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ON THE FINEST LEBESGUE TOPOLOGY
ON THE SPACE OF ESSENTIALLY
BOUNDED MEASURABLE FUNCTIONS

MARIAN NOWAK

Let (Q,Z, u) be a g-finite measure space and let 7, and .7, denote
the usual metrizable topologies on L° and L™, respectively. In this
paper the space L™ with the mixed topology y( 7, %1 ) is exam-
ined. It is proved that y(Jo, J|10) is the finest Lebesgue topology
on L*, and that it coincides with the Mackey topology t(L>,L').

1. Introduction. For notation and terminology concerning Riesz
spaces and locally solid topologies we refer to [1].

Let (Q, Z, 1) be a o-finite measure space, and let L? denote the set of
equivalence classes of all real valued u-measurable functions defined
and finite a.e. on Q. Then L9 is a super Dedekind complete Riesz
space under the ordering x < y, whenever x(¢) < y(¢) a.e. on Q. The
Riesz F-norm

lxllo = /Q xX(OI(1 + x(@O) " f(O)du for x € LO,

where a function f: Q — (0, 00) is u-measurable with [, f(£)du =1,
determines a Lebesgue topology on L9, which we will denote by .7 (see
[7, 1, 8§6], [1, Theorem 24.67]). This topology generates convergence in
measure on the measurable subsets of Q whose measure is finite. We
will denote by 7, the topology on L* generated by the usual B-norm

|x]lc = €sssup|x(2)].
1eQ
Moreover, we denote by o(L>®,L'), t(L*,L!) and B(L*,L') the
weak, Mackey and strong topologies on L respectively, with respect
to the dual pair (L*,L!,(, )), where
(x,y) = / x(t)y(t)du forxeL®,ye L.
Q

In this paper we shall examine the space L>® with the mixed topology
¥(Io0, Jo|Lo). This topology is defined as follows. Take a sequence
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(en) of positive numbers, a number r > 0 and let

00 N
W ((en),r) = U (Z V(En)””B(r)),

N=1 \n=1
where B(r) = {x € L®: ||X||oc < r and V(e,) = {x € L*®: ||x]lo < &n}.

Then the family of all such W ((e,),r) forms a base of neighbour-
hoods of zero for y(, %|r~) (see [11, p. 49]). In view of [11, The-
orem 2.2.2] y(900,%|L~) 1s the finest linear topology on L* which
agrees with F|;~ on || - ||-bounded sets. Henceforth, we will write
briefly y instead of y( 7%, %|1x).

The space of bounded sequences /> with the mixed topology y has
been investigated in [4], where among other things, the results from
Theorems 5, 6 and 8 below are obtained. The mixed topology y on
[* is the same as the strict topology £ [3] on C(S), where § = N =

the set of all natural numbers.

2. The mixed topology y on L°°. It is well known that the norm
topology I, on L satisfies both the Fatou property and the Levi
property (see [7, IV, §3] and [7, X, §4]), and that .7, does not satisfy
the Lebesgue property if Q does not consist of only finite number of
atoms (see [7, IV, §3]). We shall show that the mixed topology y is the
finest Hausdorff Lebesgue topology on L. We start by giving some
characterization of sequential convergence in (L, y).

THEOREM 1. For a sequence (x,) in L*®, x, — 0 for y if and only if
Ixzllo = 0 and ||Xnllco < M for some M >0 andalln=1,2,....

Proof. Since the balls B(r) = {x € L*®: ||x]loc < r}, r > 0 are
closed in % (see [7, IV, §3, Lemma 5]) the result follows from [11,
Theorem 2.3.1].

We now are able to prove the basic property of y.

THEOREM 2. The mixed topology y is the finest Hausdorff Lebesgue
topology on L.

Proof. Using [1, Theorem 1.2] it is easy to show that y is a lo-
cally solid topology. In order to show that y is a Lebesgue topology,
let us assume that x, | O holds in L* and let (¢,) be a sequence
of positive numbers and r > 0. Then there exists an increasing se-
quence of indices {a,} C {a} such that x,, | 0 holds in L*, because
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L has the countable sup property (see [9, Proposition 5.20]). Since
 is a Lebesgue topology, we have x,, — 0 for y by Theorem 1.
Then there exists a natural number ny such that Xan, € W((en), 1), sO
Xo € W((&n),r) for a > a,,, and hence x, — 0 for y. Now let  be a
Hausdorff Lebesgue topology on L*°. Then by [1, Theorem 12.9] we
have &_, ) = Hl—x,x) for every 0 < x € L*. Hence, by [11, Theo-
rem 2.2.2] the inclusion & C y holds, and thus the proof is finished.

REMARK. It is known that L*° has no minimal topology, if the
measure u is atomless [2].

We now consider the problem of separableness of the space (L, y).
First, we recall some definition. Let ~ be the following equivalence
relation in X: 4 ~ B if and only if u(4 — B) = 0 (= denotes the
symmetric difference). Denote by £/ ~ the set of equivalence classes
and by [A4] the equivalence class of 4. Then on £/ ~ one can define a
metric function p([4],[B]) = |lx4 — x8llo- (x4 denotes the character-
istic function of the set 4.) The measure x4 is said to be separable if
the metric space (X/ ~, p) is separable (see [7, I, §6]).

THEOREM 3. The space (L*,y) is separable if and only if the mea-
sure u is separable.

Proof. Assume that the space (L*,y) is separable and let 0 < x €
LO. Let x,, = x Ane, where e denotes the constant function one. Then
0 < x, 1 x holds in L% so x, — x for 9. Thus L* is dense in
(L% %), hence (L9,%) is separable by hypothesis [7, 1, §6]. By [7, I,
§6, Theorem 16] the measure u is separable.

Next, assume that the measure u is separable. Let

m
P = {ZCkXAkI Ax € Z, u(A4y) < oo,
k=1

Akl ﬂAkz = fork, # ky,c, ER,m € N}

where R denotes the set of real numbers. Then # C L*® and using
Theorem 1, by usual argument one can show that the set & is dense
in (L%, y). Let X, be a countable subset of £/ ~, which is dense in
() ~,p). Let Py = {341 rxa, € P: [A] € Zo, 1y € Q}, where Q
denotes the set of rational numbers. Let 0 < x = >7;" | ¢k x4, € Z.
Then, by hypothesis, for every kK = 1,..., m there exist a sequence
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([47]) in Xy and a sequence (rf) of positive rational numbers such
that “XAZ —Xqllo—0asn—ocand 0<r} Tp ¢ fork =1,...,m.
Putting x, = >/, rl?XAZ forn=1,2,..., we have ||x, — x|l — 0 and
|xn(2)] < max;<x<mcx a.e. on Q. Thus, by Theorem 1, x, — x for
y. It follows that the set %, is dense in (£, y|»), so F is dense also
in (L*,y). Thus the space (L, y) is separable, because the set & is
countable.

The next theorem describes the topological dual of (L%, y).

THEOREM 4. For a linear functional f on L*® the following state-
ments are equivalent:
(1) f is continuous for y.
(ii) f is sequentially continuous for y.
(iii) There exists a unique y € L' such that

f(x)= /Qx(t)y(t) du forxeL™.

Proof. (i) « (ii) It follows from [11, Theorem 2.6.1].

(ii) < (iii) By Theorem 1, the functional f is sequentially continu-
ous for y if and only if it is sequentially order star-continuous, and if
and only if it is sequentially order continuous (cf. [6, VII, §2]). Thus,
in view of [7, VI, §2, Theorem 1] the proof is finished.

As an application of Theorems 2 and 4 we get the following impor-
tant property of y.

THEOREM 5. The mixed topology y on L*® is a Mackey topology,
ie,y=rt(L> LY.

Proof. Since the Mackey topology 7(L>, L!) is a Lebesgue topology
(see [1, Ex. 4, p. 163] and [1, Theorem 9.1]), by Theorem 2 we have
7(L*®, L") C y. According to Theorem 4, it suffices to show that y is
a locally convex topology. Indeed, let us put x,(¢) = n for t € Q and
n =1,2,.... Let 97 be the generalized inductive limit topology of
(L*®,t(L®, LYY, ju, [=Xn, Xxn]) (see [5, p. 2]), i.e., F is the finest of all
locally convex topologies £ on L* under which the inclusion maps

Jnt ([=%ns Xn, T(LY, LY | x01) = (L7,8)

are continuous for n = 1,2,.... By [5, Proposition 5] .97 is also the
finest of all linear topologies £ on L* under which each of the maps j,
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is continuous. Since y and 7(L*°, L') are Hausdorff Lebesgue topolo-
gies, by [1, Theorem 12.9] we have

y[_xn,xn] = T(Loo,Ll)l[_Xn,xn] for n = 1,2,....
Thus y C ;. On the other hand, since
Z'[—x,,,xn] C (L™, Ll)l[-x,,,x,.] = %I[—xn,xn] forn=12,...,

by [11, Theorem 2.2.2] we get 7; C y. Thus .9 = y; hence y is locally
convex. Therefore, we have y C ©(L*®, L!). Thus the proof is finished.

For a linear topology 7~ on L*, we will denote by Bd(.") the col-
lection of all .7 -bounded subsets of L.
Additional properties of y are included in the next theorem.

THEOREM 6. The space L*>° endowed with y is complete.

Proof. Since y is a Lebesgue topology, in view of [1, Theorem 13.9]
it suffices to show that y is a Levi topology. But Bd(y) = Bd(%,) [11,
Theorem 2.4.1], so y is a Levi topology, because we know that .7, is
a Levi topology.

COROLLARY 7. The mixed topology y is not metrizable.

Locally convex Hausdorff space (X, ) is called sequentially barreled
if every g(X*, X)-convergent to zero sequence in the topological dual
X* = (X,&)* is equicontinuous [10].

THEOREM 8. The space (L*,y) is sequentially barreled.

Proof. Combining Theorem 4 and Theorem 5, we have y =
(L%, (L, y)*), where (L*°,y)* denotes the sequential topological
dual of (L*,y). Since the space (L*,y) is complete, according to
[10, Proposition 4.3] the space (L, y) is sequentially barreled.

Since L* is the norm dual of L! we have (L, L!) = . There-
fore, according to Theorem 4 and Corollary 7 we obtain that the space
(L*,y) is not barreled.

Additional characterizations of sequential convergence in (L%, 7y)
are included in the next theorem.
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THEOREM 9. For a sequence (x,) in L™ the following statements are
equivalent:
(i) x, — 0 for y.
(i1) x, — O for the absolutely weak topology |a|(L>,L").
(iii) [ |Xa(O)y(6)ldp — O for every y € L.

Proof. (i) « (ii) Since |o|(L*®°,L') c t(L*,L') (see [1, Theo-
rem 6.7], assume that x, — 0 for |g|(L>®,L"). By [1, Theorem 12.9]
we have |g](L®, L")|_x.x] = Jl[-x.x) for every 0 < x € L™, because
lo|(L, L") is a Hausdorff Lebesgue topology. Since the set {x,} is
a(L,L")-bounded and Bd(g(L>®, L") = Bd(tr(L*®, L") = Bd(ts) We
obtain that {x,} C [-x,x] for some 0 < x € L*®. Thus ||x,|lo — O,
and in view of Theorem 1 we have x, — 0 for y.

(i1) & (iii) Obvious.

The next theorem gives criteria for the compactness of sets in
(L%, 7).

THEOREM 10. For a subset Z of L™ the following statements are
equivalent:
(i) Z is relatively compact for 7y and || x||ec < M for some M > 0
and every x € Z.
(i1) Z is relatively compact for y.
(iii) Z is relatively compact for |o|(L>, L").

Proof. (i) & (ii) Obvious, because we know that Bd(7,,) = Bd(y)
and the topologies y and .% coincide on order intervals of L.

(ii) = (iii) Obvious, because |o|(L>®, L) C 7.

(ii1) = (i1) Combining [8, I, §3, Lemma 11] and Theorem 9, Z is
relatively compact for y.
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