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INFINITESIMAL RIGIDITY
OF ALMOST-CONVEX ORIENTED POLYHEDRA
OF ARBITRARY EULER CHARACTERISTIC

EDpGAR KANN

This paper introduces a new method for proving the infinitesimal
rigidity of a broad class of polyhedra, the caps-with-collars and their
projective (Darboux) transforms, which include, as special cases, the
traditional closed convex polyhedra of Cauchy and the refined closed
convex and open convex polyhedra of Alexandrov with total curvature
27 . By definition, a cap-with-collars consists of an oriented general-
ized polyhedral cap with cylindrical polyhedral collars attached to the
boundary. The spherical image of the cap (by unit normals coherent
to the orientation) must lie in some hemisphere with the collars glued
to the boundary of the cap so that their faces are parallel to the polar
vector of the hemisphere. Moreover, caps are required to satisfy a
local convexity condition, called edge-convexity, which is weaker than
traditional convexity. An edge-convex polyhedron need not have a lo-
cal supporting plane at each point. This allows great topological and
morphological variety. A cap-with-collars can have arbitrary Euler
characteristic. Among the examples given some are nonconvex; some
are surfaces of genus greater than one; some are self-intersecting sur-
faces; some have branch points and some have pinch points.

1. Introduction. Consider the examples of polyhedral surfaces illus-
trated in Figure 1.

Figure 1A shows a nonconvex cap-with-collar with an edge-convex
cap (shaded faces), and its closed Darboux transform. (The light lines
are an Alexandrov refinement of the cap, dividing its plane faces.)
Figure 1B shows the closed transform of a nonconvex cap-with-collar
with a branchpoint at the central vertex of the cap and one at the
conical vertex (i.e., the transform of the point at infinity on the collar).
In Figure 1C the polyhedron is an immersion of a closed polyhedron
of genus 2 (see Example 3, Section 5). Figure 1D is a pentagram
bipyramid, and Figure 1E is a pinched sphere, where the curved lines
indicate a convex polyhedral cap. The proofs of their infinitesimal
rigidity follow from the basic theorem of the paper and its extensions
(Theorem B’, Section 5 and Theorem C, Section 6):

THEOREM B. Let C be a cap with Alexandrov refinement C', sat-
isfying the hemisphere condition ¢-n > 0 and having exactly one
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FIGURE 1

boundary component. Attach an infinite cylindrical polyhedral collar
with Alexandrov refinement to the boundary component of C with faces
parallel to c. The resulting surface is infinitesimally rigid.

Exact definitions of terms used above are to be found in Section 2,
and more examples are given in Sections 5 and 6.

Outline of the method. Let n denote the unit normal vectors on
the faces of a polyhedron with boundary, coherent to the orientation,
and c¢ the polar vector of a fixed hemisphere in which the spherical
image lies so that ¢-n > 0. An instantaneous velocity field z, called
a motion, is assigned to each point of each face of a polyhedron C
such that z is a rigid motion on each face. That is, at time zero z has
the form z(p) = a+y x x(p) at a point p of a face where a and y
are vectors which are facewise constant and x = x(p) is the position
vector of p. If a and y are constant on the whole polyhedron then
z is called a rigid motion. Velocities on contiguous faces are required
to agree on the shared edge. y-n is called the spin of z (Section 3).

In order to study infinitesimal rigidity, we will assign to a point
of self-intersection of a polyhedron one velocity vector for each poly-
hedral face which contains the point. Although this is impossible
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for rigid bodies in physical space, mathematically it means that the
faces pass through each other without obstruction. In Section 2 we
define a polyhedron as an immersion in space of a manifold called
an abstract polyhedral network. The velocity field on a polyhedron is
then technically a function defined on the abstract polyhedral network
although we will speak of it with some abuse as a function on the
polyhedron itself (see Section 3).

The method may be divided into three parts, corresponding to Sec-
tions 3, 4 and 5:

In Section 3 we show that any motion on the cap satisfying the
boundary condition z - c¢ = constant on each boundary component
separately (Figure 2A), is equivalent, modulo an infinitesimal rotation
with axis ¢, to a motion whose spin vanishes identically. This is the
Spin Lemma 2.

———n0

A B

FIGURE 2

In Section 4 we show that any motion with zero spin on a cap is a
rigid motion. Theorem A concludes that the original motion, with the
boundary condition, is a rigid motion since the boundary condition is
preserved under rotations with axis c.

In Section 5 we show that if an infinite cylindrical collar is glued
to a boundary component of a cap (Figure 2B) then any motion z on
the resulting polyhedron is equivalent, modulo an infinitesimal rota-
tion, to a motion z' satisfying ¢ -z’ = constant on the collar and, in
particular, on the common boundary of the cap and the cylinder (the
Collar Lemma 6). From this it follows that a cap with exactly one
collar is infinitesimally rigid (Theorem B).

The projective Darboux transformation (Figure 1A and Section 5)
then takes the cap-with-collar to an infinitesimally rigid boundaryless
polyhedron which consists of an edge-convex polyhedron with a finite
cone attached (Theorem B’). We use this to prove the classical in-
finitesimal rigidity of closed convex polyhedra with the refinements of
Alexandrov (Corollary 10).
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In the cases where the cap has more than one boundary component,
the transformation takes the cap with collars attached to the boundary
components to an edge-convex polyhedron with cones attached whose
vertices are coincident (Figure 3). Section 6 shows that if these vertices
are constrained to slide independently along a certain straight line or
are fastened together then the cap with cones is infinitesimally rigid
(Theorem C).

FIGURE 3

As an aside, we note that the projective invariance of infinitesimal
rigidity for frameworks and their associated polyhedra was known to
workers in statics at least as early as 1863 (Rankine, [Ra]) (see also
an historical summary, with additional references in [CW ; ]). Differ-
ential geometers usually credit this projective invariance to Darboux
[Da]. The explicit equations D;, D, of Section 5, acting simulta-
neously on the surface and on the velocity vector, appear to have
originated with Darboux [B, p. 126], [E, p. 58], [MR, p. 242]. We use
his name as a convenient reference to this special projective transfor-
mation.

All of the theorems proved in Sections 3, 4, 5 and 6 hold under the
generalized bendings of Alexandrov, in which faces of an edge-convex
polyhedron are allowed to crease along diagonals joining vertices, in-
cluding new vertices which are inserted in edges, with the restriction
that no two diagonals meet in the interior of a face.

Section 7 contains remarks about: (1) results which allow new ver-
tices to appear in the interior of faces under certain conditions without
destroying infinitesimal rigidity; (2) the infinitesimal rigidity of polar
polyhedra; (3) the infinitesimal rigidity of the 1-skeletons (i.e., frame-
works) of polyhedra; and (4) second order rigidity and rigidity of some
related polyhedra.

In view of the extensive history of the subject of infinitesimal rigid-
ity and the many well-known mathematicians who have worked in this
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field perhaps a few words should be said to indicate why the method
seems new. (Of course the abundance of new examples is good ev-
idence of this.) The method of Cauchy and methods adapted from
it such as Alexandrov’s [A, pp. 76, 366], Asimov ana Roth’s [AR, p.
183] and Whiteley’s [W, ] assign +, — or O to edges and count the
sign changes around a convex vertex whereas our method is concerned
with the sign of the spin function on faces.

Pogorelov’s very general methods in [P] apply to arbitrary convex
surfaces with boundary but the surfaces must have a one-to-one pro-
jection onto a plane (or be Darboux transforms of such surfaces).
His methods use the fact that the component of the velocity field
perpendicular to the plane is a function over the plane whose graph
has negative curvature and which therefore takes its extremes on the
boundary. Pogorelov also proves the infinitesimal rigidity of classical
convex polyhedral caps, based on a lemma of similar nature, under the
same restrictions to one-to-one (except possibly on the boundary) pro-
jections of the polyhedral surface to a plane [B, p. 121]. (His lemma
can be readily reproved using our present techniques.) Dehn [D] and
Weyl [E, p. 198] have also given apparently unrelated proofs.

Recently Fogelsanger [F] proved that a “generic” realization in 3-
space of any closed, oriented triangulated 2-surface is infinitesimally
rigid. However his methods provide no specific infinitesimally rigid
geometric realizations. In comparison, our methods provide an open
set of infinitesimally rigid realizations for a wide class of surfaces.

Brief background. These investigations grew out of an, as yet un-
successful, attempt to solve a finite rigidity (or monotypy) problem
for a certain class of tubes of negative curvature with fixed boundary,
which began when L. Nirenberg gave the author a copy of his paper
[N] when the author was a Visiting Member of the Courant Institute at
New York University. What resulted instead was a method for prov-
ing the infinitesimal and finite rigidity of a general class of smooth
caps (not necessarily embedded or simply connected) satisfying the
so-called “glidebending” condition [K ], [K2 ], [K3]. (Glidebending
means that the displacement on the boundary, whether finite or in-
finitesimal, is orthogonal to c¢.) This in turn led to a solution of the
infinitesimal glidebending problem for polyhedral caps with the same
features (see the remarks following the proof of the Spin Lemma, Sec-
tion 3).

R. Connelly and W. Whiteley, in discussions with the author at the
Special Semester in Structural Rigidity at the Université de Montréal
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in February of 1987, discovered that the method applies to a still
larger class of topologically interesting polyhedra. Whiteley empha-
sized that statements about rigidity under glidebending boundary con-
ditions convert to rigidity theorems about closed compact polyhedra
via the Darboux transformation if cylindrical collars (with not neces-
sarily convex cross-section) are attached to the boundary. In particu-
lar, Connelly created examples which are immersions of 2-manifolds
of genus n (see Example 3, Section 5) and Whiteley suggested many
others, including the examples with branch points and pinch points,
as well as some applications described in Section 7. I am grateful to
both of them for these contributions to this paper.

In addition Whiteley has assisted with the terminology, reorgani-
zation and rewriting of the paper. Whatever readability it may have
is due to him. I would also like to thank the editor H. Samelson for
many helpful suggestions.

Future research should attempt to prove the finite rigidity (mono-
typy in a certain class) of these topologically interesting polyhedra and
the finite and infinitesimal rigidity of analogous surfaces formed by
gluing pieces of convex surfaces together.

2. Basic concepts and definitions. A polyhedron is a mapping of an
abstract polyhedral network to E3 whose restriction to each face is
one-to-one and preserves Euclidean distance (a more precise definition
will be given below). In order to define such a network we need some
preliminary definitions.

A finite polygonal region, or simply polygonal region, is a compact
set in the Euclidean plane whose boundary is a simple closed polygonal
curve (i.e., the boundary is a polyhedral 1-sphere [M,, p. 16]). The
edges and vertices of the boundary polygon are called the edges and
vertices of the polygonal region (Figure 4).

FIGURE 4

We will also use infinite regions to construct collars (Section 5) but
the caps themselves will be unions of these finite polygonal regions.
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Other, more general polygonal regions will be discussed in Section 6.

An abstract polyhedral network is a finite nonempty collection K
of polygonal regions together with their edges and vertices, with edges
and vertices identified in a special way, subject to the following rules
(the word gluing will also be used to describe identification, see [AZ],
[B], [E]):

1. Any two vertices may be glued. Any two edges having the same
length may be glued but must be glued together along their entire
lengths. Points are identified which correspond under an isometry of
the edges.

2. If two polygonal regions R and S are glued at vertex p then
either they are glued along an edge having p as endpoint or they are
connected by a finite sequence of polygonal regions glued along edges
having p as an endpoint beginning at an edge of R and ending at an
edge of S (see Figure 5).

FIGURE 5

3. No edge is glued to more than one other edge.

4. K 1is edge-connected: any two polygonal regions are joined by a
chain of polygonal regions which are glued along edges.

5. K is oriented: each face has an orientation determined by fixing
a circuit (called a positive orientation) of its boundary and the circuits
belonging to two faces having a common edge “cancel” on the common
edge in the usual way, (see e.g., [L]).

An edge which is not glued to another edge is called a boundary
edge of K. The points of a boundary edge are boundary points of
K and the set of all boundary points is the boundary of K. |K]|
denotes the union of the elements of K (with, of course, identified
points counting as one point). |K| is called an abstract polyhedron
with subdivision K .
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Property 4 implies that two points a and b in the interiors of
two polygonal regions are joined by a path in |K| which contains no
vertex.

The polygonal regions in K are the faces of K. The edges and
vertices of the faces of K are called edges and vertices of K. The
set of edges is called the 1-skeleton of K. A face with at least one
boundary edge of K is called a boundary face of K. Two faces of K
are contiguous if they are glued together at a common edge.

Neighborhoods of a point of |K| (following [AZ, p. 13]). The polyg-
onal regions R; are 2-dimensional manifolds with boundary in a nat-
ural way. If a point p belonging to |K| was not involved in the identi-
fication then we take as a neighborhood of p in |K| any neighborhood
of p considered as a point of R;. If p is an interior point of two
identified edges of R; and R; then we take as a neighborhood of p
in |K| the union of two neighborhoods homeomorphic to half planes
which p had in R; an R, before identification. The neighborhood
of p is separated by an open segment containing p. If p is the iden-
tification of several vertices a neighborhood of p in |K| is likewise
the union of neighborhoods which p had in each of the polygonal re-
gions to which it belonged before gluing. Because of property 2 above
|K| is then a manifold with boundary (which may be empty).

We repeat the definition of a polyhedron more precisely: A polyhe-
dron in E3 is a mapping C: |K| — E3 of an abstract polyhedron with
subdivision K which is facewise isometric (that is, C is one-to-one
on each face and preserves Euclidean distance). We will also refer to
the image C(|K|) as the polyhedron C. Terms and notations refer-
ring to an object in K as defined above will be used also to refer to
their images under C . For example, the image of a face of K will be
called a face of C; two faces of C will be called contiguous if their
antecedents are contiguous in K ; the boundary of C is the image of
the boundary of K. (Since the mapping C is not necessarily one-to-
one in the large, a point may lie in the boundary of C and also in the
relative interior of C according to this definition.) We will usually be
thinking of C but use the underlying topology of K. Occasionally
we speak of K and C interchangeably when no harm is caused.

The orientation of K induces an orientation of the faces C in a
natural way. We choose a unit vector n normal to the plane of each
face of C, coherent with the orientation. A polyhedron C is edge-
convex if one of the two possible orientations has the property that for
each face f all faces contiguous with it lie, except for the glued edges



ALMOST-CONVEX ORIENTED POLYHEDRA 79

themselves, in the negative open half-space determined by the plane of
f and the normal n. In what follows we will assume, for definiteness,
that this orientation has been chosen on caps-with-collars and we will
speak of n as pointing “out” of such surfaces. Edge-convexity implies
that the nonboundary faces of a cap are convex polygonal regions.
Boundary faces may be nonconvex.

An oriented, compact, edge-convex polyhedron C is a cap if there
is a constant unit vector ¢ such that:

c-n > 0 on every face of C.

This stipulation is called the hemisphere condition.

REMARK 1. The usual definitions of a cap assume that a cap has
nonempty boundary but it is not hard to prove this from our definition
of a cap.

Proof. Assume there is no boundary face. For simplicity, we rotate
the polyhedron (or ¢) so that a face (one for which ¢-n is a minimum)
satisfies ¢-n = 0, while the remaining faces satisfy ¢-n > 0. We now
prove that this face is a boundary face of the cap.

Suppose f is a nonboundary face with ¢-n = 0. Denote the
positively oriented edge vectors of f by e; and the faces sharing the
corresponding edges of f by f;, i=1,2,...,m. There exist m
scalars A; such that e¢; = A,n x n;. The A; are positive by edge-
convexity and by the orientation. Then (summing from 1 to m)
n x ) An; = > e; = 0. Therefore there exists a scalar S such that
> Amn; = fn. Hence Y Ajc-n; = fc-n= 0. It follows that ¢c-n; =
0, for all of the normals to the faces contiguous with f. This is
a contradiction to the edge-convexity at f and the fact that the face
cannot be collinear. (If a face f; contiguous with f satisfied ¢-n; =0
then the shared edge would be parallel to ¢ by edge-convexity and so
all edges of f would be parallel to c.)

Alexandrov [A, Chapter X] (see also [B, p. 121]) refined theorems
on infinitesimal rigidity by subdividing the faces of a polyhedron. Ex-
plicitly, C is refined by a finite number of applications of the two
steps:

1. Introduce a new vertex in the interior of an edge of a face of C.

2. Introduce a new edge in a face of C (called a conditional edge or
a diagonal) by joining two vertices, new or old, of the face by segments
which lie, except for their endpoints, in the interior of the face, such
that two diagonals do not intersect in the interior of the face.
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This divides the face into a finite number of conditional faces. Two
conditional faces sharing an edge are again called contiguous. We call
C, with the new edges, vertices and conditional faces distinguished,
an Alexandrov refinement of C and denote it by C’'. (Adding new
vertices in the interior of a face may or may not destroy infinitesimal
rigidity—see Section 7.)

3. The spin of an infinitesimal motion. An infinitesimal motion of a
polyhedron C with Alexandrov refinement C’ (or briefly motion on
C'") is a vector field defined at each point p of C which has the form

(1) z(p) =a+yxXx,

where a and y are facewise constant (on the faces of C’) vectors
and x = x(p) is the position vector of p. If a and y are constant on
the polyhedron the infinitesimal motion is called a rigid motion. The
vectors y are called the rotation vectors (or angular velocity vectors)
of the motion. If z = constant on C, the motion is a translation.

Strictly speaking z is a function on the abstract polyhedron |K|;
a point of self-intersection of C(|K|) is copied once for each of its
preimages under the mapping C and each copy has a well-defined
value of the velocity z. If this is kept in mind, the above notation
(which has an intuitive appeal since one thinks of the points of inter-
section of faces as moving through each other), although a technical
abuse, should cause no difficulties. Thus an infinitesimal motion may
be interpreted intuitively as giving the instantaneous velocity of points
of the polyhedron when the polyhedron moves so that each face moves
as a rigid body but dihedral angles between contiguous faces are al-
lowed to change.

A polyhedron C with Alexandrov refinement C' is infinitesimally
rigid if it admits only rigid motions. In this case the velocity field z
coincides with the velocity field of a rigid motion of space. A poly-
hedron C with Alexandrov refinement C’, which admits only rigid
motions under boundary conditions on the motions, is called infinites-
imally rigid under the boundary conditions (or simply infinitesimally
rigid if there is no danger of ambiguity).

We adopt the convention that a symbol with a bar and the same
symbol without a bar denote corresponding objects on two contiguous
faces.

Let e be the oriented edge vector of an oriented edge e separating
two contiguous faces of a polyhedron. The change in velocity Az
along e in the direction of e may be computed, using (1), for each
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face. For the directed edge e = x; — X,

(2) Az=(a+yxx;)—(@+yXX) =yX (X —X)=yxe
and, likewise, Az=y x e.

Subtracting the equations for the two faces at ¢ we obtain (y—y)xe =

0. Hence, for some scalar «,

(3) (y—§) =ae

for any edge separating two faces. In other words, the rotation of a
face relative to an adjacent face is parallel to the common edge. (3)
implies the existence of an w-bending, in the terminology of Gluck
[G], or a static stress, in the terminology of Whiteley [W;, W, .

If n and n are the unit normal vectors of the faces, chosen to be
coherent with the orientation of the polyhedron (Section 2), we have
e-n =0 =e-n. Equation (3) now yields, after taking the dot products
with n and n and transposing:

(4) y-n=y-n and y-n=y-n

These equations are also used by H. Weyl in his treatment of the
infinitesimal rigidity of polyhedra [E, p. 198].

We call y-n the spin of z on a face. A non-rotating observer
perched on the tip of n, looking down at the face, will see the face
rotate counterclockwise, clockwise, or not at all according as the spin
is positive, negative, or zero. It is immediate that

(5) the spin is constant on every original face, (the union
of the conditional faces of an Alexandrov refinement).

Two infinitesimal motions are equivalent modulo a rigid motion z
if their difference is equal to z. (This is an equivalence relation on
the set of infinitesimal motions on a polyhedron.)

The first step in proving infinitesimal rigidity consists in showing
that any motion satisfying a certain boundary condition is equivalent,
modulo an infinitesimal rotation with axis ¢, to a motion whose spin
vanishes identically; the second in showing that any motion with zero
spin is a rigid motion if various conditions hold on the polyhedron.
The original motion must then be a rigid motion. The second part
will be treated in the next section. The first is embodied in

THE SPIN LEMMA 2. Let C be a cap satisfying the hemisphere con-
dition ¢-n > 0. Let C' be an Alexandrov refinement of C. If z is a
velocity field on C' satisfying the boundary condition z-c¢ = constant
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on each component of the boundary then z is equivalent to a motion
with zero spin.

Proof. Pick any face gy of C’. Let subscript o denote objects
defined on gy. y =y — (yo-ng/c-mg)c is the rotation vector of the
motion z' =z — (yp - ng/c - mp)c X x which is equivalent to z. Note
that y; -ng = 0 so that z' has zero spin on gy. Also, the changes in
velocity of z' and z along any boundary edge satisfy ¢-Az = ¢-Az' = 0.
Therefore to prove the theorem it suffices to show the simpler lemma.

LeMMA 3. If a motion z satisfies the condition that ¢ -z is constant
on each component of the boundary separately and has zero spin on a
face gy of C' then it has spin identically equal to zero.

Proof. Let % be the nonempty union of the faces of C’ on which
y-n = 0. The boundary edges of .# are original edges (that is, edges
of C) by (5). We will show that %7 = C’.

Consider the edge-connected component %, of # containing g .
If all the boundary edges of %, are boundary edges of C’ then
Fo=% = C', since C' is edge-connected, and the conclusion holds.
Therefore we may suppose that there is some face f; of .%; which has
a boundary edge which is not a boundary edge of C’. Then ¢ - n> 0
and y - n=0 on f; with §-1 # 0 on some contiguous face f,
(see Figure 6). Suppose for example that ¥-@ > 0 on f, (the case
¥ -1 < 0 is essentially the same).

FIGURE 6

Let #* denote the maximal edge-connected subset of C’ containing
f1 such that the spin is positive on each face of Z*. (#* can be
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obtained by successively adjoining faces along edges, by the definition
of edge-connected, Section 2.) Z* is, of course, connected. Let e
denote the edge separating f; and 71 and e; the edge vector of ¢ .

Let & be the component of the boundary of .#* which contains
e;. @ 1is an oriented cycle of edges, with its orientation coherent to
that of C’. In other words an observer with feet on the “positive” side
of C' walking around & in the “positive” direction will see the faces
of Z* on his left. Thus faces with positive spin will be on the left
and, if the edge is a nonboundary edge, faces on the right will have
nonpositive spin, with zero spin on f;. (These statements depend
on the topology of the abstract polyhedron, and are not affected by
self-intersection in the cap.)

Our observer, coming to a vertex v, turning to his left into .Z*,
and walking around the vertex v from face to face across the edges
having v as endpoint with v on his right must come to an oriented
boundary edge of .#* that goes away from v. Continuing in this
manner, after passing a finite number of vertices he must return to his
starting point (see Figure 6).

Notice that the edges in £ must be original edges of C by (5)
since the spin is not constant across these edges. Using (2) and edge-
convexity, Figure 7 shows that:

(6) c¢-Az < 0 on the edges e of & with strict inequality
holding on all nonboundary edges.
Thus Q may be called a falling path.
This leads immediately to a contradiction since the total change in
z on a closed path is zero: > . ¢-Az =c¢-> Az = 0. We will give
an algebraic proof of (6) below, but first we give a more intuitive,
geometric proof.

Geometric Proof of (6). Figure 7 shows the section of the polyhedron
by a plane perpendicular to a general nonboundary edge ¢ in &, with
its edge vector e directed into the page. Since ¢-n >0 and ¢-n >0,
the perpendicular projection of ¢ into this plane must lie inside the
indicated shaded dihedral angle. Since (y—¥) x e = 0, the projections
of y and ¥y into this plane will coincide. Since y-n=y-n < 0 and
y-n > 0, the projection ¥ must lie within the second shaded dihedral
angle. The reader can check that these conditions in the diagram, and
the edge-convexity at e, show that Az-c=yxe-¢c<0.

Algebraic Proof of (6). Let e be an edge in £ which is a nonbound-
ary edge of C. Since n and n span a plane perpendicular to e we
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FIGURE 7

can write Az =
c-n>0 and c-
and £ <0.
Taking the dot product of yxe with ¥, we obtain ay-n+ 8y n=0.
Since -1 >0 and y'n=y-n<0, a and B, if both are not zero,
must have the same sign. By the orientation of C, and edge-convexity,
n xn = ue for some scalar 4 > 0. Recall that for any three vectors
(axb)xc=(a-c)b—(b-c)a. Therefore

(f-me=(e-My+ (¥xe)xn=0+(Fxe)xNM=—afl XxN=—apue.

Yy x e = an + fn for suitable scalars o, 8. Since
n>0, Az.c=yxe-c=(an+8n)-c<0if a<0

Therefore —au =y-n > 0. We conclude that o < 0 and <0, as
required.

Figure 8 shows why the argument fails if the polyhedron is not edge
convex: y-n>0 and y-n <0 imply yxe€-c > 0, for a concave edge.

FIGURE §

REMARK 4. The methods used in the proof of the Spin Lemma,
which is of central importance in this paper, have a common theme
with methods used by the author to prove the infinitesimal rigidity of
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differentiable surfaces with Gauss curvature .# > 0, (see [K; ], [K> ],
[K3]). We’ll briefly illustrate the analogy.

Let x be the position vector of a surface which deforms with time
¢t such that the surface metric dx - dx is constant to first order in ¢
at time ¢ = 0. The velocity z = x; (assumed to be a C” field) of
each point on the surface then satisfies dz-dx = 0 on the surface at
t = 0. It is well known, in the theory of infinitesimal deformations of
a surface, that a unique differentiable vector field y exists such that
dz = y x dx. The field y, which can be assumed never to vanish,
has the property that the locus where y-n = 0 (n, as usual is the
unit surface normal) is a differentiable curve. If y-n doesn’t vanish
on the boundary then the locus is either empty or is a disjoint union
of simple closed curves. Let o be such a curve. Differentiating y - n
along ¢ we obtain y-dn =0 (n-dy is known to be zero). Since
Z >0, dx-dn#0 and so y can never be parallel to dx. Therefore
we can write dz = y X dx = An, where A, say, is positive. If the
surface satisfies the hemisphere condition ¢-n > 0 then ¢-dz > 0.
However, this contradicts [ c¢-dz=0. Therefore

If y-n doesn’t vanish on the boundary of a surface satis-
fying the hemisphere condition then y-n doesn’t vanish
on the surface.

This lemma is the main tool used in the research mentioned above.
It’s clear that o and the cycle € in the proof of the Spin Lemma play
analogous roles.

4. Infinitesimal rigidity with boundary conditions. In the next lemma,
we do not need edge-convexity or hemisphere conditions. However we
need the following notation:

" = the union of the nonboundary faces of C and
& = the 1-skeleton of C, minus the boundary edges of C.

Figure 9 shows an example of a polyhedron (A) with disconnected
set ./~ of non-boundary faces (B) and a disconnected set . of non-
boundary edges.

THE TRANSLATION LEMMA 5. If contiguous faces of a polyhedron C
do not lie in the same plane then a motion with zero spin defined on
an Alexandrov refinement C' of C is

(a) a translation on each component of & .

(b) a translation on each component of V.



86 EDGAR KANN

FIGURE 9

Proof. y-n = 0 and (4) imply that the rotation vector y on any
face f of C’ is orthogonal to the normal to any face (original or
conditional) sharing an edge with f. If such adjoining face is not
parallel to f, which is the case when the shared edge is original, then
y is parallel to the shared edge. Thus by (2) Az =0 on each original
nonboundary edge. Therefore z is constant on each component of the
union of all original nonboundary edges of C, i.e., on each component
of #.

The diagonals of a nonboundary face of C join vertices which lie in
the edges of a component of . (as in Figure 9). Therefore Az =0 on
all of the diagonals of nonboundary faces. Thus, for each conditional
face of a nonboundary face of C, the rotation vector y is parallel to
each of its edges. By the definition of a face and of an Alexandrov
refinement, every such conditional face has at least two non-parallel
edges and therefore y = 0 on each conditional face of a nonboundary
face. By (1) z is constant on each face and therefore, by continuity,
on each component of 7.

We are now prepared for the infinitesimal rigidity theorem.

THEOREM A. Let C be a cap with Alexandrov refinement C' satis-
fying the hemisphere condition ¢-n > 0 and let z be any motion on
C' satisfying the boundary condition c-z = constant on each boundary
component of C separately. Then z is a rigid motion.

In particular (since the boundary condition ¢ -z = 0 is called a
glidebending) a polyhedral cap with spherical image in the interior of
a hemisphere is infinitesimally rigid under glidebending.
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Proof. By the Spin Lemma, z is equivalent to a motion z =
Z — ac X x, which has zero spin. By the Translation Lemma Zz' is
a translation on each component of the union .#* of the nonboundary
faces of C. The proof that z is a rigid motion on all of C’ requires a
little more detail. We need to show that the translated components of
", if there is more than one, are connected by boundary components
of C which are also translated thus forcing C to be translated as a
unit.

By the boundary condition ¢- Az = c¢- Az = 0 on the boundary of
C'. Let f be an original boundary face and f’ any conditional face
of f. Since the spin of Z' is zero its rotation vector y' is parallel to
f". This means that for any vector e in f’ there is a scalar A such
that y x e = An. If f’ is a boundary face of C’ and e is an edge
vector of f” in the boundary of C then 0 =c-AZ =c-y xe=c-4An.
By the hemisphere condition ¢-n > 0, 4 = 0. Therefore y' is parallel
to all of the edge vectors e of f’ which belong to the boundary of C’
(which of course equals the boundary of C). It follows that Az =0
on each edge of f’ which is a boundary edge of C (the heavy lines
in Figure 10). Therefore z' is constant on these edges.

FIGURE 10

By the Translation Lemma (a) z’ is also constant on those edges of
f which are nonboundary edges of C since they are in . (the thinner
solid lines in Figure 10). We now have shown that z' is constant on
each original edge of f. We assumed (Section 2) that the boundary
of any face is connected and thus z’' is constant on the boundary of
f. Since diagonals of f join points on the boundary of f (dotted
lines in Figure 10), Az’ = 0 on all diagonals as well as edges of f.
Hence 7' is constant on each f’ and so on each boundary face f.
Therefore 7' is constant on each boundary component of C as well as
on each component of .#". Since the components of .#" are connected
by strips of boundary faces, z' is constant on C. Therefore z is a
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rigid motion. (Note that this conclusion holds even if .7 is empty
because in this case the set of boundary faces is connected.)

5. Infinite collars and the rigidity of closed polyhedral surfaces.
Given a cap C with Alexandrov refinement C’ satisfying the hemi-
sphere condition ¢-n > 0 we attach infinite cylindrical polyhedral
collars with infinite edges and faces parallel to ¢ to each boundary
component. This may be done as follows. Let v,v,---v, be a maxi-
mal plane polygonal arc having the two properties (Figure 11A):

1. its vertices are successive original boundary vertices of a bound-
ary component of C and

2. it lies in a plane parallel to c.

Each boundary component can be expressed as the union of a finite
set of such arcs where the endpoint of each arc is the initial point of the
next. Attach to each such arc in a boundary component the infinite
plane set bounded by v;v,---v, and the rays from its endpoints,
v; and v,, parallel to ¢ and both directed the same way. We call
this set a natural collar face. A natural collar face is the union of
infinite triangular regions whose finite sides are the segments v;_;v;
and whose other sides are two rays parallel to ¢ (Figure 11B).

FIGURE 11

The rays on a given boundary component will all be taken to point
in the same direction as ¢ or all in the opposite direction so that the
regions go to infinity in the same direction. If the rays point opposite
to c, the natural collar face is a convex plane set. This follows easily
from edge-convexity, our assumption that ¢-n > 0 on C and the fact
that none of the v,_,v; is parallel to c.

The collection of the natural collar faces attached to a boundary
component will be called a cylindrical collar. The edges v;_;v; and the
rays from v, and v, of the natural collar faces will be called natural
edges of the collar. The ray edges are, of course, the intersections of
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contiguous natural collar faces. We note that contiguous natural collar
faces lie in different planes.

The union of C and the collars is an oriented polyhedron with
infinite faces, which we’ll denote by D. In general D will not be
edge-convex (recall Figure 1). In fact, the collars themselves need not
be edge-convex and may self-intersect (recall Figure 1A and D).

We also have a refined cylindrical collar in the manner of Alexan-
drov. We add a finite number of new vertices in the interiors of the
edges (including rays) of a natural collar face and joining vertices, new
or old, by diagonals which lie, except for their endpoints, in the in-
terior of the natural collar face but do not intersect in the interior of
the face. Moreover, we allow as diagonals rays in a natural collar face
which are parallel to ¢ starting at points of a boundary edge of C
(including points in the interior of the boundary edge) (Figure 11C).
Again, no diagonals may intersect in the interior of a natural collar
face. A refinement of D will be denoted by D’'.

Let an infinitesimal motion z of the form (1) be given on D’ which
is a rigid motion on each face of D’. We show that z is equivalent to a
motion with zero spin on the collar, using arguments related to those in
[B, Sec. 16, p. 126]. Since D’ contains only a finite number of vertices
there exists a plane 7# perpendicular to ¢ which cuts any given collar
into two parts: a finite cylinder and a half-infinite cylinder Q which
contains no vertices of D’'. Number the faces of D’ which intersect Q
(these are infinite collar faces with edges parallel to c¢) consecutively
fis foseeos fus fue1 = fi, ... and let y; be the rotation vector of z
on f;. By (3) y, —y;_; is parallel to ¢ and hence so is y; —y; since
it may be written

Yi V1= —Yi-) +(Yi-1 = ¥ic2) + -+ (Y2 V1)

Define a velocity field z equivalent to z by Z = z—y; x x. The
rotation vector of z' on f; is y; =y; —y; and, since it is parallel to
c, the spin of 7z’ on f; is zero. Therefore, by (4), the spin of Z' is
zero on the natural collar face containing f;. Hence

(7 the spin of 7' is zero on the collar.

It follows that c-z' is constant on each original collar face and hence
on the whole collar including its common boundary with C. In other
words we have proved:

THE COLLAR LEMMA 6. Let a refined cylindrical collar with faces
parallel to ¢, be attached, as described above, to a boundary component
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of a refined cap satisfying the hemisphere condition ¢-n > 0. Then any
motion z on the resulting refined polyhedron is equivalent, modulo an
infinitesimal rotation, to a motion 7' satisfying c-z' = constant on the
collar.

REMARK 7. The unboundedness of the cylindrical collar was used in
the arguments leading to this statement only to insure that no vertices
appeared in Q. It would still be true if, for example, a half-infinite
cylinder containing no vertices were cut off from the collar by a plane
perpendicular to ¢ leaving a bounded collar with no diagonals inter-
secting the free boundary (for example, a rectangular box with one
face removed). The fact that the collar goes to infinity will be used to
produce rigid closed surfaces by the Darboux transformation.

REMARK 8. We would like to have ¢-zZ' = constant on each boundary
component of C’' so we can apply Theorem A. However, the operation
of subtracting a rotation from z in order to achieve this condition has
to be done to one boundary component at a time. Performing the op-
eration on a second boundary component will, in general, destroy the
condition on the first one. Therefore additional boundary conditions
will be needed if there is more than one boundary component on the
cap. This will be discussed in Section 6.

Suppose, for now, that there is only one boundary component. It
follows from the Collar Lemma and Theorem A that the restriction
Z'|C’ is a rigid motion and hence so is z|C’. We will show that z is
a rigid motion on all of D’:

By the Collar Lemma and the Spin Lemma Z'|C’ is equivalent to
a motion 7z’ =7 — ac X X, a = constant, which has zero spin on the
cap C’. Since the spin of 2’ is zero on the collar by (7) and the rigid
motion ac X X has zero spin on the collar, z’ has zero spin on the
entire collar. Thus z"” has spin identically equal to zero on D’.

By familiar arguments, similar to those in the proof of the Trans-
lation Lemma, z” is a translation: z” is constant on all edges which
separate nonparallel faces by (4) (including the natural collar edges
which are rays separating the nonparallel natural collar faces). The
set .7 of such edges is connected (since the skeleton of D is con-
nected and D has no boundary) so that z"” is constant on .9 . Since
any conditional ray edge is parallel to ¢, and the rotation vector y;—ac
of 7" is parallel to ¢ on the terminal collar Q, z" is also constant
on all conditional ray edges of the collar. These rays start at points
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of 7 (their initial points are in the boundary of C’). Let .9 equal
 enlarged to include all conditional rays. Then z" is constant on
"', Diagonal segments connect points of ' (Figure 11C) so z" is
constant on these. This implies that z” is a translation on D’. z,
being equivalent to z’ on D', is thus a rigid motion on D'.

We have proved the second infinitesimal rigidity theorem.

THEOREM B. Let C be a cap with Alexandrov refinement C', sat-
isfying the hemisphere condition ¢ -n > 0 and having exactly one
boundary component. Attach an infinite cylindrical polyhedral collar
with Alexandrov refinement to the boundary component of C whose
faces are parallel to c. The resulting surface is infinitesimally rigid.

REMARK 9. If the collar is truncated by removing a semi-infinite
cylinder containing no vertices the resulting surface with boundary
is still infinitesimally rigid. This is an example of a general slicing
principle described in [W 5 ].

ExAMPLE 1. Figure 12 shows a (schematically drawn) polyhedral
spherical cap with truncated collar (which could go either up or down).
Since it is infinitesimally rigid, the surface on the right, obtained by
closing it with a second cap, is an infinitesimally rigid (nonconvex)
polyhedron.

We now apply the Darboux transformation to caps whose collars all
go to infinity in the same direction, so that the union of cap and collars
lies in a half-space, in order to obtain closed boundaryless polyhedra
which are rigid. Several examples of these were mentioned in the
Introduction. The Darboux transformation consists of two parts. Let
X1, X2, X3 be rectangular coordinates on E3. The first part is given by

D;: x| = Xx1/x3, Xy = X2/X3, x5 =1/x;.
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This may be interpreted as a projective transformation of the extended
Euclidean space interchanging the x;, x, plane and the “plane at
infinity”. It is well known how to give this a precise meaning by
embedding E3 in the projective space P> in a canonical way and
distinguishing a plane in P3. We may always choose the coordinate
system so that the cap with its collars lies in the half-space x3 > 0
with the collar rays in the direction of the positive x; axis (Figure
13A). D; takes the cap with its cylindrical collars to a boundaryless
polyhedron (Figure 13B) consisting of an edge-convex polyhedron with
boundary with polyhedral cones (the images of the cylindrical collars)
attached to the boundary which have a vertex p at the origin 0 of
the coordinate system. Strictly speaking p is not part of the image
of the cap-with-collars; however we will add it to the image and refer
to the new set as the completed image polyhedron of the cap-with-
collars under the Darboux transformation. We note that if there is
more than one collar, copies of p appear for each cone. If these are
identified (see Section 6), p becomes a pinchpoint of the completed
image polyhedron.

FIGURE 13

The second part of the Darboux transformation transforms infinites-
imal motions on a surface. It is given by

D;: Zy = 21/x3, 25 = z,/x3, zy=—(x-2) /X3

where z = (z;, 25, z3) (the components of all vectors are with respect
to the standard rectangular coordinate system) is the velocity field of
a motion on the original surface and x is the position vector from
the origin of the coordinate system to the surface. It is well known
and, easy to check, that z = (z;, z;, z3) is a rigid motion on any
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set of points if and only if z' = (z{, 2}, z3) is a rigid motion on
the image of the set under D, (see, for example, [E, p. 58-61] or
[B, p. 126] (which gives the reference [Da], Livre VIII, Chapitre III);
and [CW, Section 3.6] which discusses the projective invariance of the
infinitesimal rigidity of panel structures).

Since a cap with one collar can sustain only rigid motions, by The-
orem B, it follows that the same is true for its image under D; .

How must a polyhedron look in order that it be such an image?
Calculation using D; shows that an oriented polyhedron C in the
half-space x3 > 0 satisfies the hemisphere condition ¢-n > 0 at a
point, where ¢ is a unit vector in the direction of the positive xj3 axis,
if and only if the function x’-n’ satisfies x’-n’ > 0 at the corresponding
point on its D; transform.

Since the function x’-n’ is the directed distance from the origin O
to the plane of a face with normal n’, O lies in the intersections of
the negative half-spaces (defined in the usual way as the half-spaces
opposite to the ones into which the vectors n’ point) of the oriented
planes containing the faces of the transform (oriented to agree with
the orientation of the faces) if and only if ¢-n > 0. Therefore, from
Theorem B we conclude

THEOREM B’. Let C be a polyhedron with Alexandrov refinement
C' which is oriented, edge-convex and has a connected boundary to
which a polyhedral cone with Alexandrov refinement with vertex p has
been attached. Suppose

1. that p lies in the intersection of all negative (positive) half-spaces
of the coherently oriented facial planes of C and

2. there exists a plane through p such that C and the cone lie (ex-
cept for p) in an open half-space determined by the plane.

Then the polyhedron formed by C and the attached cone is infinitesi-
mally rigid.

In this way we can obtain many examples of infinitesimally rigid
closed polyhedra as mentioned in the Introduction. These surfaces
need not be edge-convex on the star of p.

ExaMPLE 2. Figure 13 shows a cap and its Darboux transform.
The cap has three faces and an infinite polyhedral collar attached to
its boundary. In this case the collar has a nonconvex cross-section
and has six faces. The Darboux transform is a closed nonconvex
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infinitesimally rigid polyhedral sphere. The collar becomes a cone
with vertex at the origin.

CoROLLARY 10 (A4lexandrov [A]). A closed convex polyhedron D
with Alexandrov refinement D' is infinitesimally rigid.

Proof. Let p be any vertex of D and 7 a supporting plane of D at
p such that D lies, except for p, in an open half-space of n. Take
the set of all faces of D which have vertex p as the cone and the
closure of its complement in D as the polyhedron C of Theorem B’.

ExaMPLE 3. The present method allows a generalization of Alexan-
drov’s Theorem to polyhedra which are immersions of manifolds of
higher genus. An example offered by Connelly is the following: Let T
be a torus of genus n with an open disk removed embedded in E3.
T may be deformed isotopically through embeddings to a polyhedron
embedded in E3 which is edge-convex and satisfies the hemisphere
condition. Figure 14A, B, C, illustrates a deformation to the plane
of a torus of genus two with a connected boundary embedded in a
standard way. The third stage, Figure 14C, can clearly be further de-
formed in the desired way (see 2-cell with (untwisted) strips, [M >, p.
157]). Since the boundary is connected we may attach a single cylin-
drical collar to it (which will be self-intersecting and not edge-convex)
with generators parallel to ¢. The resulting cap-with-collar is infinites-
imally rigid by Theorem B. We place it in the half-space x3 > 0 with
the collar rays parallel to the x3 axis. Applying the transformation
D, we obtain an immersion of a closed polyhedron of genus » which
is infinitesimally rigid. The image of the cap is edge-convex but the
cone which is the image of the collar is not edge-convex nor embedded
(Figure 14D).

ExaMPLE 4. Figure 15 shows an infinitesimally rigid pentagramal
bipyramid with one vertex at infinity. (Its Euler characteristic is 2
and therefore it is a combinatorial sphere.) The pentagram lies in
a plane and is the common boundary of the cap and the cylindrical
collar. A Darboux transformation takes the unbounded bipyramid in
Figure 15A to an infinitesimally rigid bounded bipyramid like the one
in Figure 15B.

ExAMPLE 5. Figure 1B shows an edge-convex, infinitesimally rigid
polyhedron with two branch points like that on the Riemann surface
of w = z!/2. Similar k-sheeted infinitesimally rigid polyhedra corre-
sponding to z!/% can be constructed.
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e — e

FIGURE 15

6. Extensions. If the cap C has more than one boundary com-
ponent then adding collars may not by itself guarantee that a motion
on the resulting cap-with-collars will be equivalent to one for which
¢-z = const. on each boundary component of C (Remark 8). More-
over, if no further conditions are imposed then a value of the velocity
z' = D,(z) at the copy of p on a cone is not determined by the values
of z on the collar antecedent to the cone under D, since p has no
antecedent. We will assume the minimal condition that a continuous
velocity field z' on the completed image of a cap-with-collars exists
and then explore additional conditions that will enable us to utilize
Theorem A to prove its infinitesimal rigidity. Therefore we require
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for each copy of p:
(8) Z'(p) is the limit of 7 (q) as q approaches p on a completed cone.

We calculate the limit of z' as g approaches p on a face f’ of a
cone using the components of z = D (Z') . Place the cap-with-collars,
as before, in the half-space x3; > 0 with the collar faces parallel to
the x3 axis and take ¢ = (0, 0, 1). Let f be the antecedent of f
under D; and (x;, X3, x3) an arbitrary point of f. Substituting
the expressions for the components of z on f from (1), with a =
(a1, a2, a3) and y= (1, 2, y3), into D, we get

Dy(z) = (1/x3)(a; + yax3 — y3x2, @y + y3X; — Y1 X3,
— (a1 + y2x3 — y3x2)x1 — (@2 + y3x1 — y1X3)X2
— (a3 + y1x2 — y2x1)X3).

Taking the limit as x3 — oo, keeping X, x; fixed, we obtain (y,,
—y1, —as) . Similarly, for a contiguous face f we obtain (¥,, -7,
—as).

REMARK 11. This equality is logically independent of the assump-
tion of continuity at p. These two expressions for the limit do not
depend on the choice of x;, x, but only on quantities determined by
the values of the field z on the respective collar faces. Since we can
choose x;, x, so that the point (x;, X, x3) goes to infinity on the
shared edge of the two contiguous collar faces to obtain the limits si-
multaneously the two limits are equal and, thus, the limit in (8) exists
independently of the assumption of continuity at p. An equivalent
argument can be given without using the Darboux transformation.

Therefore y,, —y,, —a3 are constant on a given collar and we may
write Z,(p) = (y2 > V1> —a3) .

We now seek conditions at p which will insure that ¢ -z = const.
on a collar. Taking the dot product of (1) with ¢ we obtain c¢-z =
y1X2—Y2X1+a3. Since y;, y,, az are the same for all faces of a collar
c-z is a linear function of x; and x, on the entire collar. Since the
faces of a collar are not all parallel it follows that ¢-z = k = const. on
a collar if and only if y; =y, =0 and a3 = k. Comparing this with
the expression for the velocity z/(p) from the preceding paragraph we
find that a necessary and sufficient condition that c¢-z = k = const.
on a collar (and, hence, on its common boundary with the cap) is that
zl(p) = (0’ 09 _k) .
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Thus, the condition that c-z be constant on a collar (and hence on
its boundary with the cap) is equivalent to the mechanical

Condition 1. The vertex at p is constrained to slide on a rod through
p parallel to ¢ at time zero.

Suppose C has more than one boundary component with collars
attached. Let p; denote the vertices of the cones corresponding to
the collars under D;. Although the p; coincide at the origin they
are separate points on the surface allowed to have different velocities
Z(p;)=(0,0,4a).

We summarize the above discussion so far as

THE SLIDING LEMMA 12. Let C be a cap with Alexandrov refine-
ment C', satisfying the hemisphere condition ¢ -n > 0, with infinite
cylindrical
polyhedral collars whose faces are parallel to ¢ attached to each bound-
ary component. Let 7 be a motion on the completed Darboux trans-
form D(C'+ collars). If the vertices p; are constrained to slide inde-
pendently on a rod through O parallel to ¢ then 7' is a rigid motion
on D(C'+ collars).

A natural constraint, perhaps simpler than the sliding constraint of
this lemma, is

Condition 2. The p; are identified at p, with a single velocity, i.e.,
are mechanically fastened together, but are not otherwise fixed. This
means that the instantaneous velocities z'(p;) at the vertices p; are
all equal, and ¢-Z'(p;) =c¢-Z(p) = y1x2 — y2x; +a = k. This implies
that the rotation vectors at all points on all collars are of the form y =
(¥1,y2, u) with y,;, y, constant. Subtracting a rigid motion whose
rotation vector is (—y;, —y», 0) from z we obtain a motion z’ on
the cap-with-collars whose rotation vector is parallel to ¢ = (0, 0, 1)
on all collars. That is, ¢-z" is constant on the collars. Thus we have

THEOREM C. Let C be a cap with Alexandrov refinement C', sat-
isfying the hemisphere condition ¢ -n > 0 with infinite cylindrical
polyhedral collars, parallel to c, attached to each boundary com-
ponent. Let 7 be a motion on the completed Darboux transform
Dy (C'+ collars), with all the vertices p; identified. Then 7' is a rigid
motion on D{(C'+ collars).
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ExaMPLE 6. Figure 3 illustrates a cap with two collars, which is
infinitesimally rigid under this restriction.

The surfaces described in the Sliding Lemma and Theorem C may
be described in a way independent of the transformation D, , analo-
gous to the description in Theorem B’. We leave this to the reader.

Problem 13. The restrictions on the motions of the vertices p; in the
Sliding Lemma, or Theorem C, are necessitated by our methods. We
do not have an example to show that these are essential to infinitesimal
rigidity. It is possible, as far as we know, that Theorem C would be
true without identification of the vertices p; for distinct collars.

REMARK 14. Faces of a polyhedron have been isometric embed-
dings in E3 of polygonal regions. The concept of polyhedron can be
extended by taking as a generalized face of a polyhedron an oriented
polyhedron (as defined in Section 2) immersed (but not necessarily
embedded) in a plane (Figure 16A). If a generalized face has a sin-
gle boundary component then the methods of the previous sections
continue to apply. For instance

ExXAMPLE 7. A polyhedral cap consisting of a single generalized face
which is a 2-cell with strips (for example, the surface shown in Figure
16B) has a connected boundary containing all the vertices. Adding a
cone or a cylinder as described above yields an infinitesimally rigid
polyhedron. Since a two-cell with strips immersed in a plane is not
a plane convex set it must occur as a boundary face. Several 2-cells
with strips and other faces can be attached together along boundary
segments in various ways to form a cap.

FIGURE 16

However, connected facial boundaries are essential to our method. If
the boundary of a generalized face has more than one component then
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the above theory fails. Figure 16C shows a refined cap with one ring-
shaped face which is a square with a central square removed. Even if
one of the boundary components is held fixed the other one can move
infinitesimally perpendicular to the plane of the face. The reader can
easily find explicit formulas for such a nonrigid motion.

7. Informal remarks on related topics. The 1-skeleton or framework
of a polyhedron in E3 may be thought of as a set of rigid bars with
joints at their endpoints. Two bars with endpoints at the same joint
are allowed to rotate freely relative to each other. The framework of
a polyhedron is infinitesimally rigid if at any instant any velocity field
on the framework which is a rigid motion (i.e., of form (1)) on each
bar coincides with the velocity field of a rigid motion of E3.

It is easy to see that a framework consisting of a triangle with joints
at its vertices and bars for its sides is infinitesimally rigid and that
therefore any velocity field on it must coincide with a rigid motion
of the ambient space. The restriction of this motion to the triangular
region of the triangle is thus of form (1). Suppose now that a velocity
field is given on the framework of a polyhedron (or refined polyhe-
dron) all of whose faces are triangles which is a rigid motion on each
bar. The velocity field extends to a motion on the polyhedron which
is a rigid motion on each triangular face. Thus any polyhedron with
triangular faces which is infinitesimally rigid (or infinitesimally rigid
with respect to certain boundary conditions, such as glidebending) has
a framework which is infinitesimally rigid (resp. infinitesimally rigid
with respect to the corresponding boundary conditions on the frame-
work). In particular, each of our examples of bounded infinitesimally
rigid polyhedra above, if triangulated, gives rise to an infinitesimally
rigid framework.

Conversely, if the framework of a polyhedron with arbitrary polyhe-
dral faces is infinitesimally rigid then obviously the polyhedron itself
is infinitesimally rigid. Thus, for triangulated polyhedra infinitesi-
mal rigidity and infinitesimal rigidity of frameworks are equivalent.
Roth [R, R1] has shown, using methods related to those in Gluck [G],
that the framework of a polyhedron which is convex (in the large)
is infinitesimally rigid if and only if the faces of the polyhedron are
triangles.

We have shown that allowing new vertices on the edges of any face
and allowing the face to crease along diagonals joining new or old
vertices does not destroy the infinitesimal rigidity of our polyhedra,
provided diagonals do not intersect in the interior of a face (see [W ]



100 EDGAR KANN

for a general theorem on such refinements). If we place new vertices
in the interior of a face and diagonalize then the result may (Figure
17A) or may not (Figure 17B) destroy the infinitesimal rigidity of the
polyhedron.

FiGURE 17

W. Whiteley has made extensive studies of the motions of frame-
works and polyhedra using methods of statics [W,], [W31, [Ws].
In [W 5] he discusses, in these terms, the effect on the infinitesimal
rigidity of infinitesimally rigid polyhedra, and their frameworks, of
adding new vertices and diagonals and gives necessary and sufficient
conditions (one of which uses a refinement of a theorem of Clerk
Maxwell—see [W | ] and [CW ; ]) under which vertices may appear in
the faces of such polyhedra while maintaining infinitesimal rigidity.

Whiteley has shown that if a polyhedron with a triangulated re-
finement is infinitesimally rigid, then the polar polyhedron is also
infinitesimally rigid with a triangulated refinement [W3]. This po-
larity, applied to our examples from Sections 5 and 6, creates other
examples for our growing collection of infinitesimally rigid polyhedra
(Figure 18).

FIGURE 18

A polyhedron is rigid (as contrasted with infinitesimally rigid) if
any continuous deformation which moves its faces to congruent faces
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moves the entire polyhedron to a congruent polyhedron. Thus rigidity
is concerned with motion over an interval of the deformation param-
eter, say time, while infinitesimal rigidity is concerned with instan-
taneous velocity, at time zero, and no actual motion need occur. It
is known that infinitesimal rigidity implies rigidity [AR]. However,
vertices of a triangulation of a polyhedron which lie in the interior
of a natural face destroy infinitesimal rigidity so that the possibility
remains open that such a triangulated polyhedron is not rigid.

Connelly [C ; ] has eliminated this possibility by showing that a con-
vex polyhedron triangulated in any way (including with vertices in the
interior of natural faces) is second-order rigid and that this implies
that it is rigid (as is its framework). His methods apply to retriangula-
tions, with new interior vertices, of convex faces of any infinitesimally
rigid polyhedral framework (e.g., Figure 17A). This shows the second-
order rigidity of our polyhedral frameworks, with facial vertices added
inside any convex (e.g., any nonboundary) faces, and the face retrian-
gulated with bars disjoint in their interior.

Finally we recall Connelly’s striking example of a non-rigid, i.e.,
flexible, closed polyhedron embedded in E3 [C,]. It is homeomor-
phic to a sphere and is, of course, nonconvex. Thus, there are essential
limits to the class of closed polyhedra which are rigid.
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