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ON A THEOREM DUE TO CASSELS

JOSE M. SOUTO MENENDEZ

Using properties of one-dimensional formal groups, a proof is given
of a theorem on the valuations of the torsion points of elliptic curves
defined over p-adic fields.

1. Introduction. The aim of the present note is to give a proof of
Theorem 5, due to Cassels, on the valuations of the torsion points
of an elliptic curve defined over a local field K of characteristic zero.
Cassels's proof relies on the addition formulas for the Weierstrass p
and p' functions. The one given here follows from the properties of
the torsion points of one-dimensional formal groups defined over the
ring of integers of K.

The reader could also look at Oort [5] for another approach to
Cassels' theorem.

2. Torsion points of formal groups. In the following we denote by K
a local field, finite extension of the field Qp of p-adic numbers, with
ring of integers A; we assume that the normalized valuation v of K
is extended to the algebraic closure ^K of K. We denote by p# (resp.
p-g) the maximal ideal of A (resp. of the valuation ring of A), and by
e = v(p) the ramification index of K/Qp.

Let F be a one-dimensional formal group of finite height h > 1,
defined over A; as usual (see [3]), for each a e Zp we denote by
[a](X) e A[[X]] the unique endomorphism of F such that [a](X) =
aX H . The group of points F(p^) of F with values in ~K has a
structure of a module over Z p , by means of the operation ax = [<z](x),
a G Z p , x G F(p-g)\ F(px) is a sub-Zp-module of F(p-^).

Let [p](X) = J2Z\ aixi (ai = P) b e t h e "multiplication by /?" in
the formal group F; setting q = ph, one has flf- € pJC if i = 1 , . . . , # —
1 and v{aq) = 0. We shall be interested in the valuations of the
torsion points x € F(p^). The most convenient thing is to consider
the Newton polygon of the series [p](X), that is the lower convex
envelope of the points (i, v{at)) e R2 (i > 1).

If PQ = (l,e)9 P\ = (qi,ei),... ,Pm = (q,0) are the vertices o f such a
polygon (where e, = v(agi)), the slopes are the negative of the numbers
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a x = ( e - e i ) / ( q i - l ) , . . . , a w = e m ^ x / ( q m - q m _ x ) (ax > a 2 > ••• >
am). If qt < r < qi+x (for / = 0 , . . . , m - 1), for any x E pj one
has v{arx

r) > mf{v(aQlx
qi), v(aqi+lx

q'+l)); moreover, if r > qm = q, for
x E p j , v(arx

r) > v(aqx
q). Therefore, for any x E p ^ with [p](x) = 0,

there exists i = 0 , . . . , m — 1 such that v(aQlx
qi) = v(aqi+lx

qi+l), so that
v(x) = a/+i. Moreover (see Koblitz [4]) the number of roots x epj
of the series [p](X), of valuation a/+1, is qt+\ - ^/.

LEMMA 1. With the above notations, the q\ are powers of p.

Proof. For each / = 1 , . . . , m, the set

{x E F(pw) | [p](x) = 0, ^ (x)>aj

is an elementary abelian p-group (with the operation given by the
formal group law F); as its order is (qt•- qt-\) H h (q\ - 1) + 1, the
lemma is obvious.

PROPOSITION 2. For any x e p^, one has

-ifv(x) < am, then v([p](x)) = qv(x),
-ifai+l < v(x) < aif then v([p](x)) = et + qtv(x)t

-ifax < v(x), then v([p](x)) = e + v(x).

Proof For x E F(p^) such that v(x) < am, then for any r ^ qm = q,
v(aqx

q) < v(arx
r). In fact, when r > q such a relation is obvious

(since v{aq) = 0); when r < q, one may write

v(x) <am = {v{aQm_,) - v(aq))/(q - qm.x)

<(v(ar)-v(aq))/(q-r),

hence v(aqx
q) < v(arx

r).
If ai+x < v(x) < at (with i = 1 , . . . , m - 1), then for any r ^ qt, one

has v(aqix
q') < v(arx

r). In fact, for r > qt this relation comes from

v(x) > (v(aqi) - v(aqi+l))/(qi+x - qt) > {v{aq) - v(ar))/(r - qt)\

for r <qu it comes from

v(x) < {v{aqi_,) - v{aqi))/(qi - q^x) < {v(ar) - v{aqi))/{qi - r).

The case v(x) > ax is discussed similarly.

REMARKS. (1) If v(x) = at, [p](x) / 0 (for / = 1 , . . . , m), arguing
as above, one gets v([p](x)) > ei + ^a / .

(2) For / > ax, x —• [p](x) induces an isomorphism ^(p^) ->
F(PlKe) (of course, we denote by ^(p^) the set p^ with the group
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structure given by the group law F). The injectivity comes from the
fact that in p-^ the zeros of [p](X) have valuation < a\. To show
the surjectivity, let n be a uniformizing parameter of K\ we have
to see that if y € pg is such that v(y) = i + e > a\ + e, there is
x = Uan (t e A) such that [p](Uait) = y; now, the series

has coefficients in A and Weierstrass degree one, so the result follows
from the Preparation Theorem for power series.

(3) If F is the multiplicative group, the Newton polygon of [p](X)
only has one slope. Proposition 2 gives then the well-known effect of
"raising to the pth power" in the group of principal units of the local
field K (or of any of its finite extensions).

PROPOSITION 3. F(PK) is a Zp-module of finite type, whose rank
modulo torsion is [K: Qp\ The torsion subgroup is a finite p-group.

Proof For each / > 1, let us denote, as above, by F{pl
K) the abelian

group on the set p^ with the operation given by (x, y) —> F(x, y)\ of
course, F(pl

K) is a Zp-submodule of F(px). It is trivial that pj^/p^"1 ~

The filtration F(pK) D F(p2
K) D • •• is separated and produces

in F(PK) the p-adic topology (if i is large enough, one of the re-
marks shows that pF(pi

K) = F{pi^e)). According to a well-known
lemma in commutative algebra, the finiteness of F(px) as a module
over Z p , follows from the finiteness of F(PK)/PF(PK), a quotient of
F(pK)/F(p^e) = Fip^/pFip^) for i large enough.

Taking again i large enough so that F(p^) is torsion free, hence free,
its rank is the same as dimFp(F(p^)//7F(p9) = d im F p (F(p9 /F(p^) ) ;
since {F(pl

K):F{p1^)) = plK'Qp\ the proposition is clear.

PROPOSITION 4. Let x e F(pj) be a torsion point of order pr. Then
l

Proof From Proposition 2, it is obvious that for any x e g
v([P](x)) > « W ; therefore, if v(x) > au x is not a torsion point.

One proves the proposition by induction on r. If x is of order p,
v(x) < a\ = (e - e\)l{q\ - 1) < e/(p - 1) (by Lemma 1). If x is of
order pr (r > 1), then v(x) < a{ and v([p](x)) < e/pr"2(p - 1), by
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the induction hypothesis; again by Proposition 2,

v(x) <a{=> v([p](x)) > pv(x),

so v(x) < v([p](x))/p < e/p'-l(p - 1).

REMARK. Sometimes, one can be more precise about v(x). If the
height of F is h = 1, the Newton polygon has only one slope and
all the points of order p have valuation e/(p - 1); in this case, if
J C G % ) is of order pr (r> 1), v(x) = e/pr~l(p - 1).

If the height of F is h = 2, there are two possibilities for the Newton
polygon. If there is only one slope, the points x e F(p-^) of order pr

have exact valuation v(x) = e/p2(r~l\p2 - 1). If there are two slopes,
one cannot say more than in Proposition 4.

3. Cassels's theorem. In the following theorem, E denotes an ellip-
tic curve defined over the local field K, given by a minimal Weierstrass
equation

(X) y2 + a\xy + a^y = x3 + a2x
2 + a4x + a6

{at E A). We write E(K) for the group of points of E with values in K;
E(K) is an abelian group in the usual way, taking the point at infinity
(0,1,0) of E as zero element. Notations are the same as in Tate [6],

THEOREM 5. Let (x,y) e E(K) a torsion point of E. If the order
of{x, y) is not a power of p, then x,y e A. If the order of(xf y) is
pr (r > 1), then

v(x) > ~2elpr~\p - 1), v(y) > -3e/pr-l(p - 1).

Proof By reducing the equation (X) of E modulo the maximal ideal
of A, we get the equation of a cubic E defined over the residue field
k of K. The set Ens(k) of nonsingular points of E with values in k is
a group, and one has the exact sequence

0 -> EX{K) - E0(K) -> Ens(k) -> 0;

here EQ(K) denotes the subgroup of the elements of E(K) that reduce
to the nonsingular points of E, and

= 0u{(x,y)eE(K)\v(x) < -2, v(y) < -

is the kernel of the reduction map.
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One knows that there is a formal group law F defined over A, and
an isomorphism

EX(K) ^ F(pK),

(x, y) -> -x/y.
Such a formal group F is isomorphic to the additive one if E has bad
reduction and the singularity of E is a cusp, and of height one or two
in the other cases; in the first case, F(px) is of course torsion free,
and in the other ones, the only possible torsion is /?-torsion. In these
cases, if z e F(px) has order pr, v(z) < e/pr~l(p - 1) (Proposition
4); since we have for the corresponding point (x,y) e EX{K)

x = z~2 -axz~l -a2 ,

y = -z~lx,

we get v(x) = -2v(z) > -2e/pr~l(p - 1), v(y) > -3e/pr~l(p - 1).
The theorem is proved taking account of the fact that

E(K) - Ex (K) = {(*, y) £ E(K) \x,ye A}.

COROLLARY 6 (Nagell-Lutz). Let E be an elliptic curve defined over
Q, given by a minimal global Weierstrass equation of the form (X) with
the at rational integers. Then the torsion points ofE(Q) have integer
coordinates, with one possible exception: there could be a unique point
of order two of the form (a/4,6/8), with a, 6, e Z.

Proof For each prime number p, we denote by vp the p-adic val-
uation of Q (extended to Qp). Since we have E{Q) c E(QP), we can
apply the last theorem.

If (x, y) E E(Q) is a torsion point whose order is not a power of
any prime number p, then x,y eZp for each p, so x,y e Z.

If the order of (x, y) e E(Q) is pr (p prime, r > 1), then for each
prime I ̂  p, x,y eZi; moreover

vp(x) > -2/pr-l(p - 1), vp(y) > -~lltf-\p - 1),

so x, y e Zp unless, perhaps, pr = 2,3,4. If pr = 3 or 4, again
x, y e Zp, since x,y £ZP implies vp(x) < - 2 , vp(y) < - 3 .

So we are only left with the possibility of points, of order pr = 2;
if (x, y) E E(Q) is one of those points, x, y e Z/ for each / ^ 2
and vi{x) = - 2 , vi{y) = - 3 ; then (x, y) should belong to the kernel
EliQi) of the reduction of E modulo 2. Looking at the power series
[2](X) = 2X- axX

2 - 2a2X
3 + • • •, we find that, in fact, if the formal
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group F associated to the model (X) of the curve E is of height one
in Z2 (<=> a\ £ 2Z), there exists in E(Q2) a unique point of order
two whose coordinates are (a/4,6/8), a, b e Z2\ such a point may or
may not be in E(Q).

REMARK. AS shown in the proof, one has to study the possibility of
a torsion point of order two in E(Q) only when E has ordinary good
reduction or split multiplicative reduction at 2.

4. Appendix. If P = (x(P),y(P)) e E(Q) is a torsion point of
order different from two of the curve E given by the equation (X)—
where the az G Z—we know that x(P), y(P) G Z, and so P verifies
the hypothesis of the following proposition.

PROPOSITION 7. Let A be the discriminant of the curve E. If
P = (x(P),y(P)) e E(Q) is a point with integer coordinates such
that IP = (x(2P),y(2P)) has also integer coordinates, then

Proof We only sketch it. We write, as in [6],

b2 = a + 4a2, b4

h = a\a^ - a{a3a4 + 4a2a6 + a2a\ - a\,

A = -blh - 864
3 - 21b} + 9b2b4b6.

Multiplication by two, E ^ E, is given by a formula

2{xty) = {x2ty2)

where x2 = u(x)/f(x), with u(T) = T4 - b4T
2 - 2b6T - bs and

f(T) = 4T3 + b2T
2 + 2b4T + b6; one has disc3(/(r)) = 16A, and the

relation

- f'(T)2 + 4(ST + b2)f(T) = 0.

One verifies, with the notations of Bourbaki [1] (Ch. IV, §6),

3(16W(r), f{T)) = Res4,3(/TO2 - 4(ST + b2)f(T),f(T))

= Res4t3(f'(T)2,f(T)) = [Res2,3(/ '(r),/(r))]2

= 16(disc3/(r))2 =

therefore, Res4>3(w(r),/(r)) = A2.
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On the other hand

Res4i3(M(r)

=

=

1

0

-b4

-2b6

-h
0

0

1

0

-h
-2be

-h
0

J(T))
0

1

0

-b4

-2b6

-h
0

0

1

0

-b4

-2be

-h

0

0

1

0

-b4

-2b6

-h

0

0

1

0

-b4

-2b6

4

b2

2b4

be
0

0

0

0

4

b2

2b4

be

0

0

4

b2

2b4

be

0

0

0

0

4

b2

2b4

be

0

0

0

0

4

b2

2b4

be

0

4

b2

2b4

be

0

0

0

4

b2

2b4

be

0

0

0

4

b2

2b4

T2u{T) Tu(T) u(T) T3f(T) T2f(T) Tf{T) f(T)

= -4BAT2u(T) - Sb2ATu(T) + {b\ - 32b4)Au(T) + l2AT3f(T)
- b2AT2f(T) - l0b4ATf(T) + (b2b4 - 21be)Af{T);

here we have developed the last determinant by the last row, and made
systematic use of the relation 4*8 = b2be~b\.

Therefore,

A = (-48r2 - %b2T + {b\ - 32b4))u(T)
+ (12T3 - b2T

2 - \0b4T + (b2b4 - 21be))f{T).

Now, if P = (x(P),y(P)) € E(Q) and 2P = (x{2P),y(2P)) have
integer coordinates, as u(x(P)) = x(2P)f(x(P)), we get

/(*(/>)) I A.
Since y2 + a\xy + a3y = x3 + a2x

2 + a4x + a6 implies

(2y + a{x + a3)2 = 4x3 + b2x
2 + 2b4x + b6 = f(x),

the proposition is proved.
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