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A DUALITY PRINCIPLE FOR RATIONAL
APPROXIMATION

GERHARD GIERZ AND BORIS SHEKHTMAN

Let E a C( AT) be a subspace of continuous functions defined on a
compact Hausdorff space K. We characterize those spaces for which the
rational functions with denominators and numerators from E are dense.
Despite the non-linear structure of rational functions, this characteriza-
tion uses only methods from linear functional analysis. As special cases,
we recover various results on the density of Muntz rationals.

Introduction. Let AT be a compact Hausdorff space, and let C(K)
be the space of real-valued continuous functions on K. For an arbitrary
subspace E c C(K) let

R(E) = ( | : g,h €= E; h{k) > 0 for all & e

be the set of rational functions with respect to E. In this paper we
investigate conditions on the space E equivalent to the property that
R(E) is dense in C(K). This problem is motivated by an increasing
number of interesting results in approximation theory concerning rational
approximations (cf. [4], [6]), and in particular by the question of D. J.
Newman as to what makes the rationals dense: 'Apparently rational
functions always want to be dense. There is something magical about
performing that one division' ([4], p. 12). In this paper we propose a new
approach to this problem:

Despite the very non-linear (not even convex) structure of R(E) there
is some linearity built into the set of rationals. The following observation
opens some avenues for classical (linear) analysis to be used here:

b d . b +d
a = — = - implies a = —•— provided c + e Φ 0.

c e c + e

In particular, the main result in the first section (Theorem 1) gives the
following duality principle:

R(E) is dense in C(K) if and only if R(F) is dense in
C(K) for every subspace F,EaF, of codimension no
greater than 2.
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This result resembles very much the classical duality principle (a
linear subspace E in any normed linear space is dense if and only if every
hyperplane containing E is dense).

The rest of §1 contains numerous variations and corollaries of this
principle. Section 2 consists of some examples. In the third section we use
the duality principle to recover the results of G. Somorjai, J. Bak and D. J.
Newman on Mύntz rationals. In the last section we provide some addi-
tional remarks on the density of certain classes of rational functions.

In summary, this paper shows that the density of R(E) can be
completely decided from the structure of the linear bounded functionals
on C(K) which annihilate E.

1. Theory. We identify the set Jί(K) of all regular Borel measures
on K with the dual C(K)* of C(K). If μ is a linear functional on C(K)
vanishing on 2?, we write μ _L E. For a measure μ on K and a continuous
function φ E C ( ί ) we define a new measure φμ on K by the equation

1. THEOREM. The following conditions are equivalent for an arbitrary
subspace E c C(K).

(ϊ)R(E) is dense in C{K).
(ι')R(E) is dense in { /e C(K): 0 < / } .
(ii) For every (closed) linear subspace Fa C(K) such that E c F

and such that codim F < 2, the set R(F) is dense in C(K).
(iii) For every pair ofmeasures μ, v ± E not both 0, for every φ e C(K)

with 0 < φ < 1, and for every ε > 0 we have φμ + (1 — φ)v ψ ε(\μ\ 4- |J>|).

(iv) For every pair of measures μ,v ± E not both 0 and for every
f^C(K) we havefμ + v £ |μ|.

(iv') For every pair of measures μ, v ± E not both 0 and for every
nonnegative f e C(K) we havefμ + v ψ \μ\.

(v) For every pair of measures μ, v ± E not both 0, for every ε > 0,
and for every f e C(K) there exists an f ^ C(K) such that \\f - f\\ < ε
and such thatfμ + v is neither positive nor negative.

(vr) For every pair of measures μ, v J_ E not both 0, for every ε > 0,
and for every nonnegative f ^ C(K) there exists an f £ C(K) such that
| |/ — / | | < ε and such thatfμ + v is neither positive nor negative.

Proof, (i') => (i): Suppose that / e C(K) is given. Then / + ||/| |1 is
positive. Hence for every given ε > 0 there are functions g, h e E such
t h a t | |/ + Il/Hl - g/h\\ < ε. I t fol lows t h a t \\f-(g- \\f\\h)/h\\ < ε.
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(i) => (ii) is trivial.

(ii) => (iii): Assume that there exists measures μ, v _L E not both 0,

ε > 0 and φ e C(K), 0 < φ < 1, such that φμ 4- (1 - φ)v > ε(|μ| 4 \v\).

Let F = kerμ Π kerp. Clearly, E c F and F has codimension 2. We

show that R(F) cannot be dense. In fact, we will show that the ε'-ball

around φ does not intersect R(F), whenever 0 < ε' < ε:

Pick any function g e C(K) with ||g|| < ε' < ε we have ε(|μ| 4- \v\)

> ε'(|μ| 4- |*>|) > g(μ - v). It follows that (φ - g)(μ - v) 4 v > 0

whenever | |g| | < ε'. Suppose that (<p - g) = α/β, where ||g|| < ε', a,β^

F9 and β(k) > 0 for all k (Ξ K. Then we obtain

0 = (μ - p)(a) 4 p(i8) = (μ - v)((φ ~ g)β) 4

a contradiction! (The last inequality follows from the fact that β(k) is
strictly positive for all k e K and the positivity of (φ — g)(μ — v) 4 v)
Hence the ε'-ball around φ does not intersect R(F).

(iii) => (iv): Again, we assume that (iv') is not true. Then we can find
a positive function / e C(K) such that fμ 4 v > |μ|. Hence, for all
g e C(ϋ:) with ||g|| < 1 we have fμ 4 v > |μ| > gμ. Especially, if ||g|| <
1/3, then \\g - 2/3|| < 1, hence ( / 4 2/3 - g ) μ + ^ > 0 . Moreover,
since μ/3 = sup{gμ: ||g|| < 1/3}, we have ( / 4 2/3)μ 4 v > μ/3. Let
/o = / + 2/3. We obtain

4 ir > }μ; /0(fc) > | for all t e ί .

Moreover, for every / in the ball with radius 1/3 we have f(k) > 1/3 > 0
and fμ 4 v > 0. Let g0 = l//0 and choose M such that ||/0 | | < Af/3. We
claim that

Clearly, go(k) = 1//O(A:) > l/| |/0 | | for every k e K. Now assume that
\\g - g\\ <1/(M+ l) | |/ 0 | | . Then g(k) > M/(M + l ) | | / 0 | | > 0 and

/o(*) 1

(M+l)||/ol|2 1 ll/oll 1
M ( M + l ) | | / 0 | | - M - 3
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for all k e K. It follows that ||/0 - l/g|| < 1/3, and thus (l/g)μ + v > 0.
This clearly implies μ 4- gv > 0 whenever g belongs to the ball of
radius 1/(M+ l) | |/ 0 | | with center g0. Using again the equation \v\ =
sup{g*>: ||g|| < 1}, this yields

If we let

then

Now

we obtain

let

P

/o/* + v ^

( l+/o)

mini -T,

p\μ\ and

lμ+(l +

(M

μ +

go)'

(1 +

1

So"

c >

/o)

)ll/oll/'

> p |4 thus

<p(|μ| + kl)

φ =

and

' = 2 4- ||/0 | | + ||go|| *

It follows that φμ 4- (1 — φ)v > ε(|μ| + \v\), contradicting (iii).

(iv') => (v'): Assume that there is a function nonnegative / e C{K), a
pair of measures μ, *> ± £ and an ε > 0 such that for every / with
ll/~/ll < ε Λe linear functional fμ + μ is either positive or negative.
Consider the set

A = {fμ + v: | | / - / | | < ε } =/μ4-*>+{gμ: ||g|| < ε}.

Then A is convex. Hence, if A contains strictly positive and strictly
negative elements, A has to be a line segment containing 0. (Indeed,
assume that yλ e A is strictly positive and that γ2 e A is strictly negative.
If γx and γ2 were not linearly dependent, then for every 0 < r < 1 we
have either ryx 4- (1 — r)y2 > 0 or ryx 4- (1 — r)γ 2 < 0. Hence {r: ryλ

4- (1 - r)γ 2 > 0} and {r: ryλ 4- (1 - r)γ 2 < 0} are non-empty disjoint
closed sets covering the unit interval, a contradiction. It follows that every
such pair of elements of A is linearly dependent, and therefore A has to
be a line segment containing 0.) Since 0 e A, we can find a function h
such that fμ 4- v = hμ, i.e., A = Λμ + {gμ: ||g|| < ε). Moreover, since
0 Gi4, we may assume w.l.o.g. that \\h\\ < ε. Consider the elements
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(h + ε)μ, (Λ — ε)μ ^ A. If both were positive, we would obtain hμ > -εμ
and hμ > + εμ, i.e. hμ > ε\μ\ > gμ for every g e C(K) with ||g|| < ε.
This would imply γ > 0 f or every γ G ^ , contradicting our assumptions.
Similarly, if both (h + ε)μ and (h — ε)μ were negative, we would arrive at
the contradiction γ < 0 for every γ e A. Hence we have either (h + ε)μ
< 0 and (h — ε)μ > 0 or vice versa. In the first case, we obtain hμ < -εμ
and -hμ < -εμ, i.e. \hμ\ < -εμ. This implies that -μ is positive. The
second case yields μ > 0. In any case, we would find a positive measure
μ' JL E, contradicting (vi') with / = 1 and v = 0.

Hence, 4̂ contains either only positive or only negative elements,
w.l.o.g. fμ + v > 0 whenever | | / - / | | < ε. This implies fμ + v>gμ for
all g e C ( # ) , ||g|| < ε. Since sup{gμ: ||g|| < ε} = ε|μ|, we conclude that
fμ + v> ε\μ\, i.e. (f/ε)μ 4- (v/ε) > \μ\, contradicting (iv')

(v') => (ivr): Suppose we could find a pair of measures μ,v ± E and a
function / ^ C(K) such that /μ 4- v > \μ\. Then for every g e C(A:)
with ||g|| < 1 we would have /μ + v > \μ\ > gμ, i.e. (/— g)μ + v > 0,
contradicting (v') with ε = 1.

(v') >̂ (i'): Suppose that R(E) is not dense in {/e C(i^): 0 < / } .
Then we can find a nonnegative function / e C(iΓ) and an ε > 0 such
that the ε-ball around / does not intersect R(E). Consider the following
subset of C(K)XC(K):

Cfε = {(g,Λ): h(k) > Oforall k G Ϊ ; | | / - g/h\\ < ε}.

The equivalence | |/ - g/h\\ < ε if and only if -εh(k) < f(k)h(k) - g(k)
< εh(k) for all k ^ K shows that Cfε is an open convex subset of
C(K) X C(K). By assumption, C Π E X E = 0 . Hence we can find
measures μ and v such that

(a) E X E c {(α,jβ): μ(α) + K 0 ) = 0};
(b) C A e Π {(«,£): μ(α) + Ki8) = 0} = 0 .
Clearly, (a) implies that E c kerμ Π ker p, i.e. μ,v ± E and clearly μ

and ^ cannot be both equal to 0. We will show next that fμ + vis either
positive or negative whenever \\f — f\\ < ε: Assume that for one such /,
the linear functional fμ + v is neither positive nor negative. Then we can
find a strictly positive function h such that [fμ + v](h) = 0. Let g = fit.
We find (g, Λ) e C / ε Π {(α,j8): μ(α) + ^()8) = 0}, contradicting(b).

(ii) =» (iv) is similar to (ii) => (in).
(iv) <=> (v) is completely analogous to (iv') <=> (vr).
(v) => (vr) is trivial. •
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Let us consider some special cases.
If μ is a measure on a compact space K, and if / e C(K), f Φ 0, is

given such that μ(/) = ||μ||||/H, then we say that μ peaks atf. It is easy to
see that fμ > \μ\ implies that μ peaks at (-1) V (/Λ 1). Moreover, μ
peaks at / for some / e C(K) if and only if suppμ+Π suppμ_ = 0.

It was shown in [3] that for a hyperplane E = kerμ the set R(E) is
dense if and only if μ does not peak. For subspace of codimension 2 we
have

2. COROLLARY. Let μ,v be two measures on K neither of which is
peaking, and assume that there is a point x e (suppμ+Π suppμ_) \ supp v.
If E = kerμ Π ker v, then R(E) is dense.

Proof. Assume not. Then, by Theorem 1, we can find an ε > 0, a
function / e C(K) and constants r, s, a, b e 9ΐ such that

f(rμ + sv) +(αμ 4- bv) > ε\rμ + sv\.

Let A be a closed neighborhood of x disjoint from supp v. Since restric-
tion of measures to closed sets is a lattice homomorphism, we find

r{f\A){μ\A) + a{μ\A)>ε\r{μ\A)\.

If r = 0, then αμjyl would be positive, which is only possible if a = 0,
since X G ^ Π suppμ+Π suppμ_. It would follow that fsv 4- bv > ε\sv\.
Hence either bv would be positive (if s = 0) of (fs + b)(ε\s\)~ιv > \v\, in
which case v would peak by the above remark. We conclude that r Φ 0.
Hence

i.e. μ\A would peak, contradicting the fact that x e supp(μ|^4)+Π
supp(μ\A)_.

3. COROLLARY. Lei E c C(K) be a linear subspace and assume that
there is a point x0 e K such that x0 G suppμ+Π suppμ_ for every μ JL E.
ThenR(E) is dense.

Proof. Assume not. Then by condition (v) of Theorem 1 there exist
measures μ, v ± E, there exists ε > 0 and there exists a function / e C(K)
such that fμ + vis either positive or negative for every / e 5 ε(/). Pick a
function / such that | |/— / | | < ε and such that / is constant on a closed
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neighborhood A of x0. Let r = f(x0). Then

(rμ + v) \A = (fμ + v) \A > e|μ\A\ > 0,

contradicting the fact that x0 e supp(rμ + v) + Π supp(rμ + v)_. D

4. COROLLARY. Let K= {1/n: « G N } U { 0 ) . 27ie« /or a linear
subspace E e C(K), R(E) is dense if and only if no measure μ ± Epeaks.

Proof. Since 0 is the only point of K which is not isolated, a measure
μ on K does not peak if and only if 0 e suppμ+n suppμ_. Hence the
result follows from Corollary 3. D

We will see that Corollary 4 is not true in general. As a matter of fact,
it is never true in a space K which has two accumulation points.

2. Examples. Our first example shows that it may happen that
R(F) is dense in C(K) for every hyperplane F containing E, but R(E)
itself is not dense:

1. EXAMPLE. Let K be the real interval between 0 and 5. We define
two measures μ and v by

and

= ί g(x) dx- [ g(x) dx + ί g(x) dx- f g(x) dx
Jo Jλ J3 J4

= ί2 g(x) dx-lt g(x) dx + 4[5 g(x) dx.
Jo J3 J4

Let E = kerμ Π ker^.
Firstly, we check that R(E) is not dense: Pick a continuous function

/ e C[0,5] such that f(x) = 0 for 0 < x < 2 and f(x) = 3 for 3 < x < 5.
Then

= ί2 g(x) dx + Γ g(x) dx = \μ\(g),

i.e., fμ + v = \μ\. Hence R(E) is not dense by (1.1). Now consider any
hyperplane F containing E. Then F = kerγ, where γ = rμ + sv for
suitable r, j e 9t. It turns out that for every choice of r and s, either
1 e suppγ+Π γ_ or 4 G suppγ+π suppγ_. Hence R(F) is dense by
[3]. •
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2. EXAMPLE. Let K = [0,2ττ] be the set of real numbers between 0
and 277, and let E c C(K) be given as follows:

: [lmf(x)sinxdx= f2" f(x)cosxdx = o).

We will show that R(E) is dense in C([0,2ττ]). First of all, note that every
measure μ orthogonal to E is of the form

μ(g) = I g(x)(acosx + bsinx) dxJo
r2iτ

= r I g\x) c o s ( x + a) dx

for certain constants r e 9ΐ and a G [0, 2TΓ]. Hence it follows from the
result in [3] that for every hyperplane F containing E, the set R(F) is
dense in C([0,2π]). Hence, if R(E) were not dense, then we could find
linearly independent measures μ, v ± E, a continuous function φ e
C([0,2ττ]), 0 < φ < 1, and ε > 0 such that

Representing μ as μ(g) = r^j^ g(x) cos(x + a0) dx and
r i ίo" g(x) cos(x + αx) dx, we obtain

φ(x)r0cos(x + α0) + ( l - φίx^^cosίx + αx)

> ε(|r0cos(x + αo)l + kicos(x + aλ)\).

It follows that r0cos(x + α0), and ^cosίx + ax) cannot be simulta-
neously negative, and hence α0 — ax is a multiple of TΓ, contradicting the
fact that μ and P are linearly independent.

3. EXAMPLE. Let K be the set of real numbers between 0 and 2π and
define £ c C(K) by

2": [2"f(x)sinxdx= C"f(x)co$2xdx =

Then, contrary to Example 2, R(E) is not dense in C(K). If we define
μ(f) = f^πf(x)smxdx and v(f) = /0

27r/(x)cos2xdx, then μ and v are
orthogonal to is, but for f(x) = 2 sin x we have

fμ + v = 2 sin2* + cos2x

= (1 - cos2.x) 4- cos2x = 1

> |sinx| = |μ|,

hence R(E) is not dense by Theorem l.(iv).
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3. Approximation by Muntz Rationals. In this section we will use

our approach to recover the results of G. Somorjai [5] and J. Bak and D. J.
Newman [1] on approximation with Mϋntz rationals. We will start with an
abstract version of the theorem of Somorjai:

1. DEFINITION. Let 0 < a < 1 and ε > 0. A function zεa <E C[0,1] is
called an ε-zoomer at a if zε a(r) > 0 for all 0 < r < 1 and

(i) zεa(x) > 1/ε for x > a + ε;
(ii) zεa(x) < ε for x < a - ε. D

2. THEOREM (cf. [5]). Let E c C[0,1] be a subspace such that E
contains an ε-zoomer at a for all a ^ [0,1] and for all ε > 0. Then R(E) is
dense in C[0,1].

Proof. Let μ ± E, μ Φ 0. We first show that

(1) t0 = sup{/: t G suppμ} G suppμ+Π suppμ_.

For a proof of this statement, it is evidently sufficient to show that for any
neighborhood U containing the point t0, the restriction μ \ U is neither
negative nor positive. Contrary to it, let us assume that there exists an
interval [/ — 3η, to]9 η > 0, where the measure μ is strictly positive. Then
it is also strictly positive on the interval [/0 — η, / 0 ], hence μ([t0 — η, t0])
> 8 for some 8 > 0. For every ε e (0, η] we have

) dμ(s)
0

/.I

3" ze,to_η(s) dμ(s) + f ^ z.th_n(s) dμ(s)

>-s: 2M o_,(,) dμ(S).

Letting ε tend to 0 we have (by definition)

0
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while

Jt0

--+ oc?

which gives us a contradiction.
To finish the proof of the Theorem, we have to show that for any pair

of measures μ, v ± E,

(2) i?(kerμΠker*>) =

We consider two cases:
(1) Suppose that for some pair of measures

vλ = aλμ + βλv\ v2 = a2μ + β2v

we have supίsupp*^) > sup(supp^2) Then we have t0 = supίsupp*^) e
supp vλ Π supp vλ_ and t0 & supp^2 Thus (2) holds by Corollary (1.2).

(2) Suppose that t0 = suρ(suppp) = sup(suρpα/ι, + βv) for all a,β
e dt. Then t0 G supp(αμ + βv) + Γ\ supp(αμ + βv)_ for all a,β, hence
(2) follows from Corollary (1.3). D

We are now in the position to prove the following

3. THEOREM. (Somorjai [5], Bak and Newman [1].) Let Λ be an

infinite set of positive real numbers containing 1. Let

E = span{/λ: λ e Λ} c C[0,l]

/Λ C[0,1].

Proof. We consider three cases:
(I) Λ contains a strictly decreasing sequence (λj) such that li

= 0. We want to show that 0 e suppμ+Π suppμ_ for every 0 Φ μ ± E.
(In this case, the result follows from Corollary 3.)

Firstly, we show that for every ε > 0

Suppose not. Consider the function

f(z)=f1tzdμ(t)=f1tzdμ(t), zeC.

Then f(z) is an entire function (cf. [2]), and /(λ y) = 0 for all j . Hence
the zeros of / have an accumulation point. Consequently, f(z) = 0 for all
complex numbers z and therefore μ = 0.
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It now remains to show that for every η > 0 such that 3η < e~ι the
restriction of μ to the interval [0,3η] is neither positive nor negative.
Suppose that

(3) (μ | [0 ,3η])>0.

We first observe that μ(0) = 0. Indeed,

0 = lim μ(l - tλ') = μ(0)

since 1 — tλj -> 0 for t ^ (0,1]. Hence the assumption (3) implies that
(μ|[δ,η]) > 0 for every 0 < 8 < η.

Let ε > 0 be given. Choose k so large that 1 — tλk < ε for all
/ <Ξ [δ, 1]. Let k = -ln(2τj). Consider the function PN(t) =
N\[λk,..., λk+N]ts where [λ^,..., λk+N]ts is the iVth divided difference
at t\ where ts is viewed as a function of s (cf. [2]). By the mean value
theorem we can find a number λ(t) e [λk+N, λk] so that PN(t) =
tλ(t)(lnt)N. By the definition of divided differences, PN(t) <= E and
QN(t) = PN(t)/KN = tHt\(\nt)/K)N has the following properties (for
even n):

(i) QΛ*) * 0;
^ o o ρ n ( r ) = oofor ίe[δ,η] ;

Similarly to the proof of (3.2) we have

O-μ(βJ-/ QMdμ(s)+ QH(s) dμ(s)
J0 J3η

>fQn(s)dμ(s)- f Qn(s)dμ(s)
Js J3η

Since the first integral tends to infinity and the second integral tends to
zero, we have a contradiction.

(II) Assume that Λ contains a sequence (λy) such that l i m ^ ^ λ7 =
oo. In this case it is sufficient to observe that the functions zea(t) =
(t/a)λj e E are zoomers for sufficiently large λ7. Hence this case is a
consequence of (3.1).

(III) Finally if Λ contains a sequence (λy) which is bounded and
bounded from below by r > 0, then the Mύntz-theorem (cf. [2]) implies
that E is dense in C[0,1]. Since 1 e £, we have E c R(E) and conse-
quently R(E) = C[0,1].

REMARK. It is interesting to note that in the proof of (3.3) we have
used the same functions which were used in the constructive proof of
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theorem (cf. [2]). However they have been used for a somewhat different
purpose.

Similar results can be obtained in higher dimensions. More specifi-
cally, let Λ = (λj)j be an increasing sequence of positive integers. Let D
be a compact subset of the positive cone in 9ΐ". Let

tni
λ'* Λ } .

Then R(E) is dense in C(D). As a matter of fact, if l i m ^ ^ λy = oo, and
if μ ± £, then points in supp/x which have maximal distance to the origin
belong to suppμ+n suppμ_. If l i m ^ ^ λj = 0 and if D is in the interior
of the positive cone, then E is dense in C(D). If D is not in the interior of
the positive cone, then every point in the support of μ with at least one
coordinate equal to zero belongs to suppμ+Π suppμ_.

These observations raise the interesting question of the density of
R(E Θ E) in C(K X K). We intend to explore this problem in a subse-
quent paper.

4. Further remarks. Let us start this section by pointing out that
Theorem (1.1) maybe also used 'pointwise': The proof of (v') => (i') show
that a function / belongs to the closure of R(E) provided that for every
pair of measure μ, v ± E and every ε > 0 there exists a / with | |/ - f\\ < ε
such that fμ + vis neither positive nor negative. This observation leads to
a generalization of Corollary (1.3) that has a 'set of antisymmetry flavor':

1. PROPOSITION. Let E be a linear subspace of C(K) and let A be a
subset of K such that for every μ ± E we have A Π suppμ+Π suppμ_^ 0 .

C(K) andf\A is a constant, thenf<Ξ R(E).

Proof. Assume that f(k) = r0 for all k e A. For a given ε > 0 pick a
function / in the ε-neighborhood of / such that f(k) = r0 for a certain
open neighborhood U of A. We claim that fμ 4- v is neither positive nor
negative whenever μ, v JL E. Assume not. By multiplying with -1 if neces-
sary, we may assume that fμ + v>0. This would imply that

(roμ+v)\U=(fμ +

contradicting the fact that

A Π supp(roμ + ?) + Π supp(roμ + v)_Φ 0 . •
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The next result follows from (4.1):

2. PROPOSITION. Let λ be a Borel measure on K and let E be a linear
subspace of C(K) such that there exists a set A of λ-measure 0 satisfying
A Π suppμ+Π suppμ_# 0 for each μ J_ E. Then R(E) is dense in Lp(λ)
for every 1 < p < oo. D

Example (2.1) shows that R(E) may be dense in Lp(λ) for every
1 < p < oo without being dense in C{K).

Our last remark concerns Chebyshev Systems. Recall that an n + 1-
dimensional subspace E c C([0,1]) is called Chebyshev, provided that
every non-zero function feE has no more than n zeros. D. J. Newman
(see [4]) conjectured that for a space E containing Chebyshev systems of
arbitrary high dimensions, the set R{E) is dense in C([0,1]). Our Theo-
rem (1.1) shows that we only have to verify Newman's conjecture for
spaces E of codimension 1 and 2. For spaces of codimension 1, the
question can be solved:

3. PROPOSITION. Let E c C([0,1]) be a subspace of codimension 1 and
assume that E contains Chebyshev systems of arbitrary high dimensions.
Then R(E) is dense in C([0,1]).

Proof. Let En be a Chebyshev System of dimension n. It is well-known
that for every given / e C([0,1]) there exists a unique best approximation
g e En to /. Moreover, there are n + 1 points JC0 < xλ < < xn e
[0,1] such that either | | / - g\\ = (-l)'(/(xf.) - g(x,)) or | | / - g | | =
(- l ) ί + 1 (/(*, ) " £(*/)) h o l d s f o r a 1 1 0 <i <n. Now assume that £ = kerμ
and assume that R(E) is not dense in C(K). Then suppμ+π suppμ = 0
(see [3]). Pick a continuous function / such that | |/ | | = 1 and such that
f(k) = 1 for k G suppμ+ and f(k) = -1 for k e suppμ_. We then have
fμ = \μ\. Let En c £ be a Chebyshev subspace of dimension « and let
gw G £M be the best approximation to /. Since μ(gn) = 0, it follows that

= IH 11/11
and hence | |/ | | = ||/— 0|| < \\f — gn\\. Since the best approximation of /
is unique, it follows that 0 = gn. Hence we can find n + 1 points
x 0 , . . . , n such that /(JC, ) = (-l)ΐl/| | = (-1)1'. This last statement is true
for arbitrary large n, contradicting the continuity of /. D
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A well-known example of a space E containing Chebyshev subspaces
of arbitrary high dimension without being dense can be obtained as
follows: Let

' - V : 7 = 0,1,2,...) cC([0,l])

where Λ = { λy: 7 = 0,1,2,...} c (-00,0) U (1, 00) is an infinite set of
real numbers such that Λ Π [0,1] Φ 0. It turns out that for every
measure μ ± E either 0 or 1 always belong to suppμ+Π supp/x_, depend-
ing on whether 0 G it or 1 G A. Hence R{E) is dense in C([0,l]).
However, there is a simpler proof for this fact: It is enough to show that
every polynomial Pn{t) = Σ"= o

 ajtJ belongs to R(E). By partial fractions

and

hit) = - ^ e E.

Hence g(t)/h(t) = Pn(t) e R(E).
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