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LINES HAVING HIGH CONTACT
WITH A PROJECTIVE VARIETY

GEORGE JENNINGS

Let % open c P" = P"(C), X C % an analytic subvariety,
J={(p,])€eP"XG(1,n)|pel}
7Y NA
P*  G=G(1,n),

the incidence correspondence with induced projections 7, A, where
G = G(1, n) is the Grassmannian of lines in P".

0. Definition. The contact cones of X are

C" = {(p,!) € 7' |l has contact > r + 1 with X at p}
c* =N C.
r=0

The contact cones may be thought of as schemes of cones in the
tangent space of P” which reflect the local geometry of the embedding
X — %. The main results of this paper are a singularities theorem (13)
which puts an upper bound on the pathology of the contact cones if X is
not ruled, and an algebraization theorem (17) which says roughly that if X
is a hypersurface whose contact cones resemble those of an algebraic
hypersurface of low degree then X is algebraic. Hypersurfaces are the
simplest case—in a future paper we show that in general hypersurfaces
are determined up to projective equivalence by the projective moduli of
the third contact cone with a little help from the ideal of the fourth.

The contact cones have a scheme structure defined in terms of the
functor of principal parts (jets) &7, [5, §16]. Let & be a sheaf of
0;modules. Form the fiber product J X g J. Let ., be the ideal sheaf of

A
the diagonal, and J" — J X g J the subscheme defined by % "!. One has
a commutative diagram
Jr
v & N¢
P q
J <« JXJ - J

103



104 GEORGE JENNINGS

where p, g are the projections. Then
PlcF = qp*F=F®y 2] ,:0,.

27,60 is a locally free sheaf of rank r + 1 consisting of relative r jets of
sections of 0),.
Let £, C 0, be the ideal sheaf of X.

1. Definition. C’, 0 < r < o0, is the zero scheme of the sheaf of
sections P] o(7*Fy) C P70, |U. C* =N ,C" is the intersection
scheme. C; = 77}(p) N C’,0 < r < oo, is the fiber over p € %.

Since J XJ > P" X P is the blow up of P” X P" along the

diagonal the exceptional divisor J is naturally isomorphic to the projecti-
vized tangent space PTP — P”, via the relation “v is tangent to /”. In
particular the relative cotangent sheaf Q ; = .4, /#2 of J is just the dual
0,(1) of the universal subbundle 0, (-1) of #*TP over PTP. J =
Proj(S°Q) o P) where S'Q; ; is the sheaf of graded rings

S.Q.]}/G = 0] @ jA/jAz @ jA2/jA3 @ DN
There is an (additive) sheaf homomorphism dj : 0, > %;,c0, in-

duced by the corresponding map on sections [5, p. 16]. One has a
commutative diagram

d.;/G(W*jX) - df;(%(w*jx) - 0
) )

p

0 - g /FHH! - '@Jr/G@J - 'ng/hle - 0

over 77 '% arising directly from the definition. Define contact ideal
sheaves £y C §'Q] | ,-14 inductively by
f)? =7*Iy By, S'ﬂ}/c

i =Fi + N dyo(748y) + kerp) @, SO ¢

[oe]
e = L Fx
r=0
on 77 '%. £} is the ideal sheaf of C” in §'Qj .
This leads to a convenient version in coordinates. Let x = (x,,..., x,,)
be an affine coordinate system on %, dx = (dx,,...,dx,), p € U, g €

0, 4 Expand in a power series

() g(x(p) +1) = g%(x) + 8'(x; 1) + g°(x;0) + -+
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where ¢ = (¢,,...,t,) are indeterminants and g’(x;¢) is the rth order
term. Replacing ¢ by dx,
(10) Fx=(g(x;dx) |0 <s<r, g€ Fy)

in coordinates.
The geometry of the contact cones is controlled by the “derivative
relation”:

ag'(x;t) g M (x;1) .
(11) ax. - ot ) 1= 1,

1 1

in coordinates (see [S, p. 43] for a coordinate free version).

12. PROPOSITION. If £ =_¢5*! for some r then f,=_¢%, so nC" C
X is ruled (by line segments).

Proof. Let g,,..., g, generate £, over %. By hypothesis there exists
a local relation

m r
g (x;)= X X a,(x;0)gi(x51),  i=1,...,m.
Jj=1 s=0
Differentiate with respect to x, and apply the derivative relation (11):

agir+2 m r ag;‘+1
—t— = Y a;; mod ¢,
RN R ot X

A = 1,..., n. Multiply by ¢,, sum over A, and apply the Euler relation:
(r+2)g"?=0 mod g5

Continue inductively. Since #C* is obviously ruled we are done. (Of
course C” may be empty.)

ExaMPLE. If X C P" is algebraic of degree d then f£f=_¢%. A
partial converse is Theorem (17).

The tangent cone TY C TJ |, of a subscheme Y C J is the locus of
tangent vectors annihilating the ideal of Y. In particular

TC, = (kerm,) N TC"| ¢,
where C] = 77 Y(p) N C" and m,: TJ — 7*TP is the differential.
7C; C % is a cone with vertex at p. Identify T, ,C; with the corre-
sponding plane in P” tangent to #C, along /. In local coordinates (9)
T, ,C, is the plane through x( p) cut out by the hyperplanes

Zig—s(xa#—;—tl(xi—x(p))=0, s=1,...,r, g € SFy.



106 GEORGE JENNINGS

Over a dense open subset #°C C” the fibers T, ,C; will have locally
constant dimension. We shall say that 7, ,C; is locally constant along / if
A1) N # is nonempty and 7, ,C; is locally constant as a plane in P”
along ‘Y ()N #.

It is easy to write down the condition for this to happen, using the
coordinates of (9) (for a coordinate-free method, see [1, p. 10] “second
fundamental form”). Let (X, ) represent (p,/) € NN )N #". X}() is
locally parametrized by s — (x + st,t) for s near 0. Regarding 7, ,C; as a
subspace of C"*! we have a vector bundle 7,,C! over = '(/) N #". Let
v(s) = X a,(s)d/0¢; be alocal holomorphic section, so that

= Za,.(s)%%—(f + st,f), forallge fy,v=1,...,r,

identically in s. T, ,C; is locally constant along / iff for all such sections v
the derivative

0= Za(s)%—(x-%—st i), v=1,...,r, g €5y,

1

also vanishes identically.

13. THEOREM. Fix r > 1. Suppose
zc{(p,eC T, C =T, ,C;

p,

is a nonempty subscheme, and wZ contains an irreducible component of
7C""! as a subscheme. Then

(i) Z c C*,

) 7,,C,° v is locally constant along the rulings [ for generic (p,l) € Z.

Proof. We work in the coordinates (9). Let (X,7) = (p,/) € Z, v =
Yad/dx,+ Lbd/0t. Then ve T, C'"' iff for all g€F, 4, »=
0,...,r—1,

v ag”
0=dg'(v) = Lags + Do = La b +zb,at

By the Euler relation, vg*(X, 7) = ¥,7,g”/d¢,. Since (p,/) € C’, T, ,C"™*
contains w, = X.7,d/9x, (11).

Since 7Z contains a component of 7C"™!, and Zc C"c C"}, it
follows that at a generic point ( p,/) € Z the differential =,: 1},,,C T
mT, C7 1 is suxjective Its kernel is 7,,C;. But T,,C; =T, ,C;7},

T, C =T, 4C7 % In particular w, G TC’, so 0 = Ztag /ax =
Zt ag'“/at =(r+ 1)g""(X,1). Hence Z c C"*1,
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Now let v, =Xbd/dt,€T,,C;”" be any vector and set v, =
Lbd/dx,. Then v, € T, ,C;, hence for all g€ S, 4, 0=2Xbag"/0t,
v=1,...,r. Thus v, € TI;’,C"I. But 7},,,C’”1 =7,,C,s0 v €T,,C,
thus v, € T, ,C;*'. Therefore T, ,C; = T, ,C;*" and (i) follows by induc-
tion.

As for (ii), if s — (X + sf,7) is a local parametrization of A™'(/) and
Ya,(s)d/9¢, is a local holomorphic section of T.,C.~" over A7'(/) then

0=Y a,.(s)%f—()'c + sf,f), hence

2. v

- v ,.08 . 0°g - _
O—;ai i +§a,.tjatiaxj, v=1,...,r—1,

but 3%’/d1,9x, = 3’g"*! /91,31, so the second term vanishes by the

3 : r-1 __ r
Euler relation since T, ;™" = T, ,C,.

REMARK. If X is ruled then the hypotheses of (13) are satisfied for
some r.

EXAMPLE. Fundamental Forms. (See [4, p. 373].) In affine coordinates,
the rth osculating space 7,X C P" is the span of p and the derivatives
o’'(p),...,a"”(p) of all open curves o C X through p. Let p » y'(p) =
T;X be the associated rth order Gauss map. There is a natural way of
representing its derivative at a generic point p by an element

dy'(p) € H'(PT,X,0(r + 1)) ® N,(T/X)
where N(T,X)=T,P"/T(T;/X) is the normal space. dy'(p) is the
r + 1st fundamental form of X at p.

Let v = Xa, .0 be any local section of the associated bundle T"X
(with fiber (T"X), = T;X) defined near p. Then

v(p)= T a0 modT,(7;X)
in coordinates. So define dy” by
[dv(o"(p)® )| adg = (g20) " "(p), forall g€ .5y ,.

(This does not depend on any choices.)
The associated linear system

L' = {dy 1818 € NX(T/X)} c H'(PT, X, 0(r + 1))
is contained in the ideal of C; *+1 (viewed as a subvariety of PT, X). (Since

p is a generic point we may represent X asa graph y; = f,(x), j = 1,...,k,
x = (x,...,X,) in affine coordinates near p. If g = Ya,y; vanishes on
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T;X then dy"idg=ZXaf/*(x(p);dx). For r =1 this is the r + st
order part of an element, Y a;(f,(x) —y;), of Fy). Geometrically the
reason is that, if (p,/) € C; *1 then choose a curve o C X through p
which meets / through order r + 1. ¢’(p),...,6*D(p) lie along / C
T)X C T;X, soif g vanishes on T,X then (g°a)"*P(p) = 0.

At a generic p, L? generates the ideal of sz in PT, X, but this is not
in general true of the higher L"’s. For example, if X is a hypersurface, not
a hyperplane, then T,’X = P" so L’ = {0}. But #3 # ¢3¢ unless X is
ruled (12). A less trivial example is the following, due to Mark Green:

EXAMPLE. (Green [3].) Consider the surface X C P* parametrized by
p(s,t) = (¢t,s2t%, 553, s1%t)
in affine coordinates. Then
¥ _ s
a2 0s’
so every Q € L? vanishes on (3p/3¢)®2 In fact
L? = span{ds?, ds - dt}.

By a result of Griffiths and Harris [4, p. 373], the Jacobian system of L"*!
is contained in L”, r = 2,3, .... It follows that

L'=0 mod{ds",ds"™'-dt}, r=203,....

Griffiths and Harris conjectured that any surface with such L"’s ought to
be ruled [4, p. 377]. But X is not ruled. In particular, by (12), the L"’s
cannot generate the ideal of C; if r > 3 at a generic p.

ExaMmpLE. [4, p. 387]. The second fundamental form represents the
derivative of the Gauss map y = y'. kerd Y, (projectivized) is the common
singular locus in PT, X of all the quadrics in L*.

Conversely if, at a generic p € X, all the quadrics in L? have a
common singular locus Z,, then the hypotheses of (13) are satisfied with
r = 2: take Z = UZ,. Then X is ruled by the planes 7Z,, which are the
fibers of y (locally).

Examples of such X are cones and developable varieties. Recently F.
Zak [7, p. 540 see [2] for a proof] proved that if X is a smooth algebraic
variety of degree > 2 then the fibers of y are finite (zero dimensional).

14. COROLLARY. Let X C % be an irreducible variety. If X is not ruled
then over a generic p € X the dimensions dim 1,C,r=01.2,..., are
strictly decreasing to zero for all (p, 1) € #7'(p).
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Proof. Let Z" = {(p,]) € C"|T,,C; =T, ,C;~'}. Z" is an analytic
variety. Since 7 is proper, #Z" is an analytic subvariety of X. If X is the
countable union X = U® ;7Z” then one of the Z"’s, say Z’, must map
dominantly to X. Restricting to an open subset one may assume Z” is
surjective. Then X = #Z" = #C"~1. Apply (13).

The following answers a question in Griffiths and Harris [4, p. 450].

15. COROLLARY. Let X C % be an irreducible hypersurface, p € X a
generic point. Then for eachr = 1,...,n = dimP”, if C; is not a smooth
complete intersection of type (1,2,...,s) in P(T,P") for all s = 1,...,r (if
s = n this means C} is not empty) then X is ruled, and C, is singular or has
codimension < r in P(T,P").

Proof. Let g be a local generator for . Then C; = {¢| gi(x(p); 1)
= -+ =g'(x(p);t) =0} in P(T,P"). Let 1 < r < n be the least integer
such that C; is not a smooth complete intersection of type (1,...,r).
Then C; is singular or C; = C;~". Since C; has codimension at most 1 in

C; ' it follows that for some (p,!) € C;, T, ,C; = T, ,C;". Apply (14).

If X is ruled then say the rulings are in general position if (spanC;°)
= PT,X at a generic p € X.

16. LEMMA. Let % C P" be an open set, X C % an irreducible, ruled
variety whose rulings are in general position. Then X is piecewise linearly
connected i.e. given p,q € X there exists a finite sequence l;, i = 0,...,m,
of line segments in X such thatp € l,, q € 1, and I, meets 1, _, for each i.

Proof. Let Y C X be the locus of points p € X such that C;° spans
T,X. Y is a dense open subset. Let %’ C % be a convex open subset such
that "’ N X C Y is nonempty. Let X’ C %’ be an irreducible component
of %’ N X, and let C* be the oo contact cone of X’ in 7 '%’. Let
pEX.

Since 7: #7'%’ — %’ is a proper map one can define a sequence of
analytic subvarieties of X by

Cr'(1) = = Cr’, Cr'(k+1)= mr‘lC;?’(k), k=1,2,3,....
Clearly C”(k + 1) consists of all points in X’ connected to points in
C'(k) by line segments in X'. Eventually the dimension of C;*'(k) will

reach a maximum. Then a generic smooth point q” of C;*'(k) is also a
smooth point of C*'(k + 1). But C*'(k + 1) contains all the lines in X’
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through g’. Since the rulings are in general position, dimC;”"(k + 1) =
dim X". Since X’ is irreducible, C'(k + 1) = X

Now replace X’ by X, %’ by %. Going through the same construc-
tion, construct C’(k + 1). Then C'(k + 1) € CF(k + 1); since X is
irreducible, C?(k + 1) = X. So every point p € X can be connected to p’
by at most k£ + 1 line segments, hence any two points can be connected to
each other by at most 2k + 2 line segments.

17. THEOREM. Let X C % C P" be an irreducible analytic hypersurface,
P € X, g €4, x a generator. Assume
() £L =041 forsomed < n — 1.
(i) gi(x(p);t),-..,8%x(p); t) are a regular sequence of polynomials
(i) C/ is reduced.
Then X is algebraic—there is a polynomial f(x, ..., x,) of degree < d (in
affine coordinates) vanishing on X.

Proof. Recall some consequences of (i), (ii), (iii):

18. G/ = {1t € PT,P"|g'(x(p);t) = -+ = g¥x(p);d) =0}, g€
Fx,, @ generator, is nonempty (since d < n — 1), smooth on a dense open
subset (by (i), and C/ = C* (by (12)).

19. Every homogeneous polynomial vanishing identically on Clj’ is in
the homogeneous ideal generated by g, ..., g“.

20. Every homogeneous relation Y¢_,a’g" = 0 is of the form a” =
2.0,.8° where Q, is an antisymmetric matrix of polynomials (19, 20
follow from (ii), (iii); use a Koszul complex).

21. If d'(¢t), i = 1,...,d, are homogeneous polynomials satisfying the
identity

d .
Y a'z>-modgl,...,g% forallA=1,....n
= azk

then a'=0mod g',..., g9 for all i.

Proof of 21. If Z,=1a'dg 0 mod gl, .,g% then 0 = X2 1a’dg A
dg* A --- A dg A -+ ANdg?= +aldg" A --- Adg?mod g',..., g% By
18, dg' A --- Adg?+ 0 on a dense open subset of C/, so a/ = 0 on C/.
Apply 19.
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22. The points of Cp" are in general position in the hyperplane
g'(t) = 0 (by 19, since deg g’ = i).

Proof of theorem. We may assume g generates £, on %. Taken
together (i1), (iii) are open conditions—assume they are satisfied every-
where on %. We shall work in the ring 0,[¢] of polynomials in ¢ with
holomorphic coefficients. All polynomials are homogeneous. Degree means
degree as a polynomial in ¢.

Set e =d + 1. As in the proof of (12) one has local relations on
ol

(23) 0 a“"!(x;1)g'(x; 1),

[l
i

1

e+1

(24) = ZO bt i (x;t) g (x5 ).

dega’ = degh’ =i for all i, and a° b° # 0. The idea is this: if f(x) =
g(x)h(x) were a polynomial of degree < e (in x) vanishing on X then,
expanding as a power series, one has 0 = f¢ = X h*~'g’. So one can hope
to recover f from (23).

One may replace b' by b(a’/b°) + a'~Ya'/a® — b'/b%), i=
0,...,e+ 1,(set a”! = 0). Then

aO = bO al — bl
Differentiate (23) with respect to x, and (24) with respect to ¢,:

e+1

_ e aae i i e_,ai _ aae i e+1_[§_g—
_g +i§0a axA_EO E)x)\g+Za T
e+1—i e+1
= Z ab 1+ Z be+1 xgg
2o 9 i=1 I\
forall A = 1,...,n, since deg g° = deg b = 0. Subtract:
_ aae—i abe+1—i ; e—1 el el ag
(23) 0= igo ox, o |® " ; (a -0 )atx'
Since g',..., g ! is a regular sequence it follows (21) that a**! ™' =

b1 modg®...,g¢7! for all i=1,...,e+ 1. Define a¢*! = pe*’,
Write
e+1

(26) brii=at i Y Pgl,  i=0,...e+1,
j=0
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where P,; has degree e+ 1 —i—j when 0<i,j,i+j<e+1 and
vanishes for i, j outside this range. Set
j+1 i+1

Z itl+r,j—r E Jjtl+rii—r

Then 4;; = deg 4, —e—i—jforall i, j,and

Jt’
Ai_l,j A;j1=P;+P; foralli,j=0,...,e+1.
Define B, ; by
Ay, + A, —2B,=P,—P, i, j=0,.,e+1
Then B,; = -B);,degB;; = e+ 1 — i —jforall i, j. Set
e+1
ai=a""4+ ) A,.jgf, i=-1,...,e,
j=0
_ e+1 )
bt i=pt1 "+ Y B, g/, i=0,...,e+1.
j=0
Since 4,;, B;; are antisymmetric the a, b satisfy (23, 24). Moreover they

have the nght degree, and a° = a®+ A4,,g° does not vanish near the
locus (g° = 0). Finally, one may check using (26), that

'=b, i=0,...,e+1.
Replace the a, b’s by the @, b’s in (23, 24). Then (25) becomes

€ aae—i aae+l—i) )
0= — Y A=1,...,n.
,.41:0( ox, o, |8

Subtract (9a®/dx, — da'/0t,)/a® times eq. (23) from this and get
e—1 e—1 e+1—i e—i 0 1
_ da da a da da ;
0= EO{ TN TR ( ax, o1, )}g
a homogeneous relation among the g'’s. Reducing mod g° one can apply
(20), then by adding an appropriate multiple of g° one has

9a°!  da*'"t  ai[3a° dat\ I
27 = + +
(27) o, o, (axA A, jZOQ

i=0,...,e—1,A=1,...,n,degQ) = e — i — j where Q) is an anti-
symmetric matrix of polynomials.

Multiplying (23) by 1/a° we may assume a° = 1. Then for i = e — 1
(27) becomes
da' _ da® 8a

(28) PN TN

+ Qe 108 + Qe)"—l,lgl-
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Consider the form

o= 2——dx do = Zaa,\dt dxy A dx,.

Applying (28),

dx, A dx,.

. dg’
do = gOZ Qtlodx,\/\dx +ZQ€ llat

I
Since X (dg'/0t,) dxﬂ = dg°, @ is closed along (g° = 0). So locally along
(g° = 0) one can solve the equation d log #(x) = ®. Multiply the a’’s by
h(x). Then

da’ 0 ;.0
(29) Z axx ; i, dx, modg°, dg°.
Let x € X. Define a polynomial f(x) of degree < ¢ — 1 by
e—1 i
(30) f(x)=Y X a(xx—3)g/(%,x - X).
i=0 j=0

It remains to show that f vanishes on X. Clearly
(31) 0=/%(x) = a°(%)g"(%),
fi(xt)=Y a7 (x;1)g’(x;t), r=0,...,e—1, and

j=0
fe(x;1) =0.
Define functions
r—1 r—
Rx) =T 2 (i 0gixi0) + ¥ a(xi0) 3 (xi0),
=0 9 ) a1,

r=1,...,e,A=1,...,n.

In particular f{ =0 by (23), and f{ is homogeneous of degree r — 1.
Differentiate:

af”r ~ af#r+l i (aa —j aar+l-—j) agj

e—1

~o 0
ox, o, ox. oy modg’, ..., 8
Then substituting in (27, 29) this becomes

afy'r fr+1 - o
(32) ;(ax,\ ar, dx, =0 modg’..., g, dg".
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Let /(s) = (x + st,t) be alinein C¢"'. Then g% ..., g° ! vanish on

l. So by (32)
(33) 4 fr(x +st,t) =3t %(x t) =rf7Y(x,1)

ds |o'* ’ ~ Moxy " T
along /. Now it is easy to show that functions £, homogeneous of degree
r — 1 in ¢, satisfying (33) and the condition f;= 0 are uniquely de-
termined along a line by their values at a single point.

On the other hand the functions (9f7/9d7,)(x; ¢) derived from the
polynomial (30) also satisfy these relations, moreover they agree with the
f.’s at any point (X, ) lying on a line in C¢ ! through x (differentiate
(31) at X). By (22) the rulings of X are in general position, so by (12), (16)
f. = df"/dt, everywhere on C*~ 1.

In particular 9f'/9¢, = f+ on C*'. But df® = X(3f'/9¢,) dx, and

1 - ( da’ , 098 ) = 0 7,0
Y fldx, =) |+—g°+ a3 |dx, =0 modg®, dg°.
oz, 1,
Hence f° is constant = f%(Xx) =0 on C* % Since #C* ' = X (18), f
vanishes on X.

ExampLE. If C] is not reduced then the conclusion of (17) may not
hold.
Let X c P? be the cylinder

X = {(x, x,, x;)|g(x1, x,) = 0}
in affine coordinates. X may not be algebraic (if g is not).

gl(x§ dx) = gy dx; + g,dx,

g*(x;dx) = %(811 dxi + 2gy, dx, dx; + 822dx§)

etc., where g, = 0g/dx,. If g}(x(p);dx) # 0 and g'(x(p); dx) does not
divide g?(x(p);dx) then g', g? are a regular sequence generating any
homogeneous cubic in dx), dx,. In particular g° = 0 mod g', g*. C; is
supported on the point [dx,, dx,, dx;] =[0,0,1] but it is not reduced,
since { dx,, dx,,} ¢ #z.

I would like to thank my teachers at UCLA, especially Mark Green,
for their invaluable help and encouragement.
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