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ELLIPTIC SURFACES WITH AN AMPLE DIVISOR
OF GENUS TWO

F E R N A N D O S E R R A N O

Beltrametti, Lanteri and Palleschi have recently started the clas-
sification of smooth algebraic surfaces having an ample divisor of
arithmetic genus two (Arkiv for Mat. 25 (1987), 189-210). Their
results for the class of elliptic surfaces can be considerably improved.
The present paper focuses on elliptic surfaces S with Kodaira dimen-
sion one, χ&s = 0, and such that the (unique) elliptic fibration has
a rational base. The result is the following: if S contains a genus
two ample divisor then S is of the form S = (D x E)/G where G
is a group acting on two curves D and E, E is elliptic, G is either
Z 2 x Z 2 , Z2 x Z6 or Z4 x Z4 and D has genus 2, 2 and 3 respec-
tively. Moreover, the existence of such polarized surfaces is shown
by a concrete example.

0. Introduction. The classification of smooth projective surfaces by
means of numerical invariants (degree or genus) of their hyperplane
sections has been a recurring theme in the literature for quite a long
time. Recently, the subject has received a renewed impulse by relax-
ing the hypothesis and considering data from ample divisors as well.
Within this general program one can place the work of Beltrametti,
Lanteri and Palleschi [3] about smooth surfaces containing an am-
ple divisor of genus 2, subsequently generalized by Beltrametti and
Sommese to include singular surfaces as well ([4]). Fujita has studied
the higher dimensional situation in [6], [7].

The present paper is a contribution to the understanding of smooth
elliptic surfaces endowed with an ample divisor of genus 2, possibly
non-effective. Here we shall complete the classification for a particular
class of surfaces. More precisely, our set-up is the following: S will
be an elliptic surface of Kodaira dimension 1 and χ&$ — 0, which
contains an ample divisor of genus 2, and such that the (unique) ellip-
tic fibration on S has a rational base. (See Theorem 2.1 to put these
surfaces within a more general framework.) Under these hypotheses
we shall prove: there exists a finite group G acting faithfully on a
curve D and on an elliptic curve E such that D/G ~ P 1 , E/G is
elliptic, S ~ (DxE)/G (where G is acting on DxE componentwise)
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and only the following cases can occur:

genus of D

2

2

3

G

Z2 x Z 2

Z2 x Z 6

Z 4 x Z 4

multiplicities of the singular

fibres of the elliptic fibration

( 2 , 2 , 2 , 2 , 2 )

( 2 , 6 , 6 )

( 4 , 4 , 4 )

The proof is based on a structure theorem for the surfaces consid-
ered (Theorem 1.2) which reduces the problem to the study of abelian
Galois coverings of curves. Combining this information with the re-
sults of [3] yields the three cases of the table above.

In [3], the question on whether there actually existed properly el-
liptic surfaces having a genus 2 ample divisor was left unanswered.
Guided by the explicitness of our result we are going to construct
such an example. This will be done in the last part of the paper.

1. Notation and preliminaries. We will be working over the field
of complex numbers. A surface (respectively, a curve) is a smooth
connected algebraic variety of dimension 2 (respectively, 1). Given
a divisor D on a surface S, we denote by ό^s(D) the associated
invertible sheaf, and χ&s(D) := ΣLoi-1)* dimHi^s(D). The irreg-
ularity and geometric genus of S are defined as q(S) := dimHι(fs >
pg(S) := dim H2t?s respectively. K$ always stands for the canonical
divisor of S, and g(C) for the (arithmetic) genus of a curve or divisor
C. The notation D = D' means that the divisors D, D1 are numeri-
cally equivalent. The free abelian group of divisors modulo numerical
equivalence is denoted Num(*S). The cohomology of the exponential
sequence exhibits Num(S) as a subgroup of H2(S, Z)/(torsion), and
both groups coincide provided that pg(S) = 0. The set of integers Z
modulo (d)Z is denoted Zd.

An elliptic fibration is a morphism φ: S —• C from a surface onto
a curve, whose general fibre is an elliptic curve. The fibration is said
to be relatively minimal if no fibre contains a (-l)-curve. Let F be
any fibre of φ. The multiplicity of F is defined to be the greatest
common divisor of the multiplicities of its irreducible components.
Multiple fibres are the ones with multiplicity greater than one.
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Let B be a curve and G a finite group acting on B. Write C :=
B/G, and let h: B —• C be the natural projection. If h is ramified
at P e B, then P is called a ramification point, and h(P) G C is a
branch point. Inasmuch as h is a Galois map, one sees that all points
in the same fibre of h have equal multiplicity. Thus we can speak of
the multiplicity or branching order of a branch point. In particular,
if Q\, . . . , Qt G C are the branch points of h with multiplicities
m\, . . . , rrit, and k := order of G, then Hurwitz's formula yields

2g(B) - 2 = k(2g(C) - 2) + Σίfc/m/X/n/ - 1).
i = l

Furthermore, the set of elements in G fixing a given point of B forms
a cyclic group.

LEMMA 1.1. Let φ: S —> C be a relatively minimal elliptic fibration.
Then χ@s = 0 if and only if all singular fibres of φ are multiples of
smooth elliptic curves. In this case, all smooth fibres are isomorphic to
each other.

Proof. In view of Theorems 6 and 7 of Chapter IV in [14], the
topological Euler characteristic e(S) of S vanishes if and only if all
singular fibres of φ are multiples of smooth elliptic curves. Noether's
formula \2χ@s = e(S) + K^ combined with K% = 0 shows that
χ@s = 0 is equivalent to e(S) = 0. As for the statement that all
smooth fibres are isomorphic, see ([2], VI. 7 and 8). D

For the surfaces we are interested in there is a very complete struc-
ture theorem:

THEOREM 1.2. Let φ: S —• C be a relatively minimal elliptic fibra-
tion with χ&s = 0 and q{S) = g(C) + 1. Then there exist smooth
curves D and E, with E elliptic, and an abelian group G :=ZaxZb

acting faithfully on D and E, so that G acts on E by translations,
S ~ (D x E)/G (where G is acting on D x E componentwise), C ~
D/G and, with these identifications, φ coincides with the natural pro-
jection (D x E)/G -> (D/G).

Proof. Having into account Lemma 1.1 one can proceed as in Chap-
ter VI of [2]. For the details and a more general setting we refer to
[13]. The structure of G will follow from the considerations below.
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Kϋnneth's formula yields

HX((D x E)/G; Q) * HX(D x E, ®f ^ HX(D, ®f x HX(E, ®)G

= Hx(D/G,Q)xHx(E/G,Q).

It follows that q(S) = g(D/G) + g(E/G). The hypotheses imply
that g(E/G) = 1, i.e., G acts on E by translations. In particular,
G ~ Ίja x Z^ for some #, Z? e Z, as desired. D

Let S = (D x 2?)/(J be a surface as in Theorem 1.2. The fact that
E —> (E/G) is etale implies that all fibres of the natural projection
S -> (£/(?) are smooth (and isomorphic to D). Let P e (D/G) be
a point whose branching order by the projection D —• (D/G) is ra.
Then the fibre of φ: S ^ (D/G) over P has multiplicity m and is
of the form mB, with 5 being a smooth elliptic curve. All smooth
fibres of φ are isomorphic to E.

Under the hypothesis of Theorem 1.2 the multiplicities of the fibres
of φ enjoy a peculiar property, which is shown in the following propo-
sition. One proof was given by Katsura and Ueno in ([10], Cor. 4.1).
Actually they only dealt with the case C = P 1 , but their method works
for an arbitrary C as well. A more structural proof can be found in
[13], which shows that the phenomenon stems from the commutativity
of the group G in Theorem 1.2.

PROPOSITION 1.3. Let φ: S -> C be a relatively minimal elliptic
fibration with χ@s = 0 and q(S) = g(C) + 1. By m\, . . . , mt we
denote the multiplicities of the singular fibres of φ. Then either t = 0
or t > 2 and for all i = 1, . . . , /, the integer m/ divides the least
common multiple of {m\, . . . , m z_i, mί+\, . . . , mt} (raz deleted).u

We will also need the following result. An alternate proof is found
in [12].

PROPOSITION 1.4. Keep the hypothesis of the previous proposition,
and denote by μ the least common multiple of m\, . . . , mt. Let E
be a general fibre of φ, and r e Q any number. Then rE e Num(S)
if and only if rμeZ.

Proof. Let us first see that (\/μ)E e Num(S). Since μ/m\, . . . ,
μ/mt are relatively prime, there exist integers λ\, . . . , λt such that
Σ)/=i λi(μ/mi) — 1. Let m\Bx, . . . , mtBt stand for the multiple fi-
bres of φ . We have Bt = (X/m^E, and thus (\/μ)E = £ - = 1 A/J5/ G
Num(5), as we claimed.
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Now suppose rE e Num(S) with rμ φ Z, and choose a divisor
L in the numerical equivalence class rE. The canonical bundle for-
mula says Ks = φ*{D) + Σ; = 1 (w; - 1)5/ for some divisor D on C
([1]). In particular Ks = (d/μ)E, d e Z. Now we claim that L is
non-effective. Otherwise, since LE — 0 it would follow that L is a
combination of components of some fibres. By Lemma 1.1 all fibres
of φ are irreducible, even if non-reduced. Hence we get a contra-
diction with the assumption rμ φ Z. The same arguments yield the
vanishing of H°<?S(K - L), H°0s(L - E) and H°&S(K - L + E).
Consider the exact sequence

0 -> &S{L - E) -> 0S(L) -> ffE(L) -> 0.

From Riemann-Roch χ@s{L - E) = 0, and combining with the pre-
ceding assertions it follows that Hι<fs{L - E) = 0. The above se-
quence implies H°^Έ(L) = 0. On the other hand, we may observe
that the Albanese map of S is not a composite of φ (e.g. [2], V.I5).
In particular Alb(is) —• Alb(£) is a non-trivial morphism. Inasmuch
as Picard and Albanese varieties are dual to one another, we deduce
that Pic0(S) -> Pic0(is) ~ E is non-trivial, hence surjective. Now
we may choose δ G Pic0(5) such that S\E = L\E The cohomology
sequence of

0 -> <?S(L -δ-E)-+ &S{L -δ)->t?E-^O

shows that either H°&S(L -δ)φθ or Hι#s(L - δ - E) φ 0. But the
considerations above yield a contradiction since L — δ = L. D

REMARK 1.5. If L is a divisor on S and r is a rational number
we have that rL e Num(S) if and only if rL e H2{S, Z)/(torsion).
This is a consequence of the exact sequence

Hx0s -> Hι&£ -+ H2(S, Z) -+ 7 / 2 ^ ,

derived from the exponential sequence. Notice that the torsion of
H2(S, Z) is algebraic, that is, lies in the image of if ^ ~ Pic 5 .

2. Elliptic surfaces with a genus 2 ample divisor. Beltrametti, Lanteri
and Palleschi have set out in [3] to classify surfaces having a genus 2
ample divisor. Here we will complete the classification for a partic-
ular kind of elliptic surfaces of Kodaira dimension 1. We are going
to retake their work at the point they left it in loc. cit. On the one
hand, Proposition 1.3 above rules out most cases in the table on ([3],
p. 198). Moreover, we must add a missing case in their list: elliptic
fibrations over an elliptic curve having as only singular fibre a double
curve are still possible. (The argument in step b), p. 195 of [3] is
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incomplete.) Adding these two remarks to the results in [3] we can
exhibit the updated list as follows:

THEOREM 2.1. Let S be a smooth surface ofKodaira dimension 1
which contains an ample divisor L of genus 2. Denote by φ: S ->
C the (unique) elliptic fibration on S, and let {mx, . . . , mt} be the
multiplicities of the multiple fibres of φ. Then S is a minimal surface
with pg(S) = 0, L1 — LKS = 1, and the only possibilities are shown
in the table below:

Type

1

2

3

4

5

6

7

8

Q(S)

1

1

1

1

0

0

0

0

g(C)

0

0

0

1

0

0

0

0

( m i , . . . , mt)

( 2 , 2 , 2 , 2 , 2 )

(4,4,4)

(2,6,6)

(2)

(2,2,2)

(3,3)

(2,4)

(2,3)
D

We aim at describing more in detail the first three cases of the
preceding list. The final result will be:

THEOREM 2.2. Let S be a surface satisfying the hypothesis of Theo-
rem 2.1 and belonging to Types I, 2 or 3 of the table above. Then there
exists a group G acting faithfully on two smooth curves D, E such
that:

(i) D/G ~ P1 and g{E) = g(E/G) = 1. Hence G is acting on E
by translations.

(ii) S ~ (Dx E)/G, where G is acting on D x E componentwise,
and the elliptic fibration φ: S -> P1 is the natural projection (D x

(iii) Let DQ (respectively EQ) denote a general fibre of the natural
map (D x E)/G -> (E/G) (resp. of (D x E)/G -+ (D/G)), and set
g := g(D) = g(D0), k := order of G . Then

L = (l/(2g-2))D0
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(iv) Only the following cases can occur.

193

g

2

3

2

z 2

Z 4

z 2

G

X

X

X

Z2

Z 4

z 6

(ft

(2 ,2

(4

(2

, 2 ,

, 4 ,

, 6 ,

2,

4)

6)

*/)

2)

In fact, the two projections S —> (E/G), S —> (D/G) are the only fi-
brations on S, because {J5Ό, A)} ./ww α ΰα?/.? of H2(S, Z)/(torsion).

Before proceeding with the proof of this theorem we shall state three
auxiliary results.

PROPOSITION 2.3 ([9]). £Very automorphism of a curve of genus g >
2 has order not greater than 2(2g + 1). D

PROPOSITION 2.4 ([11]). Let G = Za x Zb be a non-cyclic abelian
group with a dividing b, and suppose that G is acting faithfully on a
curve of genus g > 2. Then g is bounded below as follows:

G

Z 2 x Z 2

Z2 x Z 4

Z 3 x Z 3

otherwise

lower bound for g

2

3

4

l + (ab/2)(l-l/a-2/b)
π

PROPOSITION 2.5. Let H be a finite abelian group of automorphisms
of P 1 , and denote by (d\9 ... , dr) the multiplicities of the branch
points of / : P1 -• (Ψι/H) ~ P 1 . Then the possibilities are:

H

Z2 x Z 2

(dl9...,dr)

(n, n)

( 2 , 2 , 2 )
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Sketch of proof. This is a very classical result. For H any finite
group acting on P 1 , Hurwitz's formula yields the possibilities for
(d\, ... , dr) and for the order of H (e.g. [5], p. 209). Let B denote
the branch locus of / . The fundamental group of the topological
covering space P1 - f~λ{B) —• P1 - B sits in an exact sequence

πi(pi _ f~\B)) -> πi(P! -B)^H-^0

which, together with the ramification data, yields a presentation of
H. In general, H will be one of the following groups: Zrt , Dn (di-
hedral), A4, A5 (alternating), £4 (symmetric). Only Zn and D2 are
abelian. D

Proof of Theorem 2.2. Parts (i) and (ii) of the statement are im-
mediate consequences of Theorem 1.2. Write G := Za x Z^ with a
dividing b, so that k = ab. Obviously, Z)g = El = 0, D0E0 = k.
Inasmuch as S is a minimal elliptic surface one has K$ = fif-Eo ?
rfeQ. But the adjunction formula yields 2g - 2 = D0-K5 = <^, and
thus Ks = ((2g - 2)//c)£Ό O n ^ knows that g > 2 because S is of
Kodaira dimension 1. On the other hand, by Kϋnneth's formula it
follows that

H2(S ,Q) = = @ [H\D,
1=1

ι=0

One concludes that H2(S, Q) is 2-dimensional, and Z>o, EQ form
a basis. Thus one can write L = aDo + βEo for some a, /? G Q. Now
part (iii) of our theorem follows by taking into account L2 = LKs — 1
(Theorem 2.1). At this point we begin the analysis of the group G.
Put N := - 2 + Σ = 1 ( l - 1/w/). By applying Hurwitz's formula to
the ramified covering D -»(JD/G) - p l o n e obtains k = (2g - 2)/N.
Therefore we get the following table:

Type

1

2

3

(mi,

(2,2

(4

(2

, 2 ,

, 4 ,

, 6 ,

, mt)

2,2)

4)

6)

k

4(g-l)

8(*-l)

12(g- 1)
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If G is cyclic then Proposition 2.3 yields that either S belongs to
type 1 or g — 2 and S is of Type 2. We will see later that neither
case occurs. Suppose now that G is non-cyclic, and recall Proposition
2.4. Z3 x Z3 is ruled out, and both Z2 x Z2 and Z 2 x Z 4 imply
Type 1. As for the other groups we have g > 1 + (k/2) - (k/2a) - a,
k > 4, 2 < a < \[k. Write f(X) = 1 + (k/X) - (k/2X) - X.
The minimum values of f(X) in the range 2 < X < \fk are either
/(2) = (k/A) - 1 or f(y/k) = 1 + (k/2) - (3Vk/2). Suppose k > 16.
One has /(2) < /(y/Jc), so that £ > /(α) > /(2) . Hence k < Ag + 4,
and either 5 belongs to Type 1 or it belongs to Type 2 with g = 3
and G equal to Z2 x Zg or Z4 x Z4. Now assume 4 < A: < 16.
Since /: is a multiple of 4 and the case G = Z 2 x Z 4 has already been
considered, we are reduced to k = 12, that is to say, (? = Z 2 x Z$.
In this case, 5 must belong to Types 1 or 3. Summing up, we can
provisionally say that either S is of Type 1 or one of the following
holds:

Type

2

2

2

3

G

Z 8

//J2 X " j 3

Z 4 x Z 4

z2 χ z 6

2

3

3

2

Cto'ra 1. If S is of Type 1 then g = 2 or 3.

Proof of Claim 1. Pick an element T G ( ? fixing a given point P eD,
and write Λ := D/(τ), H := G/(τ). The projection γ: D -> D/G
factors through

/) _ ^ jr>/(τ) = A -£-> D/G ~ P1

where a and /? are Galois morphisms with groups (τ) ~ Z2 and
H respectively. Since γ is ramified of order 2 at P, it follows that
β is unramified at a(P)9 and then β~ιβa(P) consists of 2g - 2
distinct points, all of them branch points of a with branching order
2. Hurwitz's formula on a yields 2g - 2 > 2(2g(A) — 2) + 2g — 29

and thus g(A) = 0 or 1. Observe that the branching orders of β are
at most 2. If g(A) = 0 then Proposition 2.5 applies and one gets
/ f - Z 2 o r Z 2 x Z 2 , so that G = Z 4 , Z 2 x Z2 , or Z 2 x Z 4 , and g = 2
or 3. Assume g(A) — 1, and choose σ e H fixing some point of ^ .
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The morphism β factors through Galois maps

)~Ψι ->A/H~Vι.

Applying again Proposition 2.5 to the second arrow we get that H/(σ)
is either 0, Z2 or Z2 x Z 2 . Hence g = 2, 3 or 5. But the case g = 5
is ruled out with the following argument. The possibilities for G,
in case g = 5, are Z 1 6 , Z2 x Z 8 or Z 4 x Z 4 , and thus G contains
at most 4 elements of order 2. If τ G G is one such element then
g(D/(τ)) = 1, as we know by the arguments above, so that D —>
D/(τ) has 8 ramification points. Equivalently, 8 points of D are left
fixed by τ . This computation yields a maximum of 32 ramification
points of γ: D —• Z>/G, while we know that 7 should have exactly 40
ramification points if g = 5, absurd.

Claim 2. Type 1 and G = Z2 x Z 4 is not possible.

Proof of Claim 2. G has only three elements τ i , τ 2 , τ 3 of order
2. Applying Hurwitz's formula to D —• Z)/(τ, ) one sees that τ, is
fixing 8 - 4g , points on Z>, where &• denotes the genus of -D/(τ, ).
Since D -+ D/G has 20 ramification points, the only possibility (up
to order) is to have gx = g2 = 0, g3 = I. But this contradicts the
fact that a hyperelliptic involution is uniquely determined.

Claim 3. Type 1 and G cyclic is impossible.

Proof of Claim 3. It is enough to consider the cases G = Z 4 and
G = Z 8 . In both cases there is only one point of order 2, which fixes a
maximum of 6 or 8 points of D respectively. But this is not enough to
account for all the ramification points of γ: D —• D/G 9 whose number
we know a priori (10 and 20 respectively).

Claim 4. Type 2 and G = Zg is impossible.

Proof of Claim 4. The branching orders of γ: D -^ D/G are ( 4 , 4 ,
4), so that there exist 6 ramification points on D. Let τ e G be an
element of order 4 fixing a point of Z>, and factor γ as

D -2U D/(τ) =A-+ D/G ~ P 1.

Hurwitz's formula for a yields 2 = 2g - 2 = 4(2^(^4) - 2) + r, with
r > 3 being the order of the ramification divisor. Thus g(A) = 0 and
r = 10, which implies that τ cannot fix more than 2 points of D.
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Since Zg has only 2 elements of order 4 we would obtain a maximum
of 4 ramification points for γ, while there should be exactly 6 with
our hypothesis, a contradiction.

Claim 5. Type 2 and G = Z 2 x Z8 is not possible.

Proof of Claim 5. Let τ = (1, 0) e Z 2 x Z 8 , so that G/(τ) ~ Z 8 ,
and decompose γ: D -* Z)/G as

One has g(A) < 2. The case #(^4) = 2 is ruled out by Claim 4, since
then a would be etale and β would have branching orders ( 4 , 4 , 4 ) .
Proposition 2.5 eliminates the possibility g(A) = 0, so it suffices to
consider g(A) = 1. Now we have that G/(τ) ~ Z8 acts on the elliptic
curve A with ramification. By the structure of the automorphisms of
elliptic curves and the fact that G/(τ) is abelian we have that G/(τ)
is a direct product of Z m and Zn where Z m is the subgroup of G/(τ)
consisting of translations of A and Zn are group-automorphisms of
A, so that 2 < n < 6. But this is obviously impossible.

Combining these five claims with the last statement preceding Claim
1 ends the proof of our theorem. D

Next we are going to give an explicit construction of some elliptic
surfaces with a genus 2 ample divisor. In fact, this method yields all
surfaces which belong to Type 1 of Theorem 2.2.

EXAMPLE 2.6. Let C\, C2, be two copies of P 1 , C3 an elliptic
curve, and let p: C2 —• C\, σ: C3 —• C\ be double covers whose
branch loci have a single point Q £ C\ in common. Denote by D the
normalization of C2 x c C3. We claim that D is a smooth irreducible
curve of genus 2. On the one hand, both maps D —• C2, /? —• C3
have degree 2, so that if 2) is disconnected then it consists of two
connected components, each one simultaneously isomorphic to C2
and C3, absurd because g(C2) φ g(C^). Moreover, since smoothness
of a morphism is preserved by base change one sees that C2 xc, Q
is non-singular away from the fibre over Q e C\. Analytically, the
singularity over Q looks like {(x, y) € C2|x2 - >̂ 2 = 0} , and thus the
fibre of D over Q consists of two distinct points. Therefore, D —• C3
is a degree 2 map with two branch points, which implies g(D) = 2.
We can consider that Z2 is acting both on C2 and C3 yielding C\
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as a quotient. Then ( t t J ) G Z 2 x Z 2 acts on (P2, P$) £ C^ xc Q
as (α, β)(P2 > ^3) = ( ^ 2 , βPί) This action can be lifted to D, and
Z)/(Z2 x Z2) = C\.

Write G : = Z 2 x Z 2 and choose any elliptic curve £ . We can make
G act faithfully on E by translations. Let S stand for the quotient
(D x E)/G, where G is acting on ΰ x £ componentwise. We will
call Eo, Do the general fibres of the two natural projections Φ: S —•
(25/(7) c- P 1 , Ψ: 5 -+ (E/G) respectively. Obviously D0E0 = 4.

As in the proof of Theorem 2.2 one sees that Do, JEΌ form a basis
of /72(S, Q), Ks = (1/2)JEΌ . Similarly one gets d i m / / 1 ^ , Q) = ?,
which combined with AΓj = 0 and Noether's formula yields χ&$ = 0,
and thus pg(S) = 0. Inasmuch as all singular fibres of the elliptic
fibration Φ have multiplicity 2, Proposition 1.4 says that (l/2)E0

is not divisible by any integer greater than 1. Now one can quote
Poincare duality as in ([8], p. 53) in order to get a divisor L such that
(l/2)2?o L = 1. We have L = (l/2)Z>0 + kE0, for some fc G Q, and
L2+LKS = 4/c + 1 . But 4k +1 must be an even integer because of the
adjunction formula. It follows that by adding an integral multiple of
EQ to L we may assume L = (1/2)25Q + (1/4)25Ό Now we are done:
it suffices to check g(L) = 2 and to notice that L is an ample divisor
by reason of Nakai's criterion. Observe that S belongs to Type 1 of
Theorem 2.2.
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