,t)^ (s,t,s2,st,s2t).

Thus far, the surface (4.2) is the only uninflected ruled surface.
We now turn to the case of irrational ruled surfaces, i.e., P^bundles

over curves C of arbitrary genus g > 1. One's intuition is that with
increasing algebro-geometric complexity must come greater curvature and
hence inflectionary behavior. Indeed, it is not hard to give an explicit
formula for the number of inflection points.

(4.3) PROPOSITION. Let M c P 5 be as ruled surface of genus g, i.e., M
is a P1-bundle over a curve C of genus g. Assuming it has only finitely many
inflection points, then it has precisely i = 3(d + 4(g — 1)) such.

From this, of course, follows our main result of this section:

(4.3) THEOREM. There is a unique (smooth) ruled surface in P 5 which is
uninflected, i.e., the surface (4.2) above. D

Proof of Proposition. It is not hard to see (e.g., from a spectral
sequence argument) that H2(M) = Z Θ Z, and, as in the rational case,
the group is generated by a copy Co of the base and the fiber F. Letting
Co

2 = n, which is necessarily positive by the Hodge index theorem, we find
that K = — 2C0 + (2g — 2 + n)F\ this follows from the adjunction for-
mula, as in the rational case. Then K2 = c2 = S(l — g). Letting H = Co

4- IF, we compute K H=2g-2l-n-2 and d = H2 = n + 21. The

remaining piece is

C1(JS?) = 2(q - ( 2 - 2g)F) -H= 3C0 -(2« + l)F,

so that

cx{Se) (6H + AK) = 10H + 20/ + 24(g - 1).

Putting this all together, we find

t = Wcl - 5c2 + 21d + 2&K • H + cα(:SP) -(6H + 4K)

= 11 8(1 - g) - 5 4(1 - g) + 21(/ι + 21)

+ 28(2g - 2/ - n - 2) + (lO/i + 20/ + 24(g - 1))

= 3(/i + 2/ + 4(g - 1)) = 3(d + 4(g - 1)). D
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5. Inflection points of surfaces of heat and wave equation type.
While the geometry of ruled surfaces is quite explicit, we have far less
control a priori over surfaces satisfying the heat or wave equations. We
begin with two simple, but illuminating, examples.

EXAMPLE 1 (wave equation type). Consider the rational surface M c
P 5 given by the rational map

φ : P 2 — P 5

( 1 , w, υ) -> (w, υ, w2, v2, u2υ, uv2).

Togliatti [22] shows that this surface is genetically of wave equation type;
it is a smooth surface of degree six whose generic hyperplane section is a
curve of genus one. Indeed, one obtains the linear system by considering
cubics in P 2 with three assigned base points (this gives a linear system of
dimension six) and then requiring that every other point of P 2 be a triple
point of some cubic (cf. the beginning of the introduction). It is easy to
check then that M is biholomorphic to the blow-up of P 2 at three points;
each of the exceptional curves and each of the coordinate axes maps under
φ to a line in M c P 5 . Indeed, one can check that there are six points of
intersection of these assorted lines, and at each of these six points,
dimP^ ( 2 )Λf < 3. It follows that M is hypo-osculating, but exhibits
further inflectionary behavior.

EXAMPLE 2 (heat equation type). The simplest example here is the
image M of the rational map

/ : P 2 — P 5

{x9y,ί) -> (1,2* + y\y,y3 + 6xy,y4 + Uxy2 + 12x2,

y5 + 20xy3 + 60JC2J;).

Note that d2f/dy2 = df/dx. We claim, however, that M is singular. In
homogeneous coordinates, / is given by the following linear subsystem of

L = |z5, 2xz4 + y2z\ yz4, y3z2 + 6xyz\ y4z + 12xy2z2 + 12x2z\

y5 + 20xy3z + 60x2yz2\,

from which it is clear that
(i) p = (1,0,0) is a base point of L, and

(ii) C = {z = 0} blows down to (0,..., 0,1).
We therefore begin by blowing up p twice to define the mapping at
(1,0,0).
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base point base point

base points

At this juncture there are two remaining base points qv q2 on the
exceptional curve E2. Upon blowing them up, we have the picture

It is a straightforward computation to check at this stage that C and E2

blow down to (0,...,0,1) and, more important, that El9 E3ι and E32 all
map to the same line i in M. From this our claim follows immediately.
For suppose the surface M were smooth, or, indeed, just normal; then by
Zariski's Main Theorem (cf. [11, p. 280]), the fibers of the birational map
P 2 -> M c P 5 would be connected. But the preimage of any point of £
other than (0,..., 0,1) is disconnected. Therefore M is singular.

With these examples in mind, we are led to generalize (4.3):

(5.1) Conjecture. The unique perfectly hypo-osculating surface in P 5 is
the rational ruled surface (4.2).
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As evidence for this conjecture, we attempt to compute explicitly the

number of inflection points (assuming it is finite) of a hypo-osculating

surface in P 5 . Before doing so, we make some preliminary observations.

(5.2) LEMMA. If the surface M c P 5 is of heat equation type, there is a

distinguished line subbundle of TM. If M is of wave equation type, then the

tangent bundle splits {analytically), passing, if necessary, to a double cover

MofM.

Proof. In the former case, we are interested in changes of local

coordinates (x, y) -> (xf, yf) under which the operator d2/dy2 — φ(d/dx)

transforms to d2/dy'2 — φ'(3/3jc') It is an elementary calculation using

the chain rule that we must have 3/3y' = a(x, y)(d/dy), and hence the

line bundle spanned by d/dy is intrinsically determined. Similarly, in the

latter case, in order for d2/dxdy to transform to d2/dx'dy\ both d/dx

and d/dy must be distinguished, and so we obtain a local direct sum

decomposition of TM passing, if necessary, to a double cover ττ\ M -> M,

7r*(TM) splits globally. D

REMARK. The existence of the trace mapping π*: H*(M,Q) ->

H*(M,Q) shows that TΓ*: H*(M, Q) -> #*(M, Q) is injective. Hence, for

the purpose of Chern classes calculations on M, we infer from a splitting

τr*(ΓM) = π*(Lλ) Θ 77*(L2) that cλ{TM) = Cι(Lλ) + q(L 2 ) .

We saw in example 1 that a surface of wave equation type could

contain lines. In fact, one expects such a degeneration of the second

fundamental form to occur—along a divisor the linear system II acquires

base points. This can be interpreted bundle-theoretically as follows.

Where the wave equation is valid, we have a splitting π*TM =

7r*(Lx Θ L2); now when d2/dxdy degenerates along an effective divisor

D to the operator d2/dy2 — φ(3/3x), there is still a globally defined

subbundle L2 c TM correspnoding to 3/3^. Off the divisor D, the other

distinguished subbundle Lx is a complement, but along D we have

Lλ = L2. Indeed, following this reasoning, we infer that

(5.3) the divisor D represents the class cλ(L^ ® (TM/L2)).

We are now in a position to deduce the following

(5.4) PROPOSITION. There is no smooth perfectly hypo-osculating surface

generically of wave equation type which contains lines.
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Proof. Suppose the divisor D above consists of disjoint lines (they are

necessarily disjoint, for whenever two lines meet, the osculating space

drops dimension further). It is clear from our analysis of the ruled surface

case that along a line / c M, 7 / = L 2 | / ? and therefore, TD = L2\ D.

Now, the adjunction formula gives

while from (5.3) we infer

[D] = L* ®(TM/L2) s K* ® L* 0 L*,

and so restricting to D, [D] | D = (K£ ® (L*) 2 ) \ D. Therefore

but we observed earlier that T*D = L%\D9 and so L2\ D must be trivial,

whence TD is trivial; this is an obvious contradiction. D

We next give explicit Plϋcker-type formulas for the number of inflec-

tion points on a surface which is a globally of wave or of heat equation

type.

(5.5) THEOREM. Suppose M is globally of wave equation type. Then if it

has finitely many inflection points, it has

(5.5a) ι = ΊK2 - 5c2 + 15d + \%K - H.

Suppose M is globally of heat equation type. If its third fundamental form is

given by (2.13), |III| = Kω 1 )^ 2 ! , then

(5.5b) i = -{5(K2 + c2) + 9d + 16K H);

if its third fundamental form is given by (2.11), |III| = Kω1)3!, then

(5.5c) i = -\{K2 + 25c2 - 3d + UK H).

Proof. Suppose M is of wave equation type. By (5.2) we have a

splitting 77*771/ = π*(L1 Θ L2) and clearly the kernel of the local geome-

trization map g: T(2)M -» C 5 is isomorphic to Lλ 0 L2; it follows from

(3.4) that <£= Lλ β L 2 β ΘM{-\). So ^(JSP) = cx - H = -(K + # ) .

Substituting this in (3.10) gives (5.5a).

In the case of the heat equation, we see that under the projection

T{2)M -> Sym2(ΓM) the heat equation operator (d2/dy2) - φ(d/dx)
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maps to d2/dy2; bundle theoretically, we therefore have oS?= L\ Θ

ΘM(-\), and so q(JS?) = 2c 1(L 2) — i/. To compute c 1(L 2), however, we

refer to our possible standard forms for the third fundamental form. We

have III: Sym3(7W) -> (C 6 /#" ( 2 ) M) ® ΘM(l) = Q, and considering the

two cases |III| = |(ω 1) 2ω 2 | , Kω1)3!, we find that III induces isomorphisms

(i) L\®L2^Q

(ii) L\ Z Q.

Computing Chern classes, using the relevant exact sequences, we find

that in case (i) cλ(&) = -(4K + 5H) and in case (ii) cx(&) =

- \{\4K + 177/). Formulas (5.5b) and (5.5c) now follow by direct calcula-

tion. D

We now proceed to compute the number of inflection points on

general hypo-osculating surfaces in P 5 . We follows Kodaira's classifi-

cation scheme ([1], [14]):

(5.6) THEOREM (Kodaira). Let M be a smooth minimal algebraic

surface (i.e., M contains no curve of self-intersection -1). Then M is

isomorphic to one of the following:

(I) a surface with pg = 0; i.e.,

(a) P 2 ,

(b) a ruled surface,

(c) an Enriques surface, or

(d) a hyper elliptic surface',

(II) a K-3 surface (K=0,q = 0);

(III) an abelian surface',

(IV) an elliptic surface',

(V) a surface of general type.

It is now a matter of calculation to compute the number i given by

(5.5) for most of these cases:

(la) wave: L = 15d - 6

heat: (i) ι = -(6 + 9d)

(ii) i = - i(48 - 3d)

(Ib) Suppose that M is (abstractly) a ruled surface of genus g,

embedded in P 5 by a subsystem of the linear system \kC0 + IF\, k > 2,

/ > 1. Using the notation of §4, we find the formulas:

wave: i = 36(g - \){k - 1) + /(30Λ: - 36) 4- nk{\5k - 18)

heat: (i) t = -{20(3 - 2g) + d(9 - 16/k) + 32k(g - 1)}

(ϋ) , = _ i{83 - 8g - 3d(l + 4/k) + 2Ak(g - 1)}.
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(Ic) If M is an Enriques surface, then q = 0 and 2K = 0. Therefore
K2 = c\ = 0 and the Riemann-Roch Theorem implies that 1 = χ(ΘM)
= l^ί^i + C2)> whence c2 = 12. K H = 0 since ^ is of order 2. There-
fore, we have:

wave: i = 15(d — 4)

heat: (i) t = -(60 4- 9d)
(ϋ) t = -60 4- fd.

(Id) If M is hyperelliptic, q = 1 and x(0M) = 0. Since Λf is again of
finite order (cf. [9, p. 585 ff.]), K2 = c2 = 0; similarly, K H = 0. Hence,

wave: t = 15d
λ«tf: (i) * = -9d

(ii) 6 = |d .
(II) Suppose M is a £-3 surface. Then # = 0, so χ(ΘM) = 2 and

c2 = 24. Then
wave: i = 1 5 ( J - 8)
A«tf: (i) i = -(9d + 120)

(ii) c = | d - 120.
(III) If M is an abelian surface, K = 0, c2 = 0, and so

r: (i) i = -9d
(ii) i = Id.

(IV) If M is elliptic, i.e., there is π: M -> C with elliptic fibers and
g = genus C > 1, then, first of all, the topological Euler characteristic
c2 = Σχ(i^), where the i^ are the singular fibers of π. Moreover, from the
structure theory of elliptic surfaces (cf. [13], [9, p. 572]), we know that the
canonical bundle is obtained by pullback from C. In particular, KM = π*L
and degL > 2g - 2 + χ(ΘM) > c2/12. Moreover, K2 = 0 and K H =
(degL)F i/, where F is a generic fiber; since F c P 5 is not rational,
F H = degi7 > 6. It also follows from [13] that c2 > 0, and so we can
give a bound for ι.

wave: ι= -5c2 + I5d 4- 1S(K //)
> 15d - 5c2 + 18(c2/12)(6) = 15d + 4c2 > 0.

heat: (i) 4 = -(5c2 + 9J + 16i^ H) < 0
(ii) ι= Id- 5c2- ψK H.

(V) In the case of surfaces of general type, K2 > 0 and so, by
Miyaoka's results [15] 3c2 > K2, c2 > 0 as well, and ϋΓ H > 0. We see
therefore that for the first case of the heat equation, ί < 0, but in the
other two cases, the formulas (5.5) stand basically unsimplified.

We have dealt so far only with minimal surfaces. It is a fundamental
fact in the theory of algebraic surfaces (cf. [9]) that blowing up a surface



254 THEODORE SHIFRIN

at a point increases c2 by 1 and decreases K2 by 1. The effect on the

number ι of inflection points is therefore easily computed. In the wave

equation case, IK2 - 5c2 decreases by 12, while 18AΓ H increases by

18 (degree of the exceptional curve), accounting for a net increase of at

least 24 (cf. (5.3)). In the heat equation cases, in (i) i decreases by

16 (degree of the exceptional curve), and in (ii) K2 + 25 c2 decreases by

24 while 12 K H increases by at least 24, whence i decreases as well.

Ultimately we would like to classify all perfectly hypo-osculating

surfaces, and so we need to list the possible cases above for i = 0. Since

the arithmetic sometimes allows i = 0, we have a few special arguments to

offer. Note that i < 0 is impossible.

(la) Γ P 2 has no holomorphic subbundle, so (5.2) eliminates this case.

(Ib) One checks with tedious arithmetic arguments that i = 0 is

impossible.

(Ic) Since surfaces of degree 4 in P 5 are classified (cf. proof of (3.8)),

we eliminate the wave equation case. However, d = 100 is a possible

solution in the heat equation case.

(Id) d = 200 is a priori a possible solution for the latter case.

(II) d = 8 for the wave equation and d = 200 for the heat equation

are a priori possibilities. We eliminate the former by differential geometric

means, using the following Bochner-type vanishing theorem proved by

using Yau's Ricci-flat metric:

(5.7) THEOREM (Kobayashi [12]). If M is a (Kάhler) K-3 surface, then

H°(SymrTM) = i/°(Sym/T*M) = 0 for all r > 1.

(5.8) PROPOSITION. There is no holomorphic splitting of the tangent

bundle of a K-3 surface.

Proof. Suppose TM = L x Θ L2 (recall that a K~3 surface is simply

connected). Since KM = 0, L 2 = L\, and so Sym2(ΓM) = L\ Θ (Lf)2 Θ

ΘM which clearly has a nontrivial section, contradicting (5.7). D

Therefore, no K-3 surface can be globally of wave equation type.

Moreover, if M is the blow-up of a K-3 surface at / points and is of wave

equation type, then it follows from our earlier discussion that t = 15d —

120 — 12/ + 18ΣdegE t, where Eι,...,Eι are the exceptional curves, and

d e g ^ > 2. Clearly, when d > 8, / > 1, i > 0. One checks directly that

for d = 5,6,7, / > 1, there is no solution to t = 0.

(III) Clearly i = 0 is impossible.
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(IV) The inequalities we gave earlier show that there is no uninflected

elliptic surface, except perhaps of the second heat equation type.

(V) Surfaces of general type are still basically intractable. However,

one has the following result of Kobayashi's based on Aubin-Yau and an

analysis of holonomy groups:

(5.9) THEOREM ([12]). Let Mn be a compact n-dimensional Kάhler

manifold with positive canonical bundle KM and finite fundamental group.

Then H°(SymnrTM ® Kr

M) = 0 for r > 0, unless the universal covering

space of M is biholomorphic to the bidisk.

Therefore, reasoning as we did in (5.8), we have the following

(5.10) PROPOSITION. If M is a surface of general type whose universal

covering space is not biholomorphic to the bidisk, then M cannot be globally

of wave equation type:

Proof. If TM = Lλ Θ L 2, then KM = Lf ® L\ and so Sym2ΓM <8>

KM D (L x 0 L 2) Θ (Lx ® L 2 )* = ΘM. The same argument applies, if nec-

essary, on passing to the double cover. D

REMARKS. The Plϋcker-type formulas provide convincing evidence for

(5.1). Aside from a small number of numerical cases which remain, the

major gaps are the surfaces of general type and the degeneration argu-

ments required to finish the proof (unfortunately, when we try to correct

our formulas (5.5) by applying (5.3), the signs are uncooperative).
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