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APERY BASIS AND POLAR INVARIANTS
OF PLANE CURVE SINGULARITIES

ANGEL GRANJA

Let C be an irreducible plane algebroid curve singularity over an
algebraically closed field K, defined by a power series f € K[[ X, Y]].
In this paper, we study those power series 7 € K[[X, Y]] for which
the intersection multiplicity (f - £) = dimg(K[[X, Y]]/(f,y)) is an
element of the Apéry basis of the value semigroup for C. We prove
a factorization theorem for these power series, obtaining strong prop-
erties of their irreducible factors. In particular we show that some
results by M. Merle and R. Ephraim are a special case of this theo-
rem.

Introduction. In this paper we denote by K an algebraically closed
field of arbitrary characteristic.

Let C be an irreducible plane algebroid curve over K (i.e. C =
Spec(R), where R = K[[X, Y]1/(f), with f irreducible). We will sup-
pose f ¢ YK[[X, Y]] and we will write n = Ord,(f(X, 0)).

We will denote by S(C) the semigroup of values of C (see [2],
11.0.1 and [3], 4.3.1), by 4, = {0 = gy < a; < -+ < ap_1} =
{min(S(C)n(k + nZ,); 0 < k < n — 1} the Apéry basis of S(C) rela-
tive to n (see [2], 1.1.1) and by {vg,...,v,} the n-sequence in S(C),
where v9 = n, and v; = min{v € S(C); gcd(vg,v1,...,Vi—1) >
ged(vg, vy,...,0-1,0)}, 1 <0 < r (see [1], 6.6, [2], 1.3.2 and [6]).
(Note that gcd(vg,...,v,) = 1.)

The main objective of this work is the proof of the following theo-
rem.

FACTORIZATION THEOREM. Let h € K[[X, Y]] be such that 0 < k =
Ord,(h(X,0)) <n-—1. Then (f-h) < ay. Suppose (f-h) =ay. Ifk =
EOSqS,sq(n/dq_l), where d; = ged(vy,...,v,), (do = vo = n,d, = 1),
0<s;<rand0<s,<d;_/d, then

h= H h,‘ and h,'= H hij,
1<i<r 1<j<m;
with h;; either irreducible or unit in K[[X, Y]], 1<j<m;, 1<i<r,
and
(1) T 1 jem, Ords(h;(X,0) = s;(n/di_y), LS i <.
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(2) (f - hij(X,0)) = d;_yv;i/n if s; # 0 and h;; is a unit in K[[X, Y]]
ifsi=0,1<j<m, 1<i<r.

Here (f - h) denotes, for two power series f and 4, the intersection
multiplicity of the algebroid cycles defined, respectively, by f and A.

In the fourth section we see that the polars of an irreducible complex
analytic germ of a plane curve singularity satisfy the hypotheses of the
above theorem for k = n—1. Thus, the Theorem 3.1 of [5] and Lemma
1.6 of [4] follow from the above Factorization Theorem.

1. Apéry basis and the n-sequence. In this section we will summarize
some properties of the Apéry basis. For other properties you can see
[2] and [6].

ProposiTION 1. If M; = K[[Y]] + K[[Y]]X +--- + K[[Y]]X/, 0 <
j<n-1, then:

(D) {aj} =v(Mj_1 + X)) ~v(Mj_1), 1< j<n—1,

(2) v(M)) = Up<i<j(@i+nZy), 0< j<n-—1,

(3)a,-+aj§a,-+j,03i+j§n—l,
wherev(M;) = {(f-8); 8 € Mi—{0}},0<i<n—-landv(M;,_+X') =
{(f-(g+X)); geMi}, 1<i<n-L

Proof. See [2], Satz 3 and [6], Proposition 2.

REMARK 2. Note that in the above proposition a; > (f-(g+X”)) for
eachge M;_,1<j<n—1. (If (f-(g+X/)) > aj, then there exists
gj-1 € M;_, such that (f - (gj-1 + X)) =aj,s0a; = (f- (& - &j-1))
and we get a contradiction.)

PRroPOSITION 3. One has

Ay, (d[do)+--+sj(d/d;—y) = S101 + -+ + §;V),
and vjy > (dj_1/dj)v;, 0 < j <r—1, with0 < s; < (di-1/di),
1<i<r.
Proof. See [2], Satz 2 and [6], Proposition 1.

REMARK 4. Note that v; = a4/4,, 1 <j <rand

An = {as,(djdo)+-+si(d)d,—y)> 0 < 8i <(dimy/di), 1 <i<r}.

ExAMPLE 5. Here we give some examples of different possibili-
ties for the Apéry basis and n-sequences. Let us consider the curves
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C; = Spec(K[[X,Y11/(fi)), | < i <3, where fi = X2+ 7>, f, =
(Y + X2)2+ X5 and f3 = Y? + X°. It is easy to check that

S(Cl) = S(Cz) = S(C3) = {07 27 4’ 5’ 6’ 77 8" .. }’
and one has f; ¢ YK[[X,Y]], | < i < 3, and Ordx(f;(X,0)) = 2,

Ordy(f2(X,0)) = 4 and Ordy(f3(X,0)) = 5. So 4, = {0 = ay,
a; = 5}. The 2-sequence is {vy = 2,v; = 5}, a; = (f; - X),
dy=d=2and d, = 1. 44 = {0 = ag,a; = 2,a, = 5,a3 = T}.
The 4-sequence is {vg = 4,v; = 2,v3 = 5}, ay = (- X), ap =
(fr- (Y 4+ X)), a3 = (f - (Y +X)X),dy=d =4,d, =2 and
d2=1. AndA5:{0:a0, a1:2, a, = 4, a3=6, a4=8}. The
5-sequence is {vg = 5,v; =2}, a; = (3 X)), 1<i<4,dy=d =5
and d] =1.

2. n-sequences and Hamburger-Noether expansions. Let x and y
be, respectively, the residue classes of X and Y in R. Assume that
ng=(f-X)<(f-Y)=n, that is, X is a generic coordinate (or x
is a transversal parameter of C, see [3]) and Y could be generic, or
have maximal contact with f, or any thing in between. In this form,
we can study all of these possibilities for Y simultaneously. This is
the point of taking the Apéry basis with respect to a general n, rather
than n = ny. If n = ny then Y should be generic.

Let
y=apXx+- -+ aOhoxho + xhozl,
X = zf'zz,
z A 2+ a2 2
sp—1 Slkl M Slhsl S S Si+1s
k
Zsg—1 = Qsghy Zgg 4+

be the Hamburger-Noether expansion of C in the basis (x,y) (see
[3], 2.2.2 and 3.3.4), and let n; = Ord; (z;), 0 < 1 < 55 (20 = X),
(I=ng <ng_ 1 <---<np<n= Ordzxg (»), see [3], 2.2.5).

Note that the Hamburger-Noether expansion is nothing but an ex-
plicit description of the minimal resolution of singularities C of C by
a sequence of point blowing-ups. z;,z;_; are the regular parameters
of the ambient plane at the 4o + - - - + A;th blowing up. zy, is a regular
parameter of C. In particular, for any 4 € K[[X, Y]] such that f does
not divide 4

(f - h) = Ord;, (h).
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The following proposition is an easy consequence of the Hamburger-
Noether expansion and the formula for Zariski exponents of a plane
curve (see [3] 4.2.7 and 4.3.10).

PROPOSITION 6. With the above notations one has:
(1) np = min(S(C) — {0}),

(2) ng < n =y < hong + ny,

(3)(i) If vg < vy, then r = g, vy = ny and

Vi1 = (1/ns) Z hjnjz‘ + A5t 15
0<j<s;
0<i<r-1, (s =0). Moreover ay; # 0.
(ii) Ifvg > vy and dy, = vy, thenr = g+ 1, vy = kovy, kg > 2, v; = ng
and
viy2 = (1/ng) Z hin? + ng,.q,
0<j<s;
0<i<r—1,(so=0). Moreoveray; =0, 1 < j <kyanday, #0.
(iii) If vg > vy and dy < vy, thenr = g, v; = ny, vy = hong + n, and

Viy1 = (1/ns,) Z hjnjz' + Nsi+1s
0</<si

0<i<r—1, (so=0). Moreoverag; =0, 1 < j < hy.

Proof. (1) and (2) are obvious from the Hamburger-Noether expan-
sions. We must only prove (3).
For this, if one writes f, = ny and

Bi=(1/ns) 3 hynt+ng,
0<j<s;
0 <i < g—1, then one has B
(1) Bo=min(S(C)~{0}) and B, = min{ € S(C); ged(Bo, .., Bi_1)
> ged(Bg,...,Bi—1,B)}, 1 <i< g (see[3], 4.2.7 and 4.3.10).
On the other hand, note that one has the equalities
(Il) v9 = n and v; = min{fv € S(C);ged(vg, -+ ,vi_1) >
ged(vo, ..., vi1,v)}, 1 <i<r.
We distinguish the following three possibilities:
(i) ng = n < hgng + ny. In that case ag; # 0, v = 1y and it follows
from (I) and (I) that r = g and v; = B;, 1 <i < g.
(ii) ng < n = kgng < hong + n,. Then ayj = 0,1<j<k, Aok, # 0,
vy = kohg, v = ng and it follows from (I) and (II) that r = g + 1 and
Vig1 =B 1<i<r—1.
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(i1i) ng < n = hong + n;. Now apj = 0, 1 <j<hy, vg= hong + ny,
vy = np and it follows from (I) and (II) that r = g and v; = B,,
2<i<r.

3. Infinitely near points and intersection multiplicity. Now consider
another irreducible plane algebroid curve over K, C’ = Spec(R’), with
R =K[[X,Y]l]/(f"), C' # C and f' ¢ YK[[X,Y]]. Let x’ and y’ be
the residue classes of X and Y, respectively, in R’. We denote by

I l
y'=apx'+ -+ agyx’ ¢+ x' °z’1,

...............................................

...............................................

the Hamburger-Noether expansion of C in the basis (x’,)’). We also
put n; = Ord, (z;), 0 < i < sp, (x' = z5) and n' = Ord«(f'(X,0)) =

Ord (y’).

Let N be the number of 1nﬁn1tely near points that C and C’ have
in common (i.e. N =hg+h; +---+ hs_1 + i — 1, s being the largest
integer for which h; = 4, 0 < ¢ 5 s—1,and aj; = a}k, i<k<h,
0 < j <s-—1, and i being the least index such that a;; # ai; (i <
hs +1,i < h + 1)) (see [3] 2.3.2).

ProrosiTION 7. If

Yo hgtkioi—1<N< Y hgtki—1

0<g<si—1—1 0<g<s;i—1

1<i<g (s50=0), then (f - f') <n'dj_yvj/n, where j =i ifvy < v,
orvg>v,d <vy,and j=i+1ifvyg > vy, di = v,. Furthermore, if
(f-f<n'dj_yvj/n, then d;_, divides (f - f').

Proof. One has n = hg g+ ngi, 55 < g < sJ+1 -2, ns,+,—1 =
!
kj+1ns]+‘,0<]<g—l and n, —h+1 p+1+np+2,s <p<ys 1= 2
ni, —k’Hn 0<]<g—1

Sj+l
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So ny, divides n;, and n, divides n; for / < s; and k < 5}. On the
J

other hand, since

0<g<si—y—1
then hq = h:], 0<g<si_i—landk;_; = k;—l’ SO
(III) n/nsi_ls nq/nS,‘_[ = n;/n;i_], O S q S Si—-l'
From Proposition 5 we see that

(IV) dj_1 = Ng;_,-

Thus, one can compute (f - /') in terms of the possible values of N
(see [3], 2.3.2 and 2.3.3). Namely, one has the following possibilities:
(A) N = ZOSQSSi—I—l hq + k,'_l, with k;_; < k < min(hsl._l,hgi_l).

In that case one has

f-f1= Z hgngnly + kng,_ n},

0<g<si——1
/ '
< Z hgnghy + ns_ 11ng | = @,
0<g<si—y

so d;_; divides (f- f) by (IV), and a = n'd;_,v;/n, by (III), (IV) and
Proposition 6.
(B) N =3 0<y<s hg> With s;_1 <5 <min(s;,s;) and hs < hq.
Now one has
f-f)= Z hgngng + gy 7y
0<g<s
< Z hgngng + hgnsng + nsng | = .
0<g<s—1
(Note that h; < hi, so n,_n, = hsngng + ngnl < (hs + Dngnl, <
hsngn' < hingng + ngn;,,.) By (III), (IV) and Proposition 6, it follows
that

(f-fH= Z hgngng +ng,_ oins,_, =n'd;_jv;/n, or

0<g<si—y

(f-f)= > hgngnly+ng_n, . <B=n'di_jvj/n,
0<g<si-)
and d;_, divides (f - f").
The other cases can be proved in a similar way:
(B) N =3 0<4<s—1hg + hg, with s,y <s < min(s;,s;) and k; < hs.
(C.1) N =3 gcycs—1 hg + ki — 1, with s; < s} and k; < hj,.
(C.2) N = Yocy<s,—1 ha + hs,, with s; < s and kg, < k;.
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(C.1) N = Yocqes-1 hg + ki = 1, with 5 < s; and k; < hg.
(C'.2) N = 3o<q<si—1 Ha + hyy, with s <'s; and Ay, < kj.

(D) N =3 ocges,—1 hg + ki — 1, with s; = 5] and k; < k].

(D)) N = ZOSqui—l hg+ ki — 1, with s; = s} and k] < k;.

(E) N =2 0<qasi—1 hg + ki — 1, with s; = 5}, k; = kj and agy, # ag .

COROLLARY 8. For each nonnegative integer j, 1 < j <r, the fol-
lowing statements are equivalent:

(1) (f-f1)y>n'd;_vj/n,
(2) N= > hi+k-1,
0<g<s;—1

where i = j ifvg < vy orvg > vy andd; < vy, andi=j—1, kg =vy/v,
if vo > vy and dy = v,. In particular, if either (1) or (2) is true then
n'=ngn/d;.

Proof. (1) = (2). If vg > vy, di = vy and (f - f') > n'v; then
N > ky — 1. Indeed, suppose N < ko — 1. Then gy, = a(’)q, for
g < N and agn4; # gy, If . # O then (N + 1)ng = n' and
if agy,, = 0 then N+ 1 = ky and (N + 1)n; < n’, so in any case
(f- f") = (N + 1)ngny < n'vy and we get a contradiction.

Now suppose (f - f) > n'd;_yv;/n and

0<g<si—1
with j > 1 if vg < v; or vg > v and d; < vy, and with j > 2 if vy > v,
and d; = v,. Then we can assume

S gtk <NS S hgtky -1

0<g<sp—1—1 0<g<sy—i

with 1 < i < p. It follows from Proposition 7 that (/- f') < n'ds_,vs/n,
with s < j and d;_ v; < d;_v; (see [2], Satz 2) which is a contradic-
tion.

(2)=(1). Ifvg > vy, dy =vyand N > ko—1, then (f- ') > konony,
and n' = kong, (apk, = a(’)ko), so one has (f - f') > n'vy (ng = vy).
Now if
Y hg+ki—1<N

0<g<si—1
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with i > 1 then n/n;, = n'/ng, ng/ns, = ng/ng, 0 < g <s; and

0<g<si—1

By Proposition 6

(n'/n)d;j_yv; = (n;i_l/ns,._l) ( Z hqng + ”s,_1+1”sz_1) .

0<g<s;_y
Now
2 2
y= . hgngny+kingnl = (ns_ /ng_ )| D hgng+king|.
0<g<si—| 0<g<si—)
Thus we have to show that
2 2 2
Z hgng +ng,_ 4 1ns,_, = Z hgng + king,.

0<g<si_y 0<g<s;—1

But this follows by repeated application of the identities n,_; = hyng,+
Ng+1, since k;ng, = ng,_y.

CoROLLARY 9. For 1 < j < r, if (f-f') < n'dj_vj/n, then d;_,
divides (f - f").

Proof. If vg > vy, dy = vy and (f - f') < n'v; then N < ky — 1
(Corollary 8). Thus, if ag, = a{)q, 1<q < N,and ayn;1 # agy,, then
N+1=koand (f-f') = (N+1)nony = nyvy. (For if N+ 1 < kg then
(f - f") = n'v, which is a contradiction.)

Now we can assume (f - f') < n'd;_jv;/n, with j > 1 if vy < v; or
vo > vy and d; < vy, and j > 2 if vg > v; and d; = v,. By Corollary
8 one has

Z hq +ki—1>N
0<g<s;—1
with i = jif vg < vy orvy > v, and d; < vy, and with i = j — 1 if
vg > v; and d; = v;. So, by Proposition 7, d;_; divides (f - f').

4. Proof of the Factorization Theorem. As Ord,(h(X,0)) = k we
can write h = uh', with ' € M,_, + X* and u € K[[X, Y]] being a
unit. So (f-h) = (f 1) < ay.

Also, we can write @ = Y 0c,<.SqVq and k = } o, Sq(d/dyg),
with 0 < s5; < d;_1/d,; (see Remark 4). Let g be the greatest index
such that s, # 0 and let

h = H h;

0<j<m
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be the factorization of 4 as a product of irreducible elements in
K[[X, Y]]
If for any j

(f - hj)/ Ordx(h;(X,0)) > dy_1vg/n

then, by Corollary 8, Ord,(4;(X,0)) = an/d, (a # 0), but k < n/d,
which is a contradiction. (Note that s, = 0 for p > g and

k< Z ((dp-1/dp) = 1) = (d/dq) =1 < d]dq = n/d,.)

1<p<q
On the other hand, if for | < j < m
(f - hj)/ Ordy(h;(X,0)) < dy_yvg/n

then d,_, divides (f - &) by Corollary 9. So d,_,/d, divides s;, and
hence s; = 0 since 0 < s; < d;_;/d,, and we get a contradiction.
Thus, there exists 4, such that

(f - hjy)/ Ordx (hjy(X,0)) = dg—1vq/n.

Moreover, if ¢ > 2 then Ord, (4 (X,0)) = an/d,;_; by Corollary 8,
as dy_1vg > dyv,_y (see Proposition 3). If ¢ = 1 then (f - h;)) =
Ord,(h),(X,0)) = an/d,_,. In any case Ord,(%,(X,0)) = an/d,_,
with 0 < a < s4.

(Note that k < 37, <, 1((dp—1 = 1) = 1)(d/dp-1) + 5¢4d[dg-1 <
(d)dg-1) +54d[dg-i = (5q+ )d/dy_y = (5, + 1)n/dy-1.)

So h' = h/hj, satisfies Ordx(h'(X,0)) = k' = k — an/d,;_; and
(f-N)=ayr—a(n/d,;_,)d;-\vq/n = ay—av, = ay; hence the Theorem
follows by iterating the above reasoning using /' instead of 4 in the
next step.

5. The complex analytic case. In this section, C is assumed to be
an irreducible complex analytic germ at 0 € C? of a plane curve sin-
gularity.

Let n be the multiplicity of C and let P(C) be a general polar of C
(i.e. P(C) is defined by a reduced element & = A(9 f/0X)—u(@f/0Y)
of C{X,Y}, and n — 1 is the multiplicity of P(C)). M. Merle in [5]
has proved that P(C) descomposes into g curves I';),...,I',), where
F(g) (1 < g < g) is such that

(1) its multiplicity is (n/e;_1)((eg-1/€4) — 1),

(2) every irreducible component of I'(,), I';); has a contact of order

Bq with C and (I'y); - C)/m(L,);) = B,/(n/e).
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Here {B,,... ,Fg} is the minimal system of generators of S(C), e, =
ged(Bo,-..,B,), 0 < g < g, Bo < B < -+ < Bg are the Puiseux
exponents and m(I',);) denotes the multiplicity of I'¢,y;.

Without loss of generality, we may assume that n = Ord,(f(X, 0)),
and therefore n — 1 = Ord,(h(X,0)).

On the other. hand,

(f-h)= 3 ((e-1/e)) - VB,
0<g<g
and hence (f-h) = a_y, since {By,..., B} is the n-sequence in S(C)
(see [2], Satz 2 and [5], Prop. 1.1).

Thus, & satisfies the hypotheses of the Factorization Theorem for
k = n — 1, and the above Theorem 3.1 of [5] is a special case of
ours. (Note that I';); has a contact of order 8, with C if and only if
(L~ C)/m(Tyy;) = B,/(n/e4—1), see [S], Prop. 2.4.)

In general, if M is a smooth germ of a plane curve singularity de-
fined by z € C{X, Y}, then the polar of C with respect to M is the
(possibly nonreduced) germ whose defining ideal is generated by the
Jacobian J(f,z) = 9(f,z)/0(X,Y) (see [4]). In particular, a general
polar P(C) of C is defined by & = J(f,AX + uY) with (4, u) general.

Thus, without loss of generality, we may assume that z = Y (since
M is smooth) and J(f,z) =90 f/0X.

ProprosITION 10. Keeping the above notations, one has
(a) Ordx((0 f/0X)(X,0)) = Ordx(f(X,0)) -1 =n—1.
(b) (f(0f/0X)) = an-1.
Proof. (a) It is obvious.

(b) If n = Ord,(f(X,0)) > Ordy(f(0,y)) = m then one has a
Puiseux type parametrization of C

X =1, Y =¥(1)
and we can write (up to multiplication by a unit)
fxy)= [[ (x—¥mwixtimy),
0<g<m

Thus,
(f-(0f/0X))=0rd,((0f/0X)(t",¥(2)))
=ord,(¥'(m)+0rd, | [ F¥O)- ‘P(th)) .
1<g<m—1

where W!(X1/™) = 8 /0 X (¥(X1/m)).
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On the other hand, we can write
YxYmy = S agxnm

1<j<ip
+ Z ale(ﬂ1+fé’l)/m 4+ Z ang(ﬂg+j€g)/m,
0<j<i 0<j

where m = fy < | < --- < B, are the Puiseux exponents of C and

€; =ng(ﬂOa---’Bi)s 1 < [ < g.
Then we have Ord, ¥!(X!/") = n — m, and

Ord( I1 (W(r)—w(wqt») = 3 (ei1 — e

1<g<m—1 1<g<g
(Note that Ord,(‘¥(t) — ¥(wit)) = B;, if

g €{k(ej—2/ej-1); 1 <k <ei_1}—{k(ej_1/ej);1 <k <ej},
1<j<g (e-1=e=m).)

Now
Y (eici—e)Bi=c+m—1,
I<i<g ‘
where c is the conductor of S(C) (i.e. ¢ = min{d € S(C);d +Z, C
S(C)}, see [3],44) andc+n—1=a,_,, since

Ap ={min(S(C)N(j +nZ,;);0<j<n—1}

Finally, a similar argument shows that (f -9 f/0X)=c+n—1,if
n = Ord,(f(X,0)) < Ordy(f(0,Y)).

REMARK 11. Proposition 10 shows that if /# defines the polar of C
with respect to M then 4 satisfies the hypotheses in the Factorization
Theorem for k = n — 1, so Lemma 1.6 of [4] is also a special case of
(2) in the Factorization Theorem.
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