ON THE FINEST LEBESGUE TOPOLOGY ON THE SPACE OF ESSENTIALLY BOUNDED MEASURABLE FUNCTIONS

MARIAN NOWAK

Let (Ω, Σ, μ) be a σ -finite measure space and let \mathcal{T}_0 and \mathcal{T}_∞ denote the usual metrizable topologies on L^0 and L^∞ , respectively. In this paper the space L^∞ with the mixed topology $\gamma(\mathcal{T}_\infty, \mathcal{T}_0|_{L^\infty})$ is examined. It is proved that $\gamma(\mathcal{T}_\infty, \mathcal{T}_0|_{L^\infty})$ is the finest Lebesgue topology on L^∞ , and that it coincides with the Mackey topology $\tau(L^\infty, L^1)$.

1. Introduction. For notation and terminology concerning Riesz spaces and locally solid topologies we refer to [1].

Let (Ω, Σ, μ) be a σ -finite measure space, and let L^0 denote the set of equivalence classes of all real valued μ -measurable functions defined and finite a.e. on Ω . Then L^0 is a super Dedekind complete Riesz space under the ordering $x \leq y$, whenever $x(t) \leq y(t)$ a.e. on Ω . The Riesz F-norm

$$||x||_0 = \int_{\Omega} |x(t)|(1+|x(t)|)^{-1}f(t) d\mu$$
 for $x \in L^0$,

where a function $f\colon\Omega\to(0,\infty)$ is μ -measurable with $\int_\Omega f(t)\,d\mu=1$, determines a Lebesgue topology on L^0 , which we will denote by \mathcal{T}_0 (see [7, I, §6], [1, Theorem 24.67]). This topology generates convergence in measure on the measurable subsets of Ω whose measure is finite. We will denote by \mathcal{T}_∞ the topology on L^∞ generated by the usual B-norm

$$||x||_{\infty} = \operatorname{ess\,sup}_{t \in \Omega} |x(t)|.$$

Moreover, we denote by $\sigma(L^{\infty}, L^{1})$, $\tau(L^{\infty}, L^{1})$ and $\beta(L^{\infty}, L^{1})$ the weak, Mackey and strong topologies on L^{∞} respectively, with respect to the dual pair $(L^{\infty}, L^{1}, \langle , \rangle)$, where

$$\langle x, y \rangle = \int_{\Omega} x(t)y(t) d\mu \quad \text{for } x \in L^{\infty}, y \in L^{1}.$$

In this paper we shall examine the space L^{∞} with the mixed topology $\gamma(\mathscr{T}_{\infty},\mathscr{T}_{0}|_{L^{\infty}})$. This topology is defined as follows. Take a sequence

 (ε_n) of positive numbers, a number r > 0 and let

$$W((\varepsilon_n),r) = \bigcup_{N=1}^{\infty} \left(\sum_{n=1}^{N} V(\varepsilon_n) \cap nB(r) \right),$$

where $B(r) = \{x \in L^{\infty} : \|x\|_{\infty} \le r \text{ and } V(\varepsilon_n) = \{x \in L^{\infty} : \|x\|_0 \le \varepsilon_n\}$. Then the family of all such $W((\varepsilon_n), r)$ forms a base of neighbourhoods of zero for $\gamma(\mathcal{T}_{\infty}, \mathcal{T}_0|_{L^{\infty}})$ (see [11, p. 49]). In view of [11, Theorem 2.2.2] $\gamma(\mathcal{T}_{\infty}, \mathcal{T}_0|_{L^{\infty}})$ is the finest linear topology on L^{∞} which agrees with $\mathcal{T}_0|_{L^{\infty}}$ on $\|\cdot\|$ -bounded sets. Henceforth, we will write briefly γ instead of $\gamma(\mathcal{T}_{\infty}, \mathcal{T}_0|_{L^{\infty}})$.

The space of bounded sequences l^{∞} with the mixed topology γ has been investigated in [4], where among other things, the results from Theorems 5, 6 and 8 below are obtained. The mixed topology γ on l^{∞} is the same as the strict topology β [3] on C(S), where S = N = the set of all natural numbers.

2. The mixed topology γ on L^{∞} . It is well known that the norm topology \mathcal{T}_{∞} on L^{∞} satisfies both the Fatou property and the Levi property (see [7, IV, §3] and [7, X, §4]), and that \mathcal{T}_{∞} does not satisfy the Lebesgue property if Ω does not consist of only finite number of atoms (see [7, IV, §3]). We shall show that the mixed topology γ is the finest Hausdorff Lebesgue topology on L^{∞} . We start by giving some characterization of sequential convergence in (L^{∞}, γ) .

THEOREM 1. For a sequence (x_n) in L^{∞} , $x_n \to 0$ for γ if and only if $||x_n||_0 \to 0$ and $||x_n||_{\infty} < M$ for some M > 0 and all n = 1, 2, ...

Proof. Since the balls $B(r) = \{x \in L^{\infty} : ||x||_{\infty} \le r\}$, r > 0 are closed in \mathcal{T}_0 (see [7, IV, §3, Lemma 5]) the result follows from [11, Theorem 2.3.1].

We now are able to prove the basic property of γ .

Theorem 2. The mixed topology γ is the finest Hausdorff Lebesgue topology on L^{∞} .

Proof. Using [1, Theorem 1.2] it is easy to show that γ is a locally solid topology. In order to show that γ is a Lebesgue topology, let us assume that $x_{\alpha} \downarrow 0$ holds in L^{∞} and let (ε_n) be a sequence of positive numbers and r > 0. Then there exists an increasing sequence of indices $\{\alpha_n\} \subset \{\alpha\}$ such that $x_{\alpha_n} \downarrow 0$ holds in L^{∞} , because

 L^{∞} has the countable sup property (see [9, Proposition 5.20]). Since \mathscr{T}_0 is a Lebesgue topology, we have $x_{\alpha_n} \to 0$ for γ by Theorem 1. Then there exists a natural number n_0 such that $x_{\alpha_{n_0}} \in W((\varepsilon_n), \tau)$, so $x_{\alpha} \in W((\varepsilon_n), r)$ for $\alpha \geq \alpha_{n_0}$, and hence $x_{\alpha} \to 0$ for γ . Now let ξ be a Hausdorff Lebesgue topology on L^{∞} . Then by [1, Theorem 12.9] we have $\xi_{[-x,x]} = \mathscr{T}_0|_{[-x,x]}$ for every $0 < x \in L^{\infty}$. Hence, by [11, Theorem 2.2.2] the inclusion $\xi \subset \gamma$ holds, and thus the proof is finished.

REMARK. It is known that L^{∞} has no minimal topology, if the measure μ is atomless [2].

We now consider the problem of separableness of the space (L^{∞}, γ) . First, we recall some definition. Let \sim be the following equivalence relation in Σ : $A \sim B$ if and only if $\mu(A - B) = 0$ ($\dot{-}$ denotes the symmetric difference). Denote by Σ/\sim the set of equivalence classes and by [A] the equivalence class of A. Then on Σ/\sim one can define a metric function $\rho([A], [B]) = \|\chi_A - \chi_B\|_0$. $(\chi_A$ denotes the characteristic function of the set A.) The measure μ is said to be separable if the metric space $(\Sigma/\sim, \rho)$ is separable (see $[7, 1, \S 6]$).

THEOREM 3. The space (L^{∞}, γ) is separable if and only if the measure μ is separable.

Proof. Assume that the space (L^{∞}, γ) is separable and let $0 < x \in L^0$. Let $x_n = x \wedge ne$, where e denotes the constant function one. Then $0 \le x_n \uparrow x$ holds in L^0 , so $x_n \to x$ for \mathcal{T}_0 . Thus L^{∞} is dense in (L^0, \mathcal{T}_0) , hence (L^0, \mathcal{T}_0) is separable by hypothesis [7, 1, §6]. By [7, I, §6, Theorem 16] the measure μ is separable.

Next, assume that the measure μ is separable. Let

$$\mathcal{P} = \left\{ \sum_{k=1}^{m} c_k \chi_{A_k} \colon A_k \in \Sigma, \mu(A_k) < \infty, \\ A_{k_1} \cap A_{k_2} = \emptyset \text{ for } k_1 \neq k_2, c_k \in \mathbf{R}, m \in \mathbf{N} \right\}$$

where **R** denotes the set of real numbers. Then $\mathscr{P} \subset L^{\infty}$ and using Theorem 1, by usual argument one can show that the set \mathscr{P} is dense in (L^{∞}, γ) . Let Σ_0 be a countable subset of Σ/\sim , which is dense in $(\Sigma/\sim, \rho)$. Let $\mathscr{P}_0 = \{\sum_{k=1}^m r_k \chi_{A_k} \in \mathscr{P} \colon [A_k] \in \Sigma_0, r_k \in \mathbf{Q}\}$, where \mathbf{Q} denotes the set of rational numbers. Let $0 \le x = \sum_{k=1}^m c_k \chi_{A_k} \in \mathscr{P}$. Then, by hypothesis, for every $k = 1, \ldots, m$ there exist a sequence

($[A_k^n]$) in Σ_0 and a sequence (r_k^n) of positive rational numbers such that $\|\chi_{A_k^n} - \chi_{A_k}\|_0 \to 0$ as $n \to \infty$ and $0 \le r_k^n \uparrow_n c_k$ for k = 1, ..., m. Putting $x_n = \sum_{k=1}^m r_k^n \chi_{A_k^n}$ for n = 1, 2, ..., we have $\|x_n - x\|_0 \to 0$ and $|x_n(t)| \le \max_{1 \le k \le m} c_k$ a.e. on Ω . Thus, by Theorem 1, $x_n \to x$ for γ . It follows that the set \mathscr{P}_0 is dense in $(\mathscr{P}, \gamma|_{\mathscr{P}})$, so \mathscr{P}_0 is dense also in (L^∞, γ) . Thus the space (L^∞, γ) is separable, because the set \mathscr{P}_0 is countable.

The next theorem describes the topological dual of (L^{∞}, γ) .

THEOREM 4. For a linear functional f on L^{∞} the following statements are equivalent:

- (i) f is continuous for γ .
- (ii) f is sequentially continuous for γ .
- (iii) There exists a unique $y \in L^1$ such that

$$f(x) = \int_{\Omega} x(t)y(t) d\mu$$
 for $x \in L^{\infty}$.

Proof. (i) \Leftrightarrow (ii) It follows from [11, Theorem 2.6.1].

(ii) \Leftrightarrow (iii) By Theorem 1, the functional f is sequentially continuous for γ if and only if it is sequentially order star-continuous, and if and only if it is sequentially order continuous (cf. [6, VII, §2]). Thus, in view of [7, VI, §2, Theorem 1] the proof is finished.

As an application of Theorems 2 and 4 we get the following important property of γ .

THEOREM 5. The mixed topology γ on L^{∞} is a Mackey topology, i.e., $\gamma = \tau(L^{\infty}, L^1)$.

Proof. Since the Mackey topology $\tau(L^{\infty}, L^1)$ is a Lebesgue topology (see [1, Ex. 4, p. 163] and [1, Theorem 9.1]), by Theorem 2 we have $\tau(L^{\infty}, L^1) \subset \gamma$. According to Theorem 4, it suffices to show that γ is a locally convex topology. Indeed, let us put $x_n(t) = n$ for $t \in \Omega$ and $n = 1, 2, \ldots$ Let \mathcal{T}_I be the generalized inductive limit topology of $(L^{\infty}, \tau(L^{\infty}, L^1), j_n, [-x_n, x_n])$ (see [5, p. 2]), i.e., \mathcal{T}_I is the finest of all locally convex topologies ξ on L^{∞} under which the inclusion maps

$$j_n\colon ([-x_n,x_n],\tau(L^\infty,L^1)|_{[-x_n,x_n]})\to (L^\infty,\xi)$$

are continuous for n = 1, 2, ... By [5, Proposition 5] \mathcal{T}_I is also the finest of all linear topologies ξ on L^{∞} under which each of the maps j_n

is continuous. Since γ and $\tau(L^{\infty}, L^1)$ are Hausdorff Lebesgue topologies, by [1, Theorem 12.9] we have

$$\gamma_{[-x_n,x_n]} = \tau(L^{\infty}, L^1)|_{[-x_n,x_n]}$$
 for $n = 1, 2,$

Thus $\gamma \subset \mathcal{T}_I$. On the other hand, since

$$\mathscr{T}_{I|[-x_{n},x_{n}]} \subset \tau(L^{\infty},L^{1})|_{[-x_{n},x_{n}]} = \mathscr{T}_{0}|_{[-x_{n},x_{n}]} \quad \text{for } n=1,2,\ldots,$$

by [11, Theorem 2.2.2] we get $\mathcal{T}_I \subset \gamma$. Thus $\mathcal{T}_I = \gamma$; hence γ is locally convex. Therefore, we have $\gamma \subset \tau(L^{\infty}, L^1)$. Thus the proof is finished.

For a linear topology $\mathscr T$ on L^{∞} , we will denote by $\operatorname{Bd}(\mathscr T)$ the collection of all $\mathscr T$ -bounded subsets of L^{∞} .

Additional properties of γ are included in the next theorem.

THEOREM 6. The space L^{∞} endowed with γ is complete.

Proof. Since γ is a Lebesgue topology, in view of [1, Theorem 13.9] it suffices to show that γ is a Levi topology. But $Bd(\gamma) = Bd(\mathcal{T}_{\infty})$ [11, Theorem 2.4.1], so γ is a Levi topology, because we know that \mathcal{T}_{∞} is a Levi topology.

Corollary 7. The mixed topology γ is not metrizable.

Locally convex Hausdorff space (X, ξ) is called sequentially barreled if every $\sigma(X^*, X)$ -convergent to zero sequence in the topological dual $X^* = (X, \xi)^*$ is equicontinuous [10].

THEOREM 8. The space (L^{∞}, γ) is sequentially barreled.

Proof. Combining Theorem 4 and Theorem 5, we have $\gamma = \tau(L^{\infty}, (L^{\infty}, \gamma)^+)$, where $(L^{\infty}, \gamma)^+$ denotes the sequential topological dual of (L^{∞}, γ) . Since the space (L^{∞}, γ) is complete, according to [10, Proposition 4.3] the space (L^{∞}, γ) is sequentially barreled.

Since L^{∞} is the norm dual of L^1 we have $\beta(L^{\infty}, L^1) = \mathcal{T}_{\infty}$. Therefore, according to Theorem 4 and Corollary 7 we obtain that the space (L^{∞}, γ) is not barreled.

Additional characterizations of sequential convergence in (L^{∞}, γ) are included in the next theorem.

THEOREM 9. For a sequence (x_n) in L^{∞} the following statements are equivalent:

- (i) $x_n \to 0$ for γ .
- (ii) $x_n \to 0$ for the absolutely weak topology $|\sigma|(L^{\infty}, L^1)$.
- (iii) $\int_{\Omega} |x_n(t)y(t)| d\mu \to 0$ for every $y \in L^1$.
- *Proof.* (i) \Leftrightarrow (ii) Since $|\sigma|(L^{\infty}, L^1) \subset \tau(L^{\infty}, L^1)$ (see [1, Theorem 6.7], assume that $x_n \to 0$ for $|\sigma|(L^{\infty}, L^1)$. By [1, Theorem 12.9] we have $|\sigma|(L^{\infty}, L^1)|_{[-x,x]} = \mathcal{T}_0|_{[-x,x]}$ for every $0 < x \in L^{\infty}$, because $|\sigma|(L, L^1)$ is a Hausdorff Lebesgue topology. Since the set $\{x_n\}$ is $\sigma(L, L^1)$ -bounded and $\mathrm{Bd}(\sigma(L^{\infty}, L^1)) = \mathrm{Bd}(\tau(L^{\infty}, L^1)) = \mathrm{Bd}(\tau_{\infty})$ we obtain that $\{x_n\} \subset [-x,x]$ for some $0 < x \in L^{\infty}$. Thus $||x_n||_0 \to 0$, and in view of Theorem 1 we have $x_n \to 0$ for γ .
 - (ii) ⇔ (iii) Obvious.

The next theorem gives criteria for the compactness of sets in (L^{∞}, γ) .

THEOREM 10. For a subset Z of L^{∞} the following statements are equivalent:

- (i) Z is relatively compact for \mathcal{T}_0 and $||x||_{\infty} < M$ for some M > 0 and every $x \in \mathbb{Z}$.
- (ii) Z is relatively compact for γ .
- (iii) Z is relatively compact for $|\sigma|(L^{\infty}, L^1)$.
- *Proof.* (i) \Leftrightarrow (ii) Obvious, because we know that $Bd(\mathcal{T}_{\infty}) = Bd(\gamma)$ and the topologies γ and \mathcal{T}_{0} coincide on order intervals of L^{∞} .
 - (ii) \Rightarrow (iii) Obvious, because $|\sigma|(L^{\infty}, L^{1}) \subset \gamma$.
- (iii) \Rightarrow (ii) Combining [8, I, §3, Lemma 11] and Theorem 9, Z is relatively compact for γ .

REFERENCES

- [1] C. D. Aliprantis and O. Burkinshaw, *Locally Solid Riesz Spaces*, Academic Press, New York, 1978.
- [2] _____, Minimal topologies and L_p -spaces, Illinois J. Math., 24 (1980), 164–172.
- [3] R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J., 5 (1958), 95–104.

- [4] A. K. Chilana, The space of bounded sequences with mixed topology, Pacific J. Math., 48 (1973), 29-33.
- [5] D. J. H. Garling, A generalized form of inductive-limit topology for vector spaces, Proc. London Math. Soc., 14 (1964), 1–28.
- [6] L. V. Kantorovich, B. Z. Vulikh and A. Pinsker, Functional Analysis on Semi-ordered Spaces, Moscow-Leningrad, 1950 (Russian).
- [7] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Moscow, 1984 (Russian).
- [8] W. A. Luxemburg, Banach Function Spaces, Delft 1955.
- [9] A. Peressini, Ordered Topological Vector Spaces, Harper and Row, London, 1967.
- [10] J. H. Webb, Sequential convergence in locally convex spaces, Proc. Camb. Phil. Soc., 64 (1968), 341-364.
- [11] A. Wiweger, Linear spaces with mixed topology, Studia Math., 20 (1961), 47-68.

Received November 15, 1987.

A. Mickiewicz University Matejki 48/49 60-769 Poznan, Poland