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Dedicated to the memory of Henry Dye

We study the relationship between the two types of differential en-
velopes of Z/2-graded associative complex algebras; and describe the
differential envelopes of a Z/2-graded algebra as a simple modifica-
tion of those of the associated ungraded algebra.

In this note we describe some aspects of the two existing notions of
differential envelope of a Z/2-graded complex (or, for that matter real)
associative algebra. Both notions are basic in the non commutative
geometry under current development.

In § 1, which fixes notation, we recall the definitions and main prop-
erties of the two types of differential envelope (= universal differ-
ential algebra) one attaches to a Z/2-graded algebra A. The first,
Ω(A) — CΪ Θ Ω(A), pertains to general algebras (unital or not), and
has a differential which vanishes nowhere on A (in particular, if A
is unital with unit 1, d\ Φ 0). The second, ΩA, is defined only for
unital algebras, and has a differential vanishing on the unit. Ω(A) can
accordingly be directly defined in terms of tensors over A, whilst the
construction of ΩA uses either tensors over an yl-bimodule, or a sub-
family of tensors over A. Both Ω(A) (for that matter Ω(A)) and ΩA
are universal objects (= tied up with functors), the first in the general
and the second in the unital category.

In §2 we discuss the relationship between the two notions, each of
which is definable in terms of the other. On the one hand one has
Ω(A) = ΩA,A = Cl Θ A the augmented (Z/2-graded) algebra. On
the other hand there is an injective multiplicative linear map of Ω ί̂
into the right ideal AΩ(A) of Ω{A), allowing one to consider ΩA as
a linear subspace of tensors over A (vanishing under the "consecutive
diagonal mappings", and multiplying under "concatenation").

In §3 we show how the differential envelopes of a Z/2-graded algebra
A can be constructed in terms of those of the associated ungraded
algebra (merely through a simple modification of the latter's product).
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This result is important from the algorithmic point of view, since it
leads to a reformulation yielding formulae in which the "grading signs"
occurs in a more transparent way (important in particular with respect
to the algorithmics of Z/2-graded cyclic cohomology).

1. The two types of differential envelopes of an associative complex
algebra. For the results quoted in this section we refer to [1] through
[5]. In the sequel A = A0 ® A1 throughout denotes a Z/2-graded
complex algebra1, with set A' = A0 U A1 of homogeneous elements2,
and grading denoted by d (da — 0 resp. 1 (mod 2) for a e A0, resp.
a e A1). A denotes the augmented Z/2-graded algebra3, with unit ϊ
(irrespective of whether A possesses a unit of its own or not—if this
is the case, this unit is denoted by 1).

1.1. The first kind of differential envelope: the differential algebras
(Ω(A),d) and (Ω,(A),d). Let A be a Z/2-graded algebra (not neces-
sarily unital). We define, as an N-graded vector space

(1.1) Θ

where

(1.2) Ω ( A ) n =Ά®Am, n e N

with Ω(v4)° = A. The intrinsic grading <9Q is defined by setting, for
ao®ci\®--®ane Ω(A)n:

(1.3)
k=Q

the total grading d is then the sum of the intrinsic and the N-grading.
Ω(A)n is made into a <90-graded unital J-bimodule, by setting, for

ao,x = λί + xeA\λeC9 aι,...,aneA':

(1.4) x(a

1 "Algebra" always means "complex associative algebra" (whereby "complex" could through-
out be replaced by "real", changing C to R).

2Generally, we denote by E' the set E° U E{ of homogeneous elements of any Z/2-graded
vector space E = E° 0 Ex.

3 A = C ® A w i t h p r o d u c t (λ, a ) ( μ , b ) = (λμ, λ b + μ a + ab), λ , μ e C , a , b € A; a n d Z / 2 - g r a d i n g
A0 = C Θ A0, A1 = 0 Θ A1. The "added unit" is ϊ = (1, 0) (thus A = CΪ Θ A). If A is unital
with unit 1, it appears as the ideal (0, A) of A generated by the idempotent (0,1).
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and4

(1.5) (ao®aι ®- ®an)x
n-\

= Σ(- l^+'+ΣL+i daka0 ® ® α, α/+i ® ® an ® x
ι=0

+ <Z0 ® CL\ ® ® α Λ X

Defining then the product of a§ ® #i ® ® an e Ω(A)n and bo®b\<8>
• ® bm e Ω{A)m as

(1.6) {ao®a\ ® - - ® an)(b0 ® bι ® -®bn)

= {(a0 ® fli ® ® αΛ)fto} ® 6i ® ® 6/ι,

Ω(yί) becomes an associative complex algebra, graded for both Z/2-
gradings <9o and <9, and for the N-grading.

Setting now, for a0 = λί + a0 e A, a0, a\,..., an e A

(1.7) d(ao®a\ ® ®an) = ϊ Θ α 0 ®a\ ® ®αΛ

specifies J as a linear operator of Ώ(^4), of N- and d-grade 1, and of
vanishing square, which fulfills the graded derivation property

ί d d d d
(18) ί

\ ω, ψ G Cl(A), ω of total grade dω,
thereby making Ω(A) a 9-graded (in fact bigraded5 differential alge-
bra): elements of Ω(A) are then reinterpreted as follows:

(1.9) <zo®αi ® ••• ®an = a§da\ --dan.

It is useful to note that

(1.10) Ω(Λ) = Cϊ Θ

where Ω(A)9 the direct sum of the

is an ideal of Ω(A) decomposing in turn as

(1.12) Q(A) = dΩ(A) Θ AΩ(A)
4This formula becomes transparent by identifying the l.h.s. with (#0^1 •'•dan)x (cf. (1.9)

below), and transforming the latter expression using the graded derivation property of d (cf.
(1.8) and (1.9) below).

5a Z/2-graded differential algebra (Ξ = Ξ + θΞ~, δ) is a bigraded differential algebra whenever

the algebra Ξ has N-grading Ξ = Σ ® G N ΞΛ such that (i) Ξn = Ξn Π Ξ+ θ Ξn Π Ξ", n e N and

δ(Ξn) C Ξ " + 1

( « 6 N .
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with AΩ(A) a right ideal of Ω(A) (generated by the unit 1 of A for a
unital A).

Ω(A) is a universal object, which could more transparently (but less
explicitly) be defined as the quotient of the free algebra of the set
{a, da aeA} through the ideal generated by6

(1.13)

λ a + μ b -(λa + μb),

λ da + μ db-d(λa
, μ G C,

a b - ab,
[da b + {-\)daa db, ae A',b e A.

As a consequence7, given a Z/2-graded complex algebra B, and a pair
(α,Δ) of a homomorphism8 a: A —• 5 and a graded α-derivation
Δ: τ4 —• 5 (i.e. a grade one linear map fulfilling

(1.14) A(ab) = (Δα)α(*) + (-l)daa(a)Ab, | ^ ^

there is a unique homomorphism8 0: Ω(̂ 4) —• B such that

( ) = Aa,

specifically given by

ί
I θ { d a x • • • d a n ) = A a x - A a n .

In fact we have a bijection between such pairs (a, A) and homor-
phisms: Ω(A) —»• B (of grade 0):

Ω(A)

(1.17) ί \ θ
a

A =* B
A

This applies in particular (making Δ = δ o α) to homomorphisms
α: 4̂ —• 5 into Z/2-graded algebras B possessing a graded derivation δ.
And the further specialization B — Ξ, (Ξ,<5) a Z/2-graded differential

6Operations within the free algebra are indicated by a dot.
7And also by direct proof, using the original definition (1.12) of Ω(A)—this showing the

identity of the original definition and the definition as a quotient.
8Of Z/2-graded complex algebras (in particular, of grade zero).
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algebra9, then yields a functor Ω( ) from the category of Z/2-graded
algebras to that of Z/2-graded differential algebras:

Ω(A)
(1.18) ΐ

A £->• (Ξ,δ)

The special case where (Ξ, δ) is bigraded, and a ranges in the N = 0
part of Ξ, then furnishes a functor from the category of Z/2-graded
algebras to that of bigraded differential algebras.

1.2. The second kind of differentiate envelope: the differentiate
algebra ΩA, A unital Now let A be a unital Z/2-graded algebra with
unit 1.

Defining as follows a linear map m: A<8>A^> A:{0

(1.19)
1=1

si . (Σ. A Π C^ A* Ί — 1 \r
U / d ^ l , ί/j C Λ , I — 1 , . . . , / V

as well as linear maps φ1-, φ: A ® A -* A ® A:

(1.20) = id-φ±,

we get supplementary idempotents φ, φ1, such that

bx = Kerra,

{ K = Kcrφ = Imφ1^ = A ® 1.

Moreover, if one sets

1.22 { v / fl,^Gi,

t (α ® ό)x = a®bx,

J becomes a graded Λ-bimodule: therefore the direct sum

^ Γ ΩA° = A,
(1.23) ΩA=Y^ΩA\ \

y ΩAn = J <8>AJ ®A'-®A J(n factors)is a unital algebra with unit 1 (for the product ®A), N-graded and Z/2-
graded for both the intrinsic grading do (stemming from the grading
of J®Λn as a tensor product) and the total grading, sum of the intrinsic
and the N-grading. Further, setting

(1.24) da = 1 Θ a - (~l)daa ® 1, a e A,
9I.e. δ is of grade one and S2 = 0.
10In the case of an algebra of functions m is the "diagonal map" assigning to functions of

two variables their values on the diagonal.
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specifies a graded derivation d: A —• / :

(1.25) d(ab) = (da)b θ (-l)daadb, aeA\ be A,

vanishing on the unit 1 and fulfilling

(1.26) adb = a®b- {-\fbab ®l = φ(a® b), a,beA.

Since d uniquely extends to a differential d of Ω l̂ (i.e. a d-graded
derivation of vanishing square), moreover of N-grade 1, ΩA becomes
a Z/2-graded (in fact a bigraded) differential algebra.

As was the case above for Ω(A), ΩA is a universal object—but now
"in the unital category". ΩA could be defined as the quotient of the
free algebra of the set {α, da; aeA} through the ideal generated by11

' λ a + μ-b ~(λa + μb),
( λ u e C

λ-da + μdb-d(λa +μb), \ '
n j Ί \ ) { afb eA,
V*1') \ a b-ab,

da b+(-l)daa db - d{ab), aeA\ be A.

Moreover, we have universality properties analogous to those of
(but within the unital category): to each Z/2-graded algebra B, and
pair (α,Δ) of a homomorphism8: A —> B and a unital graded deriva-
tion α-derivation Δ (i.e.

(1.28) Δl = 0),

there is a homomorphism θ: ΩA —> B lifting α, namely

-dan) = α(
(1.29)

t Λo,αi, — ,an eA.
If B and a are unital, (1.28) is automatic and θ is unital. In fact,
there is a bijection between such pairs (α,Δ), and homomorphisms:
ΩA-+B:

ΩA

(1.30) ΐ V

a

Δ
11 As was the case for Ω(A), the identity of the two definitions results from the fact that

both lead to the same universally property, cf. (1.31) below. Notice, on the other hand, that the
second definition implies a linear bijection: a§da\ dan <-> ΛQ ® ̂ 1 ® ® Q n > &i = o-i (mod Cl).
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This applies (with Δ = δ o a) to unital homomorphism8 a: A —• B,
B equipped with a unital graded derivation δ (δlβ = 0). The spe-
cialization: B = Ξ, (Ξ, δ) a unital Z/2 graded differential algebra (i.e.
51 = 0) yields a functor from the category of unital algebras (with
unital morphisms) to that of unital Z/2-graded differential algebras
(with differential vanishing on the unit, and unital morphisms).

ΩA

(1.31) ΐ \ Ω «

A A (Ξ,δ)

Ω induces in turn a functor from the category of unital Z/2-graded
algebras to that of unital bigraded differential algebras, taking bigraded
differential algebras (Ξ, δ) and homomorphisms a with range within
the ft = 0 part of Ξ.

2. Relationship between the two types of differential envelopes.

2.1. The isomorphism Ω(A) = ΩA. Let A be an arbitrary Z/2-
graded algebra (unital or not): the differential envelope (Ω(A),d) of
the first kind is in fact isomorphic (as a bigraded differential algebra)
to the differential envelope (ΩA, d) of the second kind pertaining to
the augmentation A of A12.

This fact easily follows from the above-mentioned universality prop-
erties. On the one hand (1.18) (with a = /: A <-• A, and (Ξ,δ) =
(ΩA,d)) yields a homomorphism Ω(/): Ω(A) —> ΩA with unique ex-
tension to Ω(A) as a unital homomorphism. On the other hand (1.31)
(with A replaced by A, a = id: A —> A and (Ξ,δ) = (Ω(A),d)) yields
a unital homomorphism Ωid = ΩA —• Ω(^), inverse of the preceding.

As is to be expected (1.21) combined with the fact A = CΪ Θ A
implies that we have:

(2.1) Ω(A)1 =A®A modA®i = A®A.

2.2. ΩA as consisting of tensors over A. A being now a unital Z/2-
graded algebra with unit 1, we will conversely construct the differential
envelope ΩA of the second type in terms of that of the first kind—
in fact as a subalgebra of the right ideal AΩ(A) = 1Ω(A) of Ω(A),

12Hence we could consider the notation Ω(A) as superfluous, keeping the symbols ΩA and
Ω(A) with ΩA = CΪ + Ω(A).
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with the product reducing to "concatenation", and under a modified
differential. We noted earlier (cf. footnote 11) the linear isomorphism

(2.2) ΩA = Σ®A ® (A/Cl)®n =

with

Jn =A®\®A®'-®A + A®A®\®A®'-®A

+ - + A®A®- ®l.

This amounts in fact to quotienting Ω(̂ 4) by an ideal, the correspond-
ing exact sequence of algebras being split, hence yielding a supplemen-
tary subalgebra of Ω(A) isomorphic to ΩA.

We begin by describing these objects.

LEMMA. With a Z/2-graded unital, we denote by A the linear oper-
ator ofAΩ(A) obtained by applying d and projecting back in AΩ{A):

(2.4) Δω = ldω, ω e AΩ{A)\

and consider the direct sums

(2.5) K* =
n=l

where Kn is the linear closure of elements a§da\ dan with ao,a\,...,

an e A and a^ = 1 for at least one k > 1; and

(2.6) Λ =

where Jn c AΩ(A)n equals

n-\

(2.7) Λ=f |Kermf
ι=0

the linear "consecutive diagonal maps" mf being given as follows: for

(2.8) j™°

We then have that
(i) K* is the (graded) ideal ofΩ(A) intersection ofAΩ(A) and the

ideal TC* ofΩ(A) generated by d\.
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(ii) Δ is a "differential modulo K*\ i.e. one has for ω, ψ e AΩ(A),
ω of grade dω

(2.9) A(ωψ) - (Δω)^ - (-l)dωωAψ e K*,

(2.10) A2ψeK*.

(iii) Λ is a subalgebra of AΩ(A) on which the product reduces
to "concatenation" x specified as follows17*: for a§da\--dan e Jn,
bodb\,..., dbm e Jm:

(2.11) (aoda{ - dan) x (bodbχ -dbm)

= aoda\ dan-\d(anb§)db\ dbm

Note that the signs (-\)da\ resp. (-l)(-l)daι+ι amount to applying the
linear operators ε\, resp. ε ί +i where ek = id ® ® id ® e id ® ® id
w/ίΛ ίA^ (fc + I) th factor ε is the grading involution of A (we here use
the identification (1.9)). As α consequence, leaving out these signs in
the definition ofmβ, resp. m" would not alter the definition of Jn.

Proof, (i). To prove that K* is an ideal it suffices to check that,
given ω = a§da\-dan, a$fa\,... ,an e A, a^ = 1 for k > 1, and

ψ = bodb\ dbm, bo,b\,..., bm e A, one has ψω e /* and ωψ G /*.
Now ψω e J* because "reordering"14 ψbo does not affect the factor
da^ = d\. To check that ωψ e Λ it obviously suffices to check that
ωbo e Λ: this however follows from the fact that in reordering
the two terms not displaying a factor d\ exactly cancel:

(2.12) ^2(-ir+k-ι^^daka0da{. d(ak_x\)dak+x

We now claim that ΛΓ* is the linear closure of monomials aoda\ ύfα«,
ao e A, a\,... ,an e A with α^ = 1 for at least one k > 1. Indeed,
reordering ω(dl)ψ, ω,ψ e Ω(A), ψ = xdψ\ x G A, amounts to
rearranging ω(d\)x whereby the factor d\ always persists for the same
reason as before. Now K* c AΩ(A)nK* is obvious. And the opposite
inclusion follows from the above description of K* and the fact that
ω G AΩ(A) implies ω = lω.

(ii) Check of (2.9): the l.h.s. equals

(2.13) ld(ωψ) - \{dω)ψ - {-\)dωω\dψ = {-\)dωω{d\)ψ

thus belongs to Έ* n AΩ{A) = K*.

1 3In fact the product of Ω(A) reduces to the "concatenation product" x more generally for
the first factor within Λ and the second factor any element in AΩ(A). Note, on the other hand,
that /[ and Kx coincide via (1.9) with the respective / and K introduced above, cf. (1.21).

1 4For shortness we use the word "reordering" to mean: writing as a sum of "monomials".
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Check of (2.10): we have

(2.14) A2ψ = ld(ldψ) = l(dl)dψ

also contained in K* Π AΩ(A) = K±.

(iii) Let ω — a§da\ dan = a$ ® a\ ® ® an e Jn and ψ =
bodbι "dbm = ao<8>bι® -®bm eAΩ(A)m. Applying (1.6) and (1.5)
with x = bo (where all but the last term vanish owing to (2.7), (2.8))
we see that the product ωψ reduces to (2.11), whose r.h.s. clearly
vanishes under all maps m"+m for / = 1,2,... ,n- 1 and, if ψ e /*,
also for / = n,..., n + m - 1.

PROPOSITION. Let A be a unital Z/2-graded complex algebra, with
A, K* and /* as in the last lemma. We have a split short exact sequence

(2.15) 0 -+ K* -> AΩ(A) ^ Ω ^ - > 0
θ

where15 π is the homomorphism of algebras, restriction to AΩ(A) of
the homomorphism π in the diagram (cf (1.17))

Ω(A)

(2.16) T ^

A ^ ΩA
d

i.e.

(2.16a) π(aodaι •••dan) = aod_a.\ •d_an.

The lift θ ofπ(θ o π ~ id^^) is the homomorphism of algebras defined
by the diagram {cf (1.30)).

ΩA

(2.17) T \ θ

id
A z$ Ω(A)

D

i.e.

(2.17a) θ(aod_aι -dan) = a0Da{ Dan

1 5 In the remainder of this section we will denote by d_ the differential of ΩA to distinguish
it from the differential d of Ω(A).
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where

(2.18) Da = ldal = Ida - (-l)daadl.

One has moreover

(2.19) Im0 = Λ (θ(Ω(A)n) = Jn);

consequently φ* = θ o π and φ^r — id - φ* (resp. their restriction φn

and φn to AΩ(A)n) are the projections in AΩ(A) (resp. AΩ(A)n) cor-
responding to the direct sum decomposition

AΩ(A) = Λ θ ί *
( 2 ' 2 0 ) ' {resp. AΩ(A)« =Jn® Kn).

Finally we have the intertwining properties

(2.21) π o Δ = ̂ o π ,

(2.22) θod = Doθ,

(2.23) φ*oA = Doθ.

It follows in particular that if one defines

(2.24) D(a0Daι Dan) = Da0Dax Dan.

(J*,D), with the concatenation product and the N, d and do gradings
inherited from AΩ(A), becomes a bίgraded differential algebra isomor-
phίc to {ΩA,d).

Proof. The homomorphism π being onto gives rise to a short exact
sequence. The definition (2.17) of the homomorphism θ is justifed by
the fact that D is a graded derivation, vanishing on the unit, as one
immediately checks:

Γ D(ab) = (Da)b + (-l)daaDb, a e A, be A,
(125) U i = o.
We note that the r.h.s. of (2.17a) is unchanged if one replaces through-
out D and D! where

(2.26) D'a = da- (-l)daadl = (da)l;

indeed both procedures lead to the expression

(2.27) ao(daι)l(da2)l"-l(dan)lf

the use of D' showing that φ^{a^da\ dan) is a sum of terms of the
type

(2.28) ±ao - product of factors dai and factors akd\
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(in arbitrary order, with at least one factor of the type a^dl, two such
factors being never contiguous).

We now show the inclusion (hence equalities)

(2.29) KncKerφnclmφϊcKn.

The first inclusion follows from Kn c Ker π, immediate from (2.16a)
since d\ — 0; the second is obvious the third follows from the noted
fact that Im φ^ is a sum of terms of the type (2.28), where the last fac-
tor d\ to the right persists whilst "reordering". Since φ% — φn = ΦnΦn,
we established that φn and φ^ are idempotent.

We next show that lmφn c Jn by induction. Equality holds for
n = 1. Induction step: for a monomial ω e Jn and an+\ E A:

(2.30) ωD'an+ι =ωx Dan+{ =ωx (ldan - (-l)da"+ιan+ιdl)

obviously vanishes under the maps m, , / = 1,2,..., n, but also under
mn+\, since

(2.31) m(xdan - (-l)da"+ιxan+ιdl) = 0.

The converse inequality Ker φ^ D Jn follows from the fact that for

k

(2.32) ω

each of the contributions to φ^ω corresponding to one given type of
product (2.28) individually vanishes: indeed we obtain (2.28) from
aoda\ dan by replacing successively factors da^ of increasing k by
factors a^dl: however, the first replacement applied to (2.20) yields
zero owing to vanishing of ω under all contiguous diagonal maps.

Since (2.21) and (2.22) (hence (2.23)) immediately follow from
(2.16a), (2.17a) and (2.24), we completed our proof.

To summarise we have found a variety of equivalent descriptions
of the bigraded differential algebra (ΩA,d_):

- as the tensorial algebra of the ,4-bimodule / under the product
®Λ and the differential extending (1.24);

- as linear combinations of expressions

(2.33) aodβi d_an = aQ®ά®- ®άn, ao,aι,aneA,

where a = a (modCl), and with multiplication dictated by the fact
that d is a differential vanishing on the unit;

- as the quotient of AQ(A) by its ideal AT*, and Δ as a "differential
modulo KS\ cf. (2.9), (2.10);
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- most explicitly, as the subalgebra /* c AΩ{A), with multipli-
cation, the "concatenation product" x, and differential Z), cf.
(2.6), (2.7), (2.11), (2.18), (2.14).

3. The Z/2-graded case in terms of the ungraded case. The following
proposition contains two statements pertaining to the two kinds of
differential envelope16.

3.1. PROPOSITION. Let A = A0 ® A1 be a unital Z/2-graded alge-
bra {resp. a Z/2-graded algebra), with A the corresponding ungraded
algebra11.

And consider in parallel the differential envelopes1* {ΩA,d) {resp.
{Ω{A), d)) generated by monomials

fi Λ\ J J ί cιoeA {resp. eA),
(3.1) aodax---dan, \

\ ax,...,aneA,
and {ΩA, d) {resp. {Ω{A), d)) generated by tensors

aoeA {resp. eA),
(3.2) ao®aι ® ®dn, <
y } ° I a{,...,aneAmodCl {resp. eA),

with the product ofΩA {resp. Ω{A)) denoted by Θ {hence we have, for
x eA {resp. x = λί + x_ e A, λ e C))

x Θ (do (8) a\ ® ® an) = xa$ ®a\ ® ® an,

{resp. x)}

+ ao ® d\ ® ® dn-\ ® anx,

where the products in the r.h.s. have to be taken mod Cl in the case
ofΩA.

If we equip ΩA {resp. Ω{A)) with the new bilinear product given by

(3.4) SoT = {-l)mdoSSΘT,

where S, T e ΩA {resp. Ω{A)) are respectively of intrinsic grade doS and
ofN-grade m, we then have that {ΩA, d) and {ΩA, d) {resp. {Ω{A), d)

16The second statement follows from the first via Ω.(A) = Ω.A.
17I.e. A = A as an algebra, with the trivial grading A0 = A, A1 — {0}.

and ΩA (resp. Ω(A) and Ω(A)) coincide as N-, <90-, and ̂ -graded vector spaces.
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and (Ω(A),d)) are isomorphic bigraded differential algebras19, with the
isomorphism given by

{ i(a§da\ --dan) — (-\)nι

aoda\ dan e ΩA (resp.

ao e A' (resp. A\a\,...,an eA').

REMARK. With Ω e ΩA (resp. e Ω(A)) the "monomial"

co = aoda\ dan,
1 ~ G A (resp. e A'),a\f... ,an e A'

and defining

(3.7) d±ω =

the sign factor ( - l ) Δ ω appearing r.h.s. of (3.5) corresponds to "extrac-
tion of the n (grade one) symbols d towards the left" whilst effecting
the passage

(3.8) aodaι-'dan-+ao®aι®- ®an.

In "Z/2-spirit", the map / hence appears as more natural than the
former identification (1.9). Note also that Aω is coherently defined
for monomials in ΩA, since the intrinsic grade passes to the quotient
άk = Λfc mod Cl, aft e A. Caution: Aω is only defined for monomials,
and does not make sense in general for homogeneous elements. We
note that we have, for ω as in (3.6)

( d~ω for n even,
< 3 9 ) * " •"{«•«. for n odd,

(3.10) A(xdω) =Aω + {n+ l)dx, xeA (resp. xeA'),

ί A(ωdψ) =Δω + Δψ + {m+ l)doω,
( I ψ = bodbγ "dbmeΩA (resp. ΩA).

The claim in Proposition 3.1 that (ΩA,d) (resp. (Ω(A),d)) are bi-
graded differential algebras results by taking (Ω, d) = (ΩA, d) (resp.
(Ω(A),d) in the following general fact.

l9ΩA (resp. Ω(A)) are equipped with the new product (3.4); the differential d and the gradings
d,do, remaining unchanged. Note that (3.5) defines / coherently as a linear map since the
sign factor r.h.s. amounts to applying the linear operators {f3^_Qθ^}n f l^odd'^ ^ e ° P e r a t o r

id <8> <8> id <g> ε <8> id Θ <8> id, where the kth factor ε is the grading involution of A or A
mod Cl (resp. of A or A).
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LEMMA. Let Ω = Σ®GN(Ω", d) be an N-graded differential algebra,
with product ©, and assume the existence of an intrinsic Z/2-grading
do commuting with the N-grading

(3 12) I . , f " " W Θ . _
Ω « ( ± ) 0 Ω m ( - ) = Q«H ~ ' ^ " ' m fc J V '

and with the differential:

(3.13) dΩn^cΩn+ι{±\ neN.

Then (Ω, d) becomes a bigraded differential algebra (with total grading
d the sum of the intrinsic and the N-grading) under the new product
specified as follows:

(3 14) ί ω ^ = ( - 1 ) m a ° ω ω Θ ^
\ ω,ψ £Ω,ω of intrinsic grade d^ωy ψ ofN-grade m.

To prove this lemma, we have to check that the product is asso-
ciative and makes d a <9-graded derivative. Now let ω, ψ, θ e Ω, with
ω, ψ of respective intrinsic grades d^ω, d$ψ, and ψ9 θ of respective
TV-grades m, p. We have on the one hand

( 3 . 1 5 ) ( ω . ψ ) θ = ( - l ) m d o ω ( ω Q ψ ) θ
— ί\\fndoω+p{dQω+doψ)ωQ ψ Q Q

and on the other hand

(3.16) d(ω ψ) = (-

= (-l)mdoω[(dω) Θψ) + {-l)nω Θ

The remainder of Proposition 3.1 now follows from the fact that
the map / (obviously linear bijective) turns the product of ΩA (resp.
Ω{A)) into the new product of ΩA (resp. Ω{A)): we have

(3.17) i(ωψ) = i(ω) i(ψ), ω, ψ e ΩA (resp. eΩ(A))

which it suffices to check for ω and ψ "monomials"20 We first do

2 0The following argument applies to both the case of ΩA and that of Ω(A). In what follows
n(ω) denotes the N-grade of ω.
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this for ψ = dψ1, ψ' a monomial: we have, with T{a§da\ -dan) =
#o ® * ® a>n and taking account of (3.11),

(3.18) i{ωdψ') = {-

Θ i(dψ') = i

It remains to check (3.17) for ψ = bdψf, b e A\ ψ1 a monomial,
however, this boils down to the simpler case of ψ = b: the knowledge
of (3.17) in that case indeed allows one to infer from (3.18) and the
associativity of the product that one has

(3.19) i(ωbdψ') = i(ωb). i{dψ') = i(ω) i(b) i(dψ')

= i(ω) i{bdψ').

The remaining proof of (3.17) for ψ = b eA* will now proceed by
induction w.r.t. the N-grade of ω 2 1 .

For x,y e A* (resp. x e A',y eA) we have

(3.20) i[y(dx)b] = i[yd{xb) - (-l)dxyxdb]

= {-\)dyy ®xb- (-

= (-l)dyyΘ(l®x)Θb

(resp. =(-l)dyyθ{ϊ®x)Θb

We now effect the induction step: assuming (2.19) to hold for ω and
ψ = b, we check that it holds also for ω replaced by ωdx, x £ A\ and
ψ = b, we have, by what precedes

(3.21) i[ω(dx)b] = i[ωd(xb) - (-l)dxωxdb]

= ι(ω) ^

= /(ω) i[d(xb)] = ι(ω) ι(rfjc) i(6)

= i(ωdx) /(&)

completing our proof.

3.2. We shall now briefly show how the replacement of (Ω(A),d)
by (Cl(A), d) equipped with the product (2.5) simplifies the formulae

2 1 One could also perform a direct verification based on (1.5) rewritten using the identification
(1.9).
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of Z/2-graded cyclic cohomology22. We recall that the latter can be
formulated using operators β', β, a, γ, p, λ, Σ on Ω(A) defined as
follows [4], [5]23: for ω e Ω of total grade dω, and x e A0, a e A:

( β'(ωdx) = (-l)dωωx,
{ " ' I β'(a) = 0, β'(da) = a,

ί<*(ωdx) = ( - ι ) { i + 9 x ) d ω

1 " ' \ a(a) = 0, a{da) = a,

(3.24) β = β'-a,

( P{ωdX) = (-l)il+

[ • ' I p{α) = α, p{dα) = α,

(3.26) γ = id-p,

( λ(ωdx) = (-ψ+dχKι+dωhdω,
( } I λ{α) = α, λ{dα) = 0,

and, for OQ = si + α0 G A', θQ,α\,...,αn eA', s e C,

(3.28) Σ(βodαx dαn+2)

= ( - 1 ) d U ι αQα{ α2dα3 • • • dαn+2

n+\

^ • • dαn+2

/=2

If one replaces (Ω(Λ), d) by (Ω(A), d) the above operators are replaced
by their images which we denote by corresponding underlined sym-
bols:

(3.29) 0 = / o 0 o Γ 1

and we have then, for T eΩ(A)n of intrinsic grade d^T and x e A of
grade dx

(3.30) ^

(3.31) α{T®dx) = {-\)n+dxd°τxQT,

(3.32) p(T Θ dx) = (-l)n+9xdoTdx © T,

(3.33)
22Cf. [1] formula (a'), (b'), P- 60, and [5] p. 47a.
23With Ω(A)* the algebraic dual of Ω(A), the cyclic cochains, resp. cyclic cocycles are the

φ 6 Ω ( A ) * f u l f i l l i n g φ o λ = φ(*-+ φ o y = φ o d = 0), r e s p . φ o β = φ o d = 0 ( < - * φ i s a c l o s e d
graded trace of Ω{A)). The operator Σ is proportional to the transpose of Conne's operator
S S 2 Σ
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For a0 = si + a0 e A0, aOya\,...tan+2 £A°,se C, we have then

(3.4) fi{ao®ax®'-

i=\

(3.5) α

(3.36) λ(a0

and

(3.37) Σ(α0

(^0 ® Λl ® * ® Λ/_i) Θ α/

As we see the formulae (3.34) and (3.37) are free of sign factors
depending upon the intrinsic grading—a notable simplification w.r.t.
the formulae relative to β' and Σ (cf. (1.5) and (3.28)).
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