PACIFIC JOURNAL OF MATHEMATICS
Vol. 123, No. 1, 1986

INTEGRAL REPRESENTATION FORMULAS
ON ANALYTIC VARIETIES

TELEMACHOS E. HATZIAFRATIS

Integral representation formulas for holomorphic functions on ana-
lytic subvarieties of domains of C" are derived. These formulas gener-
alize the Cauchy-Fantappié¢ formula and the Weil formula for analytic
polyhedra. The kernels we obtain are explicitly defined.

Introduction. In recent years integral formulas and their applications
have attracted a lot of attention in several complex variables; see for
example [4, 5, 7, 8, 9, 10] and the most relevant to our work papers of
Stout [15], Palm [11] and Henkin and Leiterer [6].

In this paper we develop analogues of Cauchy-Fantappi¢ Kernels for
analytic subvarieties of domains of C”". First let us recall the Cauchy-
Fantappie formula. Let D € C" be a bounded domain with smooth
boundary and let y: (D) X D — C” be a smooth function so that

(1) (2762 = (8= 2)3(6.2) %0
for (¢,z) € (0D) X D.

Then the Cauchy-Fantappie¢ formula associated to y is the following:
For f € O(D) N C(D) and z € D we have:

) = (1) b2 (n—=1! Y($,2)) A w(§)
(@) f(z) = (1) prnll A _ZM )"
where
W (v(¢,2)) = 2: (-D)'y, A 3y and  @(§) =:d§y A -+ AdE,.
Jj= k#j

In §I we give a generahzatlon of the formula (2) from the domain D
to analytic subvarieties of D. More precisely we consider a bounded
pseudoconvex domain D with smooth boundary and m (m < n) holo-
morphic functions 4,,..., h, in U where U is a domain containing the
closure D of D. We set

V=:i{z€U: h(z)= - =h,(z) =0},

M=VNnD and dM=:VN(dD).
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Our assumptions are that the variety ¥ should have no singular point
on 0M and that it should meet 9D transversally. Under these hypotheses
we construct a kernel K}, (¢, z) so that for f€ O(M) N C(M)and z € M
we have

f(z) = f{ L JOKE 2).

This is the content of Theorem 1.1.

The kernel K/ is explicitly defined in terms of a function y (y is
assumed to satisfy (1) as in the Cauchy-Fantappi¢ formula) and in terms
of functions h,.j(f, z), holomorphic in (§, z) € U X U, so that

O =)= L h & =2),  i=Lom

(such functions always exist; see for example Harvey (2], p. 89).

Some of the interesting features of Theorem 1.1 is on the one hand the
explicit form of the kernel K% ({, z) and on the other hand the fact that
M is allowed to have, finitely many, singular points.

The case m = 0 of Theorem 1.1 is the formula (2) and the case m = 1
of it was obtained by Stout [15]. In fact Stout’s paper was the starting
point of this work. The kernel obtained by Stout coincides with ours in
the case m = 1; this is not immediate however and in §I1 we show that
they are indeed the same.

The proof of Theorem I.1 (given in this paper) is an extension of
Stout’s proof from the case m = 1 to the general case. A second proof of
Theorem 1.1 is contained in Hatziafratis [3].

In §IIT we develop a Weil type integral formula for analytic polyhedra
on analytic varieties. The main result of this section is Theorem III.1
which generalizes the Weil integral formula for analytic polyhedra in C”
(see [14, 16]). To obtain this result we combine results from §I together
with some standard techniques contained for example in Range-Siu [12].

As we pointed out before the results in this paper are related to those
of Palm [11] and Henkin and Leiterer [6]. The setting of Henkin and
Leiterer [6] is more general than ours (we allow, however, finitely many
singular points on M). On the other hand our results are more explicit
than theirs. In fact we do not know the relation between our results and
those of Henkin-Leiterer and Palm.

Acknowledgment. I would like to express my warmest thanks to
Professor Alexander Nagel for very helpful discussions.
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I. We will use the standard notation of differential forms (see for
example [13], Chapter 16). We will use also determinants whose entries are
differential forms. For the properties of these determinants see for exam-
ple [1], p. 8. As usual we will denote the Jacobian

dh; 3(hy,...,h,)
de‘( %, (g))ls.,,sm A
;. d§, denotes the differential form
a5 A () U)o A
i.e., (j,) means that df; is omitted.

The space of holomorphic functions on X is denoted by O( X) and
the space of continuous functions on Y is denoted by C(Y).

AlsoAk*j

‘‘‘‘‘‘

Description of the setting. Let D be a bounded pseudoconvex domain
with smooth boundary and let y be as in the “ introduction”. Let U be an
open neighborhood of D and let h = (hy,...,h,): U—> C" be an
m-tuple of holomorphic functions, (m < n). Define

Z(h)=:{z€ U: h(z)= -+ =h,(z) =0}
and set
M=:Z(h)NnD and oM =:Z(h)N(dD).
Let &, (¢, z) be holomorphic functions in (§, z) € U X U so that

n(¢) = h(z) = éh,.,(g,z)(g,—z,), i=1,...m

Consider the differential forms
_ n—m+_1
a"(¢,2) =:det(yj,hlj,...,h"mj, agy/,...,agyj)
o, on, ——2
BH(£) =:(=1)" "D (m)(8)] dd(!ﬁg‘ . ,Té,dfj,...,d{j)

(in each of the above determinants j runs from j =1 to j = n forming
the 1st up to the nth row of it) where

a(hl’ c m)

05,0 8,)

v = X

1<ji< e <jp<n

Now we introduce the kernel

) a"(§,2) A B"(§)

KM(K’Z) =Zc(n,m (g, _ Z,'Y(K,Z))n—m
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where

n n(n— 1
e(n,m) = (1) (1)

(n — m)\2mi)"™ ™

The main result of this section is the following:

THEOREM I1. If |vh|# 0 on OM and Z(h) meets 0D transversally
then for f € O(M) N C(M) and z € M we have the integral formula:

)= [ SOKL2).

Comments. (i) It follows from the assumptions made about the variety
Z(h) that M is a smooth (2n — 2m — 1)-dimensional manifold. Notice
that we allow Z(4) to have finitely many singular points in D.

(i) Notice that if m = 0 the integral formula is reduced to the
Cauchy-Fantappi¢ formula.

(iii) Since we have fixed ¥y we do not indicate the dependence of the
forms " and K} on y. These forms depend also on the factorizing
functions 4;; which we consider fixed too.

(iv) Notice also that if y;(¢, z) are holomorphic functions of z then
the kernel K},(¢, z) is holomorphic in z too.

The proof of Theorem I1 will be based on Theorem I2 which
expresses an interesting “exactness” property of the kernels K} (¢, z).
Roughly speaking, using Theorem 12 we will reduce the proof of Theorem
I1 from the case with codim M = m to the case with codim M = m — 1,
then to the case with codim M = m — 2 and so on until codim M = 0 in
which case M becomes D and the integral formula of Theorem I1 is the
Cauchy-Fantappié formula.

In order to state Theorem J2 we need the following:

Let g € O(U) and g, € O(U X U) so that

g($) - g(Z)' é g;(§.2)(& — z,).

J
Set h* =:(g, hy,..., h,): U— C™"! (now we assume that m + 1 < n)
and M* =:Z(h*) N D.

Now we associate to h*, M* (and the chosen factorizations of
g hy,...,h,) the differential forms a"’, 8"" and K. like before. In
particular
a” A B

(§ _ Z,Y)n—m—l

Ki=c(n,m+1) (notice m is replaced by m + 1).



INTEGRAL REPRESENTATION FORMULAS 75

Now we state Theorem 12.

THEOREM 12. For a fixed z € M* the following formula holds:

K8 2) A dg((gf)) — 2miKh (8. 2)

provided that the differential forms are restricted to Z(h) — Z(g) locally at
a point where |V h*| # 0.

Comments. (i) Notice that |V A*($)| # 0 implies |[VA({)| # 0. This is
necessary for the definition of K. and K},.

(ii) Since y(¢, z) is a smooth function of { € 9D, if we fix z in D
then there is a smooth extension of y(§, z) for { in a neighborhood W of
dD and it is with that extension that we will be working. We may also
assume that z & W and that ({ — z,v(§,z)) # Ofor { € W.

For the proof of Theorem 12 we need the following lemmas.

LeEMMA 1. We have

r (s )> A s,

Jo< " <Jm (§10 {11

(1)

n

IR R C I N

/=1 j1<...<jm

A

n ag a(g,hl,...,hm)
Fra dg, .
x[lgl ag; a(fl,fjl,...,fjm)} A . S

Proof. This is a straightforward computation. (Fix a multi-index
(Jipe-esJm) With 1 <j, < -+- <j < n and compute the coefficient of
,., d%; in the left-hand side of (1).)

LEMMA 2. Consider the differential form
()= X ()T A d
jl< <jm k*jl """ Jm

where a, ..., are some smooth functions. Then n({), restricted to Z(h)
locally at a point £° with (3(hy,...s 1)/ /0§ nmetr> $NEO) # 0, can
be expressed in the following way:

n(§) = AQ)d& A -+ AdE,_,
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where

3hy,....h,

. )
A =\ )| L

and

o* =: (_’1) m(n—m)(_l) m(m+1)/2.

COROLLARY 1. If {° is as above then the differential form B"({),
restricted to Z(h) locally at {°, is given by the following formula:

a(hy,....h,)
a(gn—m—O—I’ s 7§n)

Proof. 1t follows from the definition of 8”({) that

pr(g) = n=ml -y S YRR UL Ry

-1

B"(§) = (n—m)!-c* ()] dsn - AdS,

‘vh(g)!z jl<"'<jm a(gjl"..’gjm) k*jl """ jm
Thus Corollary 1 follows immediately from Lemma 2 applied with
_ (k.. hy)

ajl < Jm o a(g‘h’""gljm) .

COROLLARY 2. We have

(_1)n+m
n—m

B (§) A dg(§) = B"(§)

when differential forms are restricted to Z(h) locally at a point where
|V h*| # 0. (Recall |vh*| # 0 implies |[Vh| +# 0.)

Proof. Let {° be as in Lemma 2. By Lemma 1 and the definition of
B" (&) we have
* m - - 1)!
1 Y Adg(t) = (-1)"" (n=m-1)
) B0 ndsto) - ()
o+ o Fm
X Z (-1)’ ’ a ..j, A s

d
K< <jm kK#jis- s Jm

where we have set

(2) a,l...j,=3§:a*[a(
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But it is easy to check that

(3) T ———a("" )

a.;
q< ey R 08)

Also applying Lemma 2 with the a; ..., given by (2) using also (1) and (3)
we obtain

(4) B"(§) A dg($)

=[vh*[.

o(hy,... h,) T
&, .
a(g‘n—m+1""’§”) kﬁ\l gk

Now (4) together with Corollary 1 completes the proof of Corollary 2.

=(n—m—1)(-1)"""c*

For the proof of Lemma 2 we need the following elementary lemma.

LEMMA 3. Let A € C™*™ be an m X m matrix, say,

Ay T My
A= - with det(A4) # 0

amm

Let Band X € C™** be m X k matrices, say,

by, -+ by xioee xk
B=| : and X =
bml bmk x},, X,'f,
Assume that
ayx{ + -+ tay, x5 = by
(1) : : i=1,...,k
a,x{ + - +a,,x),=Db,,

i.e., we have k systems of m equations in m unknowns each. Then

X xk
det _ det(C)
| f " det(4)

xk RO xk

where C is the matrix obtained from A by substituting the first k columns of
A by the columns of B.
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Proof. Consider the m X m matrix T

( x% PR xlk O PR O
X; xk 0 0
T =
1 k
Xk+1 X1 1 0
x} x,’f, o --- 1

Then using equations (1) it is easy to check that

A-T=C
(A - T denotes the product of the matrices 4 and 7') and therefore
det(T) = SZIEE;
But
xboee
det(T) = det
xL oo xk

This completes the proof of the lemma.

Proof of Lemma 2. Throughout this proof we are working on Z(h)
locally at ¢°. Since (3(hy,...,h,)/0(80— mits---»$))(E0) # 0 it follows
from the implicit function theorem that there are holomorphic functions
hy,...,h, of { =:({,...,§,_,,) so that the system of equations { h, =
0,...,h, = 0} is equivalent to the system of the equations:

Soome, = (8),  j=1,...,m (locallyat {°).
In particular
RS s b (E™), LR, (8M) =0,  j=1,...,m

which give the following equations:

oh. 9h oh. ok oh .
1 _J 1 4+ oo+ Jm _ )
O TR To TR A 1o
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Now fix a multi-index (ji,..., j,) with1 <j, < --- <j <n. Let

us assume that
1_<_J1< ce <jk_<_n—m<n—m+1S]k+l< tee <]m<n

(k can be any one of the numbers 1,2,..., m).
Let us consider the differential form

0 = d§1 AN (]1) e (.]k) e /\dgn—-m A dgn—m+l

A (ien) e U)o A

Recall that (j,) in § means that d; is omitted. Recall also that
differential forms are considered restricted to Z( ) locally at {°. Thus 6 is
a “multiple” of d{; A --- AdS,_,,. Infact

(Rys ey Juntrevvs dmreeosB) "3
(2) 0=o,- m me N dg
' 3(¢;--%) P

where o, is the sign so that

ds, A (Jl)(.]k) /\dgn—m/\d{jl/\ /\d$°,k
=0, dS, A -+ AdE,_,

2

(in the Jacobian of (2), “j,,,” means that & jesr—(n—my 1s omitted and
similarly for j, ,,,..., J,)-

It is easy to compute o;:
(3) 6, = (1) "R (L) AT (1) k(k=1)/2.

Next applying Lemma 3 with the systems of equations (1) (with
dh,/3¢, in the place of the x’s) we obtain

a(h,...,A' ,...,f,...,h )
(1) 1 Jk+1 m m
a(g‘ll""’gjk)

= ('1)k 10y

a(h,, ..,hm)( a(hy,...,h,) )‘1
a(gjl""’gjm) a(gln—m+1"">§n)

where o, is the sign of the following permutation:

n_m+ 1,...,jk+1,...,jm,...,n, jk+l”"’jm]

0, =:sign
n—-—m+1,....n

It is easy to compute o,:

(5) o, = (_1)n(m—k) _(_1)jk+1+ + Fm .(_1)(m—k)(m—k—1)/2.
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Now from (2), (3), (4) and (5) we obtain
(DA g

- *"’“’v---’hm)( 3(hys.r hy) )
‘ a(gjl""’gjm) a(gn—m+1,--.,§n) k/=\1 dgk

which implies the formula of Lemma 2 and completes the proof.

LEMMA 4. If ¢: (D) X D — C — {0} is a smooth function then

n—-m-1

det v hlj”"’hmj’ 5{(4’7,‘)""’5{(‘1)7]‘)) =¢" " ab(f, z).

In particular,
n—m-—1
e ———
(§ _ Z,'Y)m—n . ah(g,z) = det(?J, hlj""’ hmj’ ag'?j,...,ag“?j)
where ¥, =(§ —2,v) v, j=1,...,n

Proof. This follows from properties of determinants with entries
differential forms (see [1], p. 8).

We now turn to the proof of Theorem I2.

Proof of Theorem 12. Throughout this proof differential forms are
restricted (in ) to Z(h) — Z(g) locally at a point where |[VA*| # 0 and z
is a fixed point on M *. In view of Lemma 4 we may and do assume that

(1) (§-2,7(,2z)) =1 for(§,z) € (dD) X D.
Next we claim that

dfa(§,2)) = (D" - g(§) - (8, 2).

Now we prove (2). We have

n—m-2
/__A—\

o6 z) = det| & huc e dvcsdm
Y, & My h,, vy
(in the above determinant j runs from j = 2 to j = n forming the 2nd up

to the nth row of it).
We may assume §; # z,. Then, by (1), we have

(5 — z)a" (¢, z) = det| 1 8(8)  0---0 0-
Y, 8 hychy Oy 0y
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(§;, — z, multiplied the first row and we added to the first row of the
determinant the jth-rows multiplied by ({; — z;), j = 2,..., n) and there-
fore

(3) (fl - Zl)—éf(ah*(gaz))

— det 0 g({) 0---0 _0...0
v, &  hyh,y 3y 3y

=(—l)m+1det g({) 0---0 0---
g/ hlj hmj an an
n—m-=1

——

= (-1)"""g(¢) det Bijseos By 9Y,,...,0%;
(the last determinant in (3) is(n — 1) X (n — 1) and j runs from j = 2 to

Jj = n forming the (n — 1) rows of it). On the other hand

(4) (§1 — Zl)ah(f,z) - (§1 _ zl)det Y1 h11 hml 8Y1 ayl
Y, hy - h,, 0y -0y,

[ n—m-—1

— det] 1 0---0 0---0
_Y] hl/ hm} 57} 67}
[ n—m-—1

= det|hy;,..., h,,, 9Y,,...,07; |-

But (3) and (4) imply (2). This proves (2). Now the proof of Theorem
[2 follows from (2) and Corollary 2 (recall that differential forms are
restricted to Z(h) — Z(g)).

This concludes the proof of Theorem I2.

Finally we turn to the proof of Theorem I1. As we pointed out earlier
this proof is based on ideas of Stout. See also [15] which contains the case
m=1

Proof of Theorem 11. First we make a few reductions. Since we assume
that D is pseudoconvex, in view of Cartan’s extension theorem and an
approximation argument (recall that a pseudoconvex domain is the union
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of an increasing sequence of strictly pseudoconvex domains) we may and
do assume that f € O(D), i.e., f is holomorphic in a neighborhood of D.

Also Theorem I1 is true for m = 0 (since for m = 0 it is the
Cauchy-Fantappi¢ formula) and therefore we can prove it by assuming
that it is true for the case when the variety is defined by m holomorphic
functions and proving it when the variety is defined by m + 1 holomor-
phic functions, i.e., we will assume it for M and we will prove it for M *.
Thus our assumptions are that |VA*| # 0 on dM* and that Z(h*) meets
0D transversally.

Moreover in view of Sard’s theorem on the set of critical points (using
a deformation argument) and by the implicit function theorem we may
and do assume that:

(1) |[vh|# O0on oM

(1) Z(h) meets 9D transversally.

Notice also that Z(/4*) meets dM transversally. It follows from these
assumptions that 0M and dM* are smooth manifolds of dimensions
(2n — 2m — 1) and (2n — 2m — 3) respectively. It also follows that {{ €
oM: g(§) = 7} is a smooth manifold (for 7 € C, || <& and & a small
positive number) diffeomorphic to 0 M*.

Since we assume Theorem 11 for M we have

1) )= [ SOKLE ).

Next write (1) as follows

O 1= i JHOREE )

where (0M), =:{{ € IM: |g({)| > €} (¢ > 0, small). But

lim F)Ky(L,2)=0
e=0 Jre@m)~ (M),

and (2) becomes
(3) f(z) = lim FOKH(E, 2).
(0M),
Next by Theorem 12 and the fact that f is holomorphic we obtain

dg[f(é“)Ki']*(s“, 2) A %%] — 2aif () K}y (£, 2)
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on Z(h) — Z(g) and therefore

O [ o FORMED =50 [ ] 10K 5. 2) 1 248D

¢)
g(§)

. FOKy(8,2) A= 2 (¢) (by Stokes’ theorem)

2mi /fea(i)M)E

_ 1 e dr
N 27ri/ (jggeaM: g(§)=7}f(§)KM*(§ Z)) T

IT|=¢
Letting ¢ — 0 in (4) we see that

(5) lim fOKhG2) = [ F)KR(&,2)

=0 Jre@m), {$=aM: g(§)=0}

= ) Kir(§,2).

feaM*

Now (3) and (5) imply that
= K
)= [ SOKE(.2).

Thus the integral formula holds for M* and the proof of Theorem I1
1s complete.

IL In this section we will show that the kernel K},({, z) of Theorem
1.1 with m = 1 coincides with the kernel constructed in Stout [15]. Here
m = 1, i.e., the variety M is defined by one holomorphic function. Let D,
U and y be as in Theorem L.1 and let ~ € O(U) and h; € O(U X U) so
that

W& - h(z) = 3 (62K - 2,).

j=1
Let M = {z € D: h(z) = 0} and define

0‘({,2) = Z (_l)iﬂﬂ(hﬂj_hﬂi)é'h/\ (’)(]) A9y,

l<i<j<n
" | on |
R =: ) |55
v (§)| _[gl a{j )
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and

K({ z) ::(_1)(»171)("72)/2“ (n - 2)! a(f,z) A B({) .
(zwi)n—l ({ _ Z,'Y(f, Z))n~1

K(¢§, z) is our kernel in the case m = 1. Stout defined the kernel in the

following way:

5 ()" e A B()

(§ - Z"Y(\(‘,Z))”_l

where a'/) are the following differential forms:

a® =1 Y (-1)"ydv, A --- (k) - ADy,
k=2

and the remaining a'/) are defined by cyclic permutation of the v,’s. Let
us look in the following figure:

(constant) -

LStIray

N Y2

Y1

To define a" we eliminated the first ray and we “expanded” the
remaining in a way that is clear from the definition of a®. Thus to obtain
a'? we eliminate the second ray and so on; for example

a® =y 0y, A - ADY, A DY, — Y4073 A Dys A <o+ Ady, A O,
+ - +(_1)n‘17n5.Y3 AN /\éYnfl A 5‘Yl

+(_1)"71§Y3 AR /\E_)Yn
(see also Stout [15]).
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Thus in order to show that K(¢, z) coincides with the Stout’s kernel
we have to show that

. n—1)(j—1 i
(+) 3 () a0 = g
j=1
Indeed X"_,(-1)""YU"Dh a'” is a combination of the forms _i_)yl
AN (@) (J) o AdY, I <i<j<n) The formﬂ(,.,j) =:0y,
A =+ (i) -+ (j) -+ Ady,comes from the forms a” and a:
a'” is defined by eliminating the ith-ray so we get the
form 6, ; at the jth-ray stage of the expansion of a'” as

—i+1_a 3 3 0 3
(-1)’ + VYl A /\a'Yj—1 ABYjur Aver ABY, ABY A -+ AOY;_,

— (_1)j—i+1(_1)(i—1)(n—i—l).ng(i‘j).

a') is defined by eliminating the jth-ray so we get the
form (i, j) at the ith-ray stage of the expansion of a‘/,
as

n—j+i—-1_7H 3 3 ) 9 9
(1" TN A ABY, A BY A ABY, A BYy A ABY

n—j+i—1 n—j¥j—2
=(_1) J+ (_1)( N )Yio(i,j)'

Therefore the coefficient of (i, j) in £7_, (-1)"" DY~ Yh a') is
(_1)(n—1)(i—1)(_1)j—1+1(_1)(i-l)(n—i—l)hiyj
+ (*1)("_I)U_l)(—l)(n-jﬁ—1)(—1)(n_j)(j_2)hjyi
i+j—1
= (_1) ! (hin - iji)'
This proves (*).

II. In this section we develop a Weil type integral formula for
analytic polyhedra on analytic varieties. We will do this by combining
results and methods from §I and from Range-Siu [12]. The main result of
this section is Theorem III.1 which generalizes the Weil integral formula
for analytic polyhedra in C”. (See Sommer [14]). We start by describing
the setting. Let hy,...,h,, &,...,8y be holomorphic function on C”
with m < nand N > n — m. Let

V=:{zeC" h(z)=--- =h,(z) =0}
and

P= {ze Vilgi(2)]<1,...,|gn(2)| < 1}.
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We denote by P the closure of P. Also
B N
0P = {{EP: |gj(§)|=1forsomej:1 sjsN} = U .
j=1

More generally, for J = {j, < --- <j, } € {1,..., N} define

TJ=:<§‘EF: |gjl(§)l= =lgjk(§)|=1}'

Now we make the following assumptions:
(*) |v(h)|# O0ondP (h=:(hy,...,h,)and |Vh|is as in §I).
(**) 7, is assumed to be piecewise C'-manifold for all J.
Next let us consider holomorphic functions 4,,(§, z) and g, (¢, z) so
that

h(8) = hi(z) = ZI (62 —2), l<i<m
and
gi(f)—gi(z)= élgij(f,z)(fj—zj), 1<i<N.

Also let H,, G, be the following columns: H, ='(h,,..., h;,), 1 <i < m,
G, ="(gy---»8,), 1 <i<N, and let B"({) be the differential form

associated to 4 as in §I.
With this notation and under the assumptions (*) and (**) we will
prove the following theorem.

THEOREM IIL1. For f € O(P), i.e., [ holomorphic in a neighborhood
(in V) of P and z € P we have:

fy=e(n,m) X [ )W)

1<j< <jpom<N $ET ., _,
where
W o) = det(H,,..., H,,G,,...,G, )
' Mz [2,(8) — g,(2)]
and

1
(n = m)!Q2mi)"™ "

é(n,m) = (-1)" - (-1)"tm- Dotz
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Before we prove the above theorem we introduce some further nota-
tion and give two lemmas. Consider the simplex

N
A= {}\= (Nos--sAy) ERY A > 0and ) A, = 1}.
j=0

ForJ = {j, < --- <j,} € {0,1,..., N} define the J-face of A by

k
AJ={)\€A: Z}\jl=1}.

=1

LEMMA 1. Consider the chain ¢ =:L,(-1)V1, X A, where ¥, indi-

cates that the summation is extended over all ordered multi-indices J C
{1,...,N}. Then

dc=Y 7, x A, —(3P) X A,.
J

Proof. See Range-Siu [12], p. 329.

Next for j € {1,..., N} define
g
gj(f) _gj(z) ’

Y. = (Y1,~-,Y,{) where v/ =

Notice that v} ,, is well-defined if |g,({)| =1 and |g,(2)| <1, ie, if
z € P and { € 7. Also notice that

Y v/ ) —z)=1 forj=1,.
/=1
Also define
(-2
Y&Z)= (yl‘),...,y,?) where y,°= |$bl_ Z|I2’ I=1,...,n.

Now for A = (Ag,...,Ay) € Alet

N
v,(¢,z,0) =2 ), A/ (8, 2), I=1,...,n.
j=0
Notice that for ({,A\) € 7, X Ay, v(§,2,A) =i(vy,...,7,) is well-defined
and also that

n

(1) Z (5, z,A)8—2z)=1 for(¢,N) €1, X Ay,
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We introduce the differential form

K(t,z,A) =2 ()4 A 80,0, A BH(Y)
I

1&1
where ¥, indicates that the summation is extended over ordered multi-in-
dices I={iz< -+ <i,}<{1,...,n}, [|=iy+ - +i,, 0, =:0;
+ d, and A’ is the following determinant:

hyi, hy,
AI —

hmio hmim

Yi, Y,

The differential form K(§, z, A) can also be written in the following way:

1
K(¢,z,\) = G—_—m_—l)!a(f,%}\) A BH(E)
where
n—-—m-1

(in the above determinant j runs fromj = 1 to j = n forming the 1st up
to the nth row of it).

LEMMA 2. We have
d{,}\[K(g’ Z, }\)] = 0
provided that differential forms are restricted in (§,\) to the chain c of
Lemma 1 and z is a fixed point on P.

Proof. Notice that

n—m-—1
(2) (§1_21)0‘(§,2,}\)=det0 e 00 1 0---0

by by Y By %y,

In the above determinant j runs from j = 2 to j = n forming the 2nd up
to the nth row of it; we obtained (2) in the following way: ({; — z;)
multiplied the first row of the determinant «({, z, A) and then we added
to this first row the remaining jth-rows multiplied by {; — z;; we also
used (1) and the fact that {,z € V.

Now using (2) it is easy to show that

(3) alals, z,2)] =o0.
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On the other hand, by Corollary 1 of §I we have

(4) dp*(§) = 0.
Now (3) and (4) complete the proof of Lemma 2.

Proof of Theorem 111.1. Apply Stokes’ theorem to the chain ¢ of
Lemma 1 and to the differential form f({)K({, z, A) where K(§, z, A) is
as in Lemma 2. We obtain

(1) _&NQKGJJ)=L%JKQK@JJH=Q

The last equation in (1) follows from Lemma 2 and the fact that f is
holomorphic. By (1) and Lemma 1 we obtain

@ fEVK(E 20 = [ {II(ARY
J Y& MNenxA, ¢, A\)e@P)xA,

(recall that the summation X, is extended over all multi-indices from
{1,..., N}). Now notice that for ({,A) € (0P) X A,, K(, z, A) involves
only the Bochner-Martinelli section y°. It follows from Theorem I.1
applied with the Bochner-Martinelli section y° and the holomorphic
function f on the variety V' that

(3) K, 2,0) = ¢} . f(2)

where

'/(.f,)\)e(aP)XAO

C:,’m — (_1)mn(_l)n(n—l)/2+1(27”.)n—m(n _ m)

Now observe that for ({,A) € 7, X A,, (J C {1,..., N}) we have

(4) (ég + dA)Yl =dyy,
and therefore for (§{,A) € 7, X A,
(5) K@, z,0) =X (-1)"4" A dyy, A B"(§)
' 2}
(recall that ¥, is extended over multi-indices I = {i, < --- <i,} C

{1,...,n}). Since, by (5), K(§,z,A) is a (n— m — 1)-form in
d\,...,d\ the only terms in the sum of (2) which do not possibly
vanish are those for which J has exactly (n — m) numbers. So (2) can be
written (also in view of (3))

(6) T fEVK (S, 2,0) = ¢, ,f(2)
J* YN ETL XA
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where X . is extended over J* = {j, < --- <j,_,} C{1,...,N}. All
that remains to be computed now is

(7) f K(¢,z,A) (¢ restricted to 7,4 ).
A€,
Sofixa J*={j, < -+ <j,_.} €{1,..., N}. Now the coefficient of
Ny = AT hesdN, DA g dyy, (1= (ig < -+ <i,))is
Bl = a(yl,...,?,o,...i?ll,...,?,.m,...,yn).
’ (A, ,...h LN, )

Therefore the “coefficient” of 7, in K({, z, A) is
Z (_1)\”AIBSIIBh(§)
I
which is equal to the following:

(8) (-1 V2 det( Hyyoo Hy Yo Y2 YY) BE(E)
= (—1)('"““1)("’”)/2)\hdet(H1,...,Hm, v, Yfl,.“,Yjs’_“’y,-n_m)ﬁh(g)

- (—1)(m+1)(m+2)/2(—1)s_1}\kdet(Hl,---,Hm, le"..,,y_/n_m)ﬁh(g‘)

(in the above determinants y denotes the column ‘(y,,...,y,) and y’*
denotes the column ‘(v/*, ..., y/*)). It follows from (8) that

(9)  K(&z,A) = (-1)"" D2 4et(H,, .. H,, ¥y )
X X (-1 A, A BM(E)
s=1
for (§,A) € 7,. X A,.. So in order to compute the integral (7) we need to
compute

(10) [ Y 07,

A€l s—1
Recall that A € A, means A, + --- +A, =1 and therefore dA, =
—(dA, + -+ +dX, ) which substituted in 727" (=1)*7'A 7, gives (after
a computation)

(11) ;1 (-1) "'\, =dA, A -+ AdA (for A € A,.).

jn—m
By (11) the integral (10) becomes

R S
em (p=m = 1)

(12) fXEA A\, A - AdA
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By (7), (12) and (9), (6) can be written

f(Z) = 5;1)712 f f(g‘)det<Hl"">Hm’ ‘Yh?"'?.yl"»m)ﬁh(gl)
J* ¢

G‘rj»

(J*={j; < -+ <Jjoom} €{1,..., N}) which immediately implies the
integral formula of Theorem III.1 and completes the proof.
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