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We investigate the higher order mixing properties of Z¢-actions by
automorphisms of a compact, abelian group and exhibit a connection
between certain mixing conditions and a result by Kurt Mahler.

1. Introduction. Let X be a compact, abelian group, and let Aut(X)
denote the group of continuous automorphisms of X. We investigate
the mixing behaviour of Z4-actions a: n — a, on X with the property
that o, € Aut(X) for every n € Z¢ (such an action will be called a
Z9-action by automorphisms). If (X, a) satisfies the descending chain
condition, i.e. if every decreasing sequence of closed, a-invariant sub-
groups of X eventually becomes constant, then « is algebraically and
topologically conjugate to the shift action on a closed, shift invariant
subgroup of (TX)Z, where T = R/Z, and is automatically a Markov
shift in d dimensions (cf. [KS] for a more general result). Furthermore
it is easy to see that the dual group X of X can naturally be viewed as
a finitely generated R,;-module, where R is the ring of Laurent poly-
nomials in d variables with integral coefficients (cf. [KS]). In view of
this correspondence between finitely generated R;-modules and Z4-
actions by automorphisms of compact, abelian groups the question
arises how the algebraic properties of the R;-module M = X reflect
the dynamical properties of the Z¢-action a. In [S2] it was shown how
to read off ergodicity, mixing, expansiveness, and certain facts about
periodic orbits, from properties of the prime ideals associated with the
R;-module M. In this paper we continue this investigation and study
the higher order mixing behaviour of such actions. This problem was
raised by a paper of F. Ledrappier which contains examples of such
actions which are (strongly) mixing, but which fail to be r-mixing for
some r > 2. In these examples higher order mixing breaks down in
a particularly interesting way: there exist a nonempty set S ¢ Z¢ and
Borel sets {B, C X: n € .S} with positive Haar measure such that the
sets {ayn(Bn): n € S} fail to become asymptotically independent as
k — oo. In order to simplify terminology we call the set S a mixing
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shape if the sets {ay,(Bn): n € S} become asymptotically independent
as k — oo, irrespective of the choice of {B, C X: n e S}.

If the action « is r-mixing for every r > 1, then every shape 5§ c 79
must obviously be mixing, but the converse is not at all clear. In §3 we
prove the following results: if « is mixing and X is connected, then
every shape S C 79 is mixing. If X is zero dimensional, then there
exist shapes which are not mixing, unless the prime ideals associated
with the module M = X are all of the form p; = 7;R,, where n; € Z
is a rational prime. Furthermore, if X is zero dimensional, then « is
r-mixing for every r > 1 if and only if every shape S C Z¢ is mixing.
I was unable to prove the corresponding result for connected groups.

The statement about mixing shapes for connected groups turns out
to be intimately linked with a result due to Kurt Mahler [Ma]: if
¢,...,.cyanday,...,a, are nonzero algebraic numbers, and if cla{‘ +
ot Cm a,’ﬁ, = 0 for infinitely many k& > 1, then there exists an arithmetic
progression P C N such that ¢jaf + -+ + ¢,ak, = 0 for every k € P.
Since we need this result in a slightly strengthened form (with ¢;, a; in
an arbitrary field of characteristic 0) we include a proof of Mahler’s
result, adapted to this case, §2.

Finally a remark about notation: C, N, Q, R will denote the complex,
natural, rational and real numbers, and T = R/Z. If R is a ring then
R* will stand for the group of units in R, and R[Xy,..., X,] is the
ring of polynomials in the variables x, ..., x, with coefficients in R.
If R=17or @ and if I C R[xy,...,X,] is an ideal, we set V' (I) =
{(ct,....cn) € Q)" f(cy,...,cn) =0 forevery f € I}, where Q™ is
the algebraic closure of Q.

Acknowledgment. I would like to thank the Institute for Advanced
Study, Princeton, for hospitality and support during the Spring Term
1988, when this work was carried out. Special thanks are due to Enrico
Bombieri for pointing out to me Mahler’s paper [Ma] and for helpful
discussions.

2. Mabhler’s theorem.
2.1. THEOREM([Ma)). Let k be an algebraic number field of degree
(k:Q)=d,qg>2 andleta,...,a; benonzero elements in k. Suppose

that there exist an infinite sequence m; < my < --- in N and nonzero
elements cy, ..., cq in k such that

(2.2) cray” +cay’ + -+ cqay”’ =
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for every j > 1. Let p > 2 be a rational prime and let v be a valuation
of k above p such that |a;|, = 1 for i = 1,...,q. Then there exist
integers a, b such that

(2.3) 1<a<p2d2, 0<b<a,

2.4) e 4™ ot caf =0 for every j >0,
and

(2.5) a? =af forsomei,i' withl1<i<i'<gq.

Proof. Denote by k,, I, and r, the completion of k& with respect
to v, the maximal compact subring of k,, and the maximal ideal
of I, respectively, and choose a prime element z € r, (i.e. |7|, =
sup{|a|,: @ € k and |a|, < 1}). Since card(k,/r2?) < p*** we can find
an integer a with 1 < a < p??* such that o = 1 (mod r2?) for every
@ € k with |al, = 1, and we set Bin?? =af — 1,1 < i < q. Fix i for
the moment and observe that, for every z € N,

(2.6) = (14 pn): Zﬂf 24 (%),
The polynomial

Pi(z) = (;)-jlzz-(z—l)- e (z=j+1)

has integral coefficients. For every j > 0, the highest power ¢ > 0 such
that p! divides j! satisfies that t < j/p + j/p*+--- = j/(p — 1) < J,
and we conclude that |j!|, > |p/|, > |x%|, and |x¥/j!|, < 1. We can
thus rearrange the sum in (2.6) as

[o o]
(2.7) > Bin*Pi(x)/j! = Z%(J = fi(x),

j=0
where x € I, 7:(j) € k, and |7i(j)|u < |a%|, for every j > 0, and
obtain a well defined function f;: I, — I, with f;(x) = o%* whenever
x € N. Assume without loss in generality that |c;|, < 1 fori=1,...,q,
choose an integer b with 0 < b < a and m; = b (mod a) for infinitely
many j > 1, and define g: I, — I, by

(2.8) g(x) = c1a] fi(x) + - + cqag fy(x)

o0
=Y (c1odn1 () + -+ cqabvg ()X,
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Note that g is a power series which converges for every x € I,,, and
that there exists an infinite set S C I, such that g(x) = 0 for every
x € §S. Since [, is compact, S has a limit point y, and g(y) = 0.
Exactly as in the case of a complex power series one concludes that
g(x) =0 for every x € [,,. In particular

g(z) = Clall)fl(z) + -+ angfq(z) = cla‘l’“‘b 4ot angz"'b -0

for every z € N, which proves (2.4). Condition (2.5) follows from the
fact that

1 . 1
a? e a?
det ! 7 =0. 0
g—1 g—1
a(;(q ) ag(q )

2.2. COROLLARY. Let m; < my < --- be an infinite sequence in N,
and let n > 2. For every 1 < j| < j, < --- < J, we define a polynomial

x{"" x,'," &
(2.9) Pi,....in(X1, ..., xp) = det :
X Xy
with integral coefficients, and we denote by I C R = Q[xy,..., X,] the

ideal generated by {P;, . j): 1 < Jj1 <--- < jn}. Then there exists an
integer a > 1 such that

(2.10) V({I) cV(AxE, ..., x8)),
where
(2.11) A, xiy= [ @x?—xp).
1<i<j<n
Proof. Since we can find prime ideals {p;,...,ps} in R such that
V() = Uj.; V(p;) it will be sufficient to prove that there exists,

for every prime ideal p in R with p D I, an integer a > 1 with
V(A(x%,...,x3)) D V(p).

Indeed, let I C p C Rbe a prime ideal. If V' (p) is finite, our assertion
follows from Theorem 2.1. Assume therefore that V' (p) is infinite and
set R’ = R/p. For every polynomial / € R we denote by f = f +p

the corresponding element in R’ and we put y; = x/, i = 1,...,n.
The Noether normalization lemma [AM] allows us to find an integer
1 < m < n and linear functions z,,..., z, of the elements y;,..., y,

in R’ such that the z4,..., z,, are algebraically independent and each
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y; is algebraic and integral over Q[zy,...,z,] C R’. Choose and fix
monic polynomials Q; € Q[zy,..., zx][y] such that Q;(y;) = 0 for
i =1,...,n. We regard each Q; either as a polynomial in y with
coefficients in Q[zy,..., z,,] or as an element of Q[z,,..., z,, ¥], and
(ab)use the notation Q; = Q;(¥) = Qi(z1,...,Zm,¥), i =1,...,n, de-
pending on our point of view. Let : V(p) — (Q~)™ be the surjective
map

nag,...,an) =(z1(ay,...,an), ..., Zm(ay, ..., an)),

(ay,...,an) € V(p) € (Q)". Then n~Y(By,..., Bm) is finite for
every (B1,...,Bm) € (Q~)™, and Q;(Bi1,..., Pfm,a;) = 0 for every
(ar,...,an) €07 Y (By,....,Bm)and i =1,...,n. Put K = {u+vy/-1:
u,v € Q} ¢ C. We denote by {P(zy,...,zm): 0 < s < t} the set
of coefficients of the polynomials Q; € Q[zy,...,zxl[¥], i=1,...,n,
and claim that there exists a valuation w of K such that

={B1,---, Bm) €K™ |P(By1,..., Pm)lw =1 foreverys=0,...,t}

is dense in C™. Indeed, choose w so that, for every s = 0,...,¢,
the coefficients c;; of the polynomial P; € Q[z,..., z,] all satisfy
lcislw = 1, and such that |P(1,..., )|y =1. If ry, = {f € K: |Blw <
1}, then g, = 1+r, C Kisdense in C, and |P;(By,..., fm)|w = 1 for
all (By,....,Pm)€q) ands=0,...,¢. Hence ¢/ C Z, and X is dense
in C™,

There exists an integer d > 1 such that, for every (f81,...,fm) €
K™ and (ay,...,0n) € n7Y(B1,..., Bm), the algebraic number field
K(ay,...,a,) generated by K and (a;,...,a,) has degree
(K(ay,...,an): Q) < d. Now consider elements (f;,...,8n) € X
and (ay,...,an) € 7Y (B1,..., Bw) C V(I). If v is a valuation of
K(ay,...,a,) above w, then |a;|, = 1 for i = 1,...,n, and there
exist constants cy,...,c, in K(ay,...,ay,) such that ¢; # 0 for some
ie{l,...,n}and

o’ + oy’ +--+cag’ =0

for every j > 1. After renumbering the o; we may assume that ¢; #
0,....¢ # 0, and ¢4 = -+ = ¢, = 0. We denote by = the rational
prime below v (or w), apply Theorem 2.1 to find an integer a’ such
that 1 < a’ < 7?% and o = o for some 1 < i < i’ < g, and conclude
that (ap,...,a,) € V(A(X%,...,x%)).

We have shown that (aip,...,a,) € V(A(x?,...,x2)) for all
(a1,...,an) € n~Y(Z), where a = 724’ and T c K™ c C™ is dense in
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C™. Hence V(A(x{,...,x5)) NV (p) is both Zariski-dense and closed
in the Zariski-closed set V' (p), i.e. V(A(x?,...,x2)) D V(p). Since
I C p C R was an arbitrary prime ideal we obtain (2.10). O

2.3. CorOLLARY. Let K be a field of characteristic 0, q > 2, and

let ay,..., a4 be elements in K*. Suppose that there exist an infinite
sequence m; < mp < --- inNandcy,...,cq in K> such that
(2.12) craf” + oy +--- 4 cgag’ =0

for every j > 1. Then there exist integers a, b such thata > 1, 0 < b <
a,

(2.13) cla{“b + czaé‘”b + -+ cqa{f”’ =0 forevery j>0,
and
(2.14) a?=af forsomei, i'withl1<i<i <gq.

3. Mixing shapes and multiple mixing for group automorphisms. Let
(X, u) be a Lebesgue probability space, d > 1, and let a: (n,x) —
om(x), n € 74, x € X, be a measure preserving Z¢-action on X. The
action « is mixing of order r (or r-mixing) if, for all measurable sets
B(),Bl,...,Br n X,

(3.1) lim W(Bo Nawm, (B1) N+ Naw, (Br))
n,€Z4 and n,—o0,n,—n,—0co
forall i,j=1,...,ri#j

= w(Bo) - u(By) - - - u(By).

For a general discussion of mixing (i.e. 1-mixing) group actions we
refer to [Dy] or [S1]. In the study of commuting automorphisms of
compact groups one is naturally led to another concept related to mul-
tiple mixing, that of mixing shapes.

3.1. DEFINITION. A shape is a nonempty subset of Z¢. A shape
S ={ng,ny,...,n} c Z¢ is mixing under o if, for all measurable sets
By,Bi,...,B,in X,

(3.2) ,jgrgo M gny (Bo) N agn, (B1) N Ny, (Br))
= u(Bo) - u(By) - -+ - w(By).

Clearly, if « is r-mixing, then every shape S C Z¢ of cardinality
r + 1 is mixing. The converse is probably not true unless, of course,
r=1.
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Now assume that X is a compact group with Haar measure A and
that d > 1. A homomorphism a: n — ay from Z¢ into Aut(X) will be
called a Z4-action on X by automorphisms. We say that (X, o) satisfies
the descending chain condition if, whenever X; D X, D--- D X, D ---
is a decreasing sequence of closed, a-invariant subgroups of X, there
exists an integer N > 1 such that X,, = Xy for all n > N. The pair
(X, a) is expansive if there exists an open neighbourhood N(1) of the
identity element 1 € X such that

(3.3) ) aa(N(1)) = {1}.
neZ4

It is not difficult to verify that X must be metrizable if (X, a) is
either expansive or satisfies the descending chain condition. Further-
more expansiveness implies the descending chain condition (cf. [KS,
Theorem 5.2]). Finally, if X is connected and (X, a) satisfies the de-
scending chain condition, then X is abelian (cf. [L]).

In order to analyze such dynamical systems (X, a) in more detail
we have to introduce some notation. Let R; = Z[u}',..., u;'] and
R, = Q- R; = Q[uf',...,u}'] be the rings of Laurent polynomials
with integral (resp. rational) coefficients in the commuting variables
Up,..., g, andputu = ul'- - -u? € Ry foreveryn = (ny,...,ng) €
Z4. If N is an R;-module and n € Z¢ we define an automorphism
Bn = BY of the additive group N by

(3.4) BN(@)=u"-a foreveryae N
and obtain a dual automorphism

(3.5) an = o = BN € Aut(N),
where N is the dual group of the additive group N.

3.2. PROPOSITION. Let X be a compact, metrizable, abelian group,
and let o:: 7¢ — Aut(X) be a Z¢-action on X by automorphisms. Then
there exists an Ry-module N such that N = X and ol for everyn € 7.
Conversely, if N is an Rg-module, XN = N, and {o)Y:n € 77} c
Aut(XY) is defined by (3.4) and (3.5), then a¥:n — ol is a 74-
action on XV by automorphisms, and (XN, o) satisfies the descending
chain condition if and only if N is finitely generated. The submodules
N' C N are in one-to-one correspondence with the closed, o -invariant
subgroups XN' of XN, and this correspondence is given by X' = N'+,
where N't c N is the annihilator of N. Finally, if M is a second
Ry-module, XM = M, and {a™ : n € 79} c Aut(M) is defined by (3.4)
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and (3.5), then every continuous algebraic isomorphism y: XM — xV
with the property that wo = yNw for alln € 79 induces a dual module
isomorphism n: N — M.

Proof. [KS, Theorems 11.8 and 5.2]. O

We shall always assume that N is finitely generated. It turns out
that many of the dynamical properties of (X", o) (like ergodicity,
mixing, and expansiveness) can be described in terms of the associated
prime ideals of the R;-module N (cf. [S2]). Recall that a prime ideal
D C R, is associated with N if and only if there exists an element
a € N such that

p=ann(a)={f €R,: f-a=0}.
The set {p;,..., pm} of associated primes of N is finite, and

m

(3.6) \Upi={f€Ry: f-a=0forsomea+0in N}
i=1

For background we refer to [La].

We shall study higher order mixing properties of Z%-actions a: n —
ap by automorphisms of a compact group X under the assumption
that (X, o) satisfies the descending chain condition. One checks easily
that « is mixing (with respect to the Haar measure A) if and only if
ap is ergodic for every nonzero n € 79 (cf. e.g. [KS, Theorem 2.4]).
Ifd =1, a € Aut(X), and « is ergodic, then it is well known (and
easy to see) that n — o” is r-mixing for every r > 1. As F. Ledrappier
pointed out in [Le], the analogous result does not always hold if d > 1:
there are closed, shift invariant subgroups X c (Z/2Z)% on which the
shift-action of 72 is mixing, but which have nonmixing shapes. In this
section we prove the following.

3.3. THEOREM. Let X be a compact, abelian group, d > 1, and let
a:n — ay be a mixing 1%-action on X by automorphisms such that
(X, ) satisfies the descending chain condition.

(1) If X is connected, every shape S C 19 is mixing.

(2) If X is zero dimensional, the following conditions are equivalent:

(i) every shape S C 79 is mixing;
(ii) the Z%-action o is r-mixing for every r > 1;
(iii) the set {pi,..., pm} of associated prime ideals of the R;-module
M =X isgivenby p; =Ry, i =1,...,m, where {ny,..., Tu}
C Z are distinct rational primes.
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3.4. CorROLLARY. Let X be a compact, abelian group and let o.: n —
an be a mixing 7%-action on X by automorphisms such that (X, a)
satisfies the descending chain condition. Let M = X be the finitely
generated R ;-module arising from Proposition 3.2, and let {p,, ..., Pm}
be the set of associated prime ideals of M. Then the following conditions
are equivalent.

(1) Every shape S C 7% is mixing under «;

(2) for all i, either p;, NZ = {0}, or p; = ©;R, for a rational prime
n;, €.

For the proofs of Theorem 3.3 and Corollary 3.4 we require several
lemmas.

3.5. LEMMA. Let X be a compact, metrizable, abelian group with
Haar measure A and dual group X, and let a: 79 — Aut(X) be given
as in the statement of Theorem 3.3. A shape S = {ng,ny,...,n,} C 79
is mixing under o if and only if, for all characters xo, ..., xr in X with
xj # 1 for some j€{0,...,r},

(3.7) lim [ Gto- akng) -+ - (tr - k) 42 = .

The action « is r-mixing if and only if, for all characters yy, ..., x, in
X with xj # 1 for some j €{0,...,r},

(3.8) lim /umam-m~uf%JM=a

n,€Z? and n,—o0,n,—N;—00
for all i,j=1,...,r,i#j

Proof. Expand the indicator functions of Bj,...,B, in (3.2) as
Fourier series. O

3.6. LEMMA. If the group X in Theorem 3.3 is connected, every
shape S C 79 is mixing.

Proof. We apply Lemma 3.2 to obtain a finitely generated Ry-
module M such that X = M and o, = o for every n € 7¢. Let
{p1,..., pm} be the set of prime ideals in R, associated with M and
let {Wy,..., W, } be a reduced primary decomposition of 0 in M such
that M/W; is associated with p; forall i =1, ..., m (cf. [La]). In par-
ticular,

(3.9) | N wi={0}.
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Now assume that the Z¢-action « is mixing, but that there exists a
shape S = {ng,...,n,} C Z¢ which is not mixing. Lemma 3.5 implies
that there exist elements ¢; € M, i = 0,...,r, and a sequence k; <
ky < --- in N such that a; # 0 for some i € {0,...,r}, but

(3.10) (Xao  Vme) - =+~ (Xa, * @pn,) = 1

for every j > 1, where x, € X is the character of X corresponding to
an element a € M = X. According to (3.4) and (3.5), equation (3.10)
is equivalent to the assertion that

(3.11) uwkmgy + ...+ yb™q, =0 for every j > 1.

Equation (3.9) shows that there exists an integer i € {1,..., m} such
that a; ¢ W, for at least one j € {0,...,r}, and we set N = M/W;,
denote the image of @; in N under the quotient map again by a;, and
regard (3.11) as an equation in N. Since the group X is connected,
the module M is torsion-free as an additive group, and (3.6) shows
that p;, NZ = {0} where Z C R; is the set of constants. Since N is
associated with the prime ideal p; we know that the additive group
N is again torsion-free. Put N = Q ®z N, and note that the natural
homomorphism i1: N — N is injective, and that N is an R;-module
with associated prime ideal p = Q ®z p;. An elementary argument
allows us to choose sub-R;-modules N = Ny D --- D Ny = {0} of N
such that, forevery j =0,...,5s—1,N;/N;;; = R;/q; for some prime
ideal p C q; C Ry, and q,_; = p. We set a;; = i1(a;) € N and obtain
that a; ; # 0 for some i € {1, ..., r}, but that

ukf""al'o 4+ 4+ ukf“'a,,, =0 foreveryj> 1.

There exists an integer ¢ € {0,...,s — 1} such that {a, o,...,a;,} C
N; and

ukinOal'O “+ 4 uk/“ral’r — 0 € Nt-}-l’
but a; ; ¢ N,y for some i € {0, ..., r}. After renumbering the n; and

a, ;, if necessary, we obtain nonzero elements by,..., b in R;/q;,
0<r<r,with

(3.12) ukmopy 4.+ uk™ b, =0 € Ry/q

for every j > 1. Since R;/q; is an integral domain we can apply
Corollary 2.3 to the field of fractions of R;/q; and conclude from
(3.12) that there exist integers b > 1 and i,i’ € {0,...,r'} such that
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i # i’ and ub™ — ub™ e q,. If ub™ — ub™ ¢ p we set
az,j=(ub“"—ub"")-a1,jeN,+l, j=0,...,r.
Then a; ; # 0 for at least one j € {1,...,r}, but
ukmay o+ +ub™a,, =0

for every j > 1, and a repetition of the previous argument yields
integers ¢ > 1 and j, j' € {0,...,r} such that j # j' and u“™ — u‘™ €
Q1. If u™ — u™ ¢ p we continue this process. Since q;_; = p we
eventually obtain integers k > 1 and /, I’ with / # I’ and u*™ —ykn ¢ p,
Hence u™ — y*¥™ ¢ p;, and [S2, Theorem 3.5] shows that a is not
mixing, in contradiction to our assumption. It follows that every shape
S c 79 must be mixing. O

3.7. LEMMA. Suppose that X is zero dimensional, and that every

shape S C 7% is mixing under the 1%-action o. If {pi,..., Pm} is the
set of associated primes of the R;-module M = X, then there exist
rational primes m, ...,y such that p; =n;R; fori=1,...,m.

Proof. As in the proof of Lemma 3.6 we choose a reduced primary
decomposition {M, ..., M,,} of 0 in M such that M/M; is associated
with p; for every i. If i € {1,..., m} is fixed, a standard argument
allows us to find an element a € M such thatann(a) = {f € R;: f-a =
0} = p;, so that the submodule N = R;a C M is isomorphic to R,/ p;.
Since N is a torsion group, there exists a rational prime (constant)
n; € p;. Suppose that p; 2 n;R,, fix a polynomial f € p;,\n;R;, and
write f = ) gCn - u", where S C Z¢ is a nonempty finite set and
ame{l,...,nm;—1}forallne S. Forall j > 1,

f"j-a=2cn-u"’“-a=0

nes

and

(3.13) H(Xc..'a “agm) =1,

nes

where, for every n € S, .., is the nontrivial character of X corre-
sponding to the nonzero element ¢, -a € N C M. By lemma 3.5 the
set S is not mixing, contrary to our assumption. We conclude that
pi=mniR; foreveryi=1,...,m. O
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3.8. LEMMA. Let {py,...,pm} be the set of associated primes of
the Ry-module M = X, and assume that there exist rational primes
Tiy..., Ty such that p; = n;R,; for i = 1,...,m. Then « is r-mixing
for every r > 1.

Proof. We use the notation of Lemma 3.7. Since {M,,..., M,,} is
a reduced primary decomposition of 0 in M = X, N,_, _,, M; = {0},
the homomorphism #n: a — (a+ My, ...,a+ M,,) from M into N; &
-+ - @ N, is injective, where N; = M/M;, and the dual homomorphism
7. Ny@---® N, — X is surjective. We define 8 and o' by (3.4)
and (3.5), write S, for the automorphism of M dual to a,, and note
that
N o= (B @ @®B") -1
and
(3.14) Tan=() @  @®ad) 1

for everyn € Z9. We set X; = N;, i = 1,...,m, and claim that the
Z4-actionn —al &---®al” on X; ® - - X,, is r-mixing for every
r > 1. In view of (3.14) this will prove that « is r-mixing for every
r>1.

Suppose that there exists an integer » > 1 such that the Z4-action
n— ol @ - Dol =, on X ® - ® X,y is not r-mixing. Lemma
3.5 implies that there exist characters xg,..., xr of X;®---@® X,, such
that y; # 1 for some i € {0,...,r}, but

(3.15) (XO'éno,,)' '(Xr‘én,,,)z 1
for every j > 1, where ((ng j,...,n,;),j > 1) is a sequence in 2(+14
with

limn; ;= lim(n;; —n; ;) =oc0 foralli,i’e{0,...,r} withi#i
j—o0 Jj—o0

There exists an integer K > 1 such that ana = 0 for every i €
{1,...,m} and every a € N;,. Put P,; = {a € N;: n{a = 0} and
Pi=P ;j® - ®Py;,i=1..,m, j=0,.. K WewriteY; =P
for the annihilator of P; in X; & --- ® X,,,. Assume that, for some
J > 0, the restriction of every y; to Y; is trivial. We shall complete
the proof of this lemma by showing that the restriction of each y;
to Y;, is also trivial. An induction argument then shows that the
characters xg,..., xr of X, &---® X,, are all trivial, and the resulting
contradiction implies that the Z4-actions n — J, and n — a, are
mixing of every order.
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Foreveryi=1,...,m,put L, = P, ;. /P, ;, and fix i for the mo-
ment. Since n;L; = {0} we may regard L; in an obvious manner
as an R, ;-module, where R, ; = Z,[u7',...,u5'] is the ring of
Laurent polynomials in u,, ..., u,; with coefficients in the prime field
Z,, =1/n;1. Put

L; =k ®g,,Li

where k is the field of fractions of the integral domain R, ;. Since
f-a#0forevery f # 0in R,, 5 and a # 0 in L;, the natural injection
1,: L; — L; is injective. Choose a basis ey, ..., e; of the vector space L;
over k, assume without loss in generality that {e;,...,e;} C 1;(L;), and
find an element x € k such that 1;(L;) C Ry, 4-ke;+---+ Ry 4-Kes =
Q; C L,. In this manner we obtain an R, ;-module Q; = (R, 4)° and
an injective module homomorphism 1;: L; — Q;. Since every R, ;-
module may also be regarded as an R;-module we shall view R, 4,
(Ry, 4)° and Q; as R;-modules and ; as an injective R;-module ho-
momorphism. There is an obvious isomorphism y: Ry, 4 — (Z/5,)%
such that

wat = T, for every ne 7%,

where T, denotes the shift on (Z /,,,)Zd defined by
(3.16) (Tax)(m) = x(m+n), meZ¢

This allows us to identify Q; with ((Z/;,)°)%’ and to assume that af' =
T, for all n, where T, now denotes the shift (3.16) on ((Z/,,)° )Z*. The
surjective homomorphism #;: Q; — L; dual to 1;: L; — Q; satisfies
that na$ = ak'n for every n € 7¢. Since the Z%-actionn — o' @ --- @
@ on Q1 ®---® Oy, is (isomorphic to) a cartesian product of full d-
dimensional shifts it is 7-mixing for every r > 1, and we conclude that
the factor action n — o' ®---@®ak” of 724 on the group L1 ®--- & L,
is also mixing of every order. Note that L; & ---® L,,, = YinlY;,
and that the Z%-action n — al' @ --- @ o~ is equal to the action
on Y;,/Y; induced by n — dy. The characters xo,..., x, are trivial
on Y; by assumption, and we may regard their restrictions to Y,
as characters of Y;,;/Y;. However, since n — ok @ - @almis r-
mixing, lemma 3.5 implies that these restrictions must be trivial, i.e.
that y; =1 on Y, for every i € {0,...,r}. As we have pointed out
earlier, this completes the proof of the lemma. O



384 KLAUS SCHMIDT

Proof of Theorem 3.3. Assertion (1) follows from Lemma 3.6. If
X is zero dimensional, then (i)=>(iii) by Lemma 3.7, and Lemma 3.8
shows that (iii)=>(ii). The implication (ii)=-(i) is obvious. Theorem
3.3 is proved. o

Proof of Corollary 3.4. Let X0 be the connected component of the

identity in X. If a shape S = {ng, ..., n,} C Z¢ is not mixing under a,
choose characters yg, ..., x» of X such that at least one y; is nontrivial,
but (xo - akn,) - **- - (Xr - 0kpn,) = 1 for infinitely many & > 1 (cf.

Lemma 3.5). From [S2, Corollary 3.6] we know that the restriction
of a to the closed, a-invariant subgroup X° of X is still mixing, and
Lemma 3.5 implies that the restrictions of the characters y; to X°
must all be trivial. Hence the characters y,..., x» can be regarded
as elements of ¥, where Y = X/X0. The set of associated prime
ideals of the R;-module N = ¥ ¢ M (cf. Proposition 3.2) is given by
{pi:1 <i<mand p,NZ # J}, and lemma 3.8 implies that there
exist an i € {1,...,m} and a rational prime =; such that p; 2 n;R,.
This shows that (2)=-(1).

If every shape S C Z¢ is mixing, then every shape is also mixing
for the quotient action induced by a on the zero dimensional group
Y = X/X0, and Lemma 3.7 implies that every prime ideal associated
with the module N = ¥ ¢ M is of the form p; = n;R,; for some
rational prime 7;. This proves that (1)=(2). O

3.9. Problem. Let X be a compact, connected abelian group and
let a: n — ap be a mixing Z4-action on X by automorphisms. Is «
r-mixing for every r > 1?
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