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A NOTE ON GENERATORS
FOR ARITHMETIC SUBGROUPS
OF ALGEBRAIC GROUPS

M. S. RAGHUNATHAN

In this paper we construct systems of generators for arithmetic
subgroups of algebraic groups.

1.1. Let k be a global field and G an absolutely almost simple
simply connected (connected) k-algebraic group. We fix once and for
all a faithful k-representation of G in some GL(n) and identify G
with its image under this representation. In the sequel we will freely
use results from Borel-Tits [1] without citing that reference repeatedly.
Practically all facts about reductive algebraic groups used are to be
found there. Let S be a finite set of valuations of k& containing all
the archimedean valuations and A be the ring of S-integersin k: A =
{x € k|x an integer in the completion k, of k at v for all valuations
v & S}. Forasubgroup H C G, we set H(A) = HNGL(n, A). More
generally for an ideal a # 0 in A, we set

H(a) ={x€ HA)|x=1 (mod a)}.
We fix a maximal k-split torus 7 in G. We assume that dim 7 > 2
i.e. that k-rank G > 2. Let ® denote the root system of G with
respect to 7. We fix a lexicographic ordering on X(7'), the character
group of T and denote by ®* (resp. @) the positive (resp. neg-
ative) roots with respect to this ordering. We also denote by A the
corresponding simple system of roots. For ¢ € @, let U(¢) denote
the root group corresponding to ¢: U(¢) is the unique 7-stable k-
split subgroup of G whose Lie algebra is the span of the root spaces
{g"|r integer > 0} (here for y € @, g¥ = {v € g|Ad t(v) = w(t)v},
g being the Lie algebra of G). With this notation our main result is

1.2. THEOREM. The group I'(a) generated by {U($)(a)|¢p € D} for
any non-zero ideal (a) C A has finite index in G(a).

Note. Tits [8] has obtained this result for Chevalley groups. How-
ever the methods of this paper are very different and make no use of
Tits’ results.
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1.3. We denote by U™t (resp. U™) the group generated by U(¢),
¢ € O (resp. 7). For ¢ € @, let G(¢) denote the (k-rank 1)
subgroup generated by U(¢) and U(—¢). We denote by T, the
connected component of the identity in kernel ¢ and by Z(7}) the
centraliser of Ty in G. Then Z(T}) is reductive and G(¢) is its
maximal normal semisimple subgroup all of whose k-simple factors
are isotropic. For a € A let V*(a) (resp. V'~ (a)) denote the sub-
group of Ut (resp. U~) generated by the U(¢), ¢ € ®} (resp.
dF) = {p € ®* (resp. ®_)|¢ not a multiple of a}. Then V*(a)
and ¥V~ (a) are normalised by Z(7,). The centraliser Z(7T) of T
normalises all the U(¢), ¢ € ®, and hence in particular U+, U~ ,
V*(a) and V~(a) for all « € A. We will establish the following

1.4. Claim. Let a be anonzeroidealin A and (asin Theorem 1.2)
let I'(a) denote the subgroup of G(A) generated by {U(¢)(a)|¢ € ®}.
Then for any g € G(k) there is a non-zero ideal o' (depending on g)
in A such that gI'(a’)g~! c I'(a).

1.5. Let T = {g € G(k)| for any nonzero ideal a C A, there is a
nonzero ideal o' C A such that gI'(¢')g~"! and g~'I'(d')g C ['(a)}. It
is then evident that I' is a subgroup of G(k). Since Z(T) normalises
U(¢) for all ¢ € @, it is easily seen that Z(T)(k) c I'. We will
presently show that U(+a)(k) C T for all a € A. This will prove the
claim since the {U(zxa)(k)|a € A} and Z(T)(k) generate all of G(k).
Suppose then that @« € A and u € U(+a)(k). Then u normalises
U(p), ¢ € Df (resp. ®;). It follows that we can, for any non-zero
ideal a c A, find a non-zero ideal b C A such that uU(¢)(b)u~! C
U(¢)(a) for all ¢ € ®F. If we denote by I',(b) the group generated
by U($)(b), ¢ € ®f or @, this means that ul4(b)u~! (C Ty(a)) C
I'(a) . Thus to establish the claim we need only show that for any non-
zero ideal b in A, there is a non-zero ideal ¢ in A with I'(c) C T',(b)
for all « € A. This follows from the following stronger result.

1.6. LEMMA. Let a, B € A be such that o+ p € ®. Then there
is an element t = t(a, B) in A, t # 0 such that for any ideal a # 0
in A, the group generated by {U(ra+ sB)(a)|lr-s #0, ra+sp € ®}
and Ug(a) (resp. Ug(a)) contains U(a)(ta®) (resp. U(—a)(ta®)).

Proof. We treat the case of U(a); the other case, viz. of U(-a),
is entirely analogous. Consider first the case when ® is reduced i.e.
20 ¢ ® for any ¢ € ®. Let a, f be as above then the commutator
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map (x,y) — xyx~ly~! of Gx G in G defines a k-morphism
c:U(-B)xU(a+ B) — U(a).

As @ is reduced, U(¢) is abelian and hence k-isomorphic to a
k-vector space and c is easily seen to be a k-bilinear map. Let U («)
denote the group generated by Image ¢. Then U.(a) is a k-algebraic
subgroup—in fact a k-vector subspace of U(«a). Since ¢ is compat-
ible with the action of Z(7T) on both sides, U.(«) is Z(T)-stable as
well. It is easy to see that our lemma follows if the following holds:
U.(a) = U(a). In fact one concludes that there is a ¢ € A\{0} such
that U(a)(ta®) (resp. U_,(ta?)) is contained in the group generated
by {U(ra+sp)(a)|r-s # 0} and Ug(a) (resp. Ug(a)). Evidently this
equality holds if the following two conditions are satisfied:

Cl: U(a) as a Z(T)-module is irreducible over k.

C2: The map c is non-trivial.

By using split semisimple subgroups of G containing 7 (Borel-
Tits [1, Theorem 7.2]) one sees easily that C2 fails only if Chark =
(a, a)/(B, B) =2 or 3. When C2 fails and chark = 2 we consider
the k-morphism

i U(=B) x U(a+2B) — Ula) - Ula+ ) = U*

obtained by restricting the commutator map in G. Now U* is a direct
product of U(a) and U(a+ ) and this direct product decomposition
is compatible with the action of Z(7"). Thus ¢’ may be regarded as
a pair (c|, ¢;) where

i U=B)x Ula+2p8) — Ula)

is a k-morphism which for fixed u € U(a + 28) is a homogeneous
quadratic polynomial on U(—p) and for fixed x in U(-f) is linear
on U(a+ 2p) while

¢ U=B)x Ula+2B) — U(a+ B)

is bilinear. To prove the lemma once again it suffices to show that
the group U, (a) generated by the image of ¢’ contains all of U(«a).
Now if C1 holds, this is indeed the case. To see this observe that U(«)
and U(a + B) are distinct isotypical 7-submodules of U*—as a T-
module U* is semisimple. Thus if ¢{ is non-trivial U, (a)NU(a) isa
nontrivial Z(T')-stable k-vector space hence is all of U(a). That cf
is non-trivial is checked using the Chevalley commutation relations
in a Chevalley group containing 7 and contained in H. Finally
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if characteristic of k = 3, C2 fails and C1 holds, we consider the
commutator map restricted to U(—(a + 38)) x U(2a + 38) as a k-
morphism of this variety into U(a). One sees easily that it is bilinear
and non-trivial. This leaves us to deal with the situation when Cl
fails. From the classification of Tits [6] of groups over global fields, it
is easy to conclude that if C1 fails one has necessarily chark = 2 and
G is a group of Type C, with Tits index as below

| —o—|—o—]...|— g —| ==o
(C2 also fails in this case). But in this case one has a description of
G as the special unitary group of a non-degenerate hermitian form
h over a quaternion algebra (over k) with respect to an involution
whose fixed point set is of dimension 3 (over k) (such that 4 has Witt
index n/2— n is necessarily even). Explicit matrix computation leads
us in this case to the conclusion that U.(a) = U* (in the notation
introduced above).

Consider now the case when @ is not reduced. Let ®, be the
reduced system associated to ® and Ay the corresponding simple
system. If a, B € Ay we are reduced to the preceding case. If 28 € Ay
since U(B) D U(-2p) and U(B) D U(2pB) we are again reduced to
the preceding case. Then we are left with the case f € Ay, 2a € Ay.
In this case one notes that the preceding considerations show that
U(2a)(ta,) is contained in the group generated by {U(ra+spB)(a)|r,
s§#0, ra+sp € ®} and U(—p). This reduces the lemma to proving
that the map c: U(-B)x U(a+p) — U(a)/U(2a) obtained from the
commutator map is such that Image ¢ generates all of U(a)/U(2¢).
This is easily checked. Hence the lemma.

1.7. Let a C A be a non-zero ideal. Then G(a)(A) normalises

V(a)(a). Consequently G(a)(A) normalises I',(a) and hence also

p, & I'x(a) N G(a)(k). We also set ¥, = ¥,(A). Observe that for

any g € G(a)(k), and a non-zero ideal a C A, there is an ideal b (de-
pending on a and g) such that g¥,(b)g~! is contained in ¥,(a):
this follows from Claim 1.4 combined with Lemma 1.6, which shows
that I'(¢ta3) is contained in I'y(a). It is easy to see from this that
the following collection T of subsets of G(a)(k) is the family of open
sets for a topology on G(a)(k): T = {Q C G(a)(k)| for every x € Q,
there is a non-zero ideal a(x) in A such that x¥,(a(x)) is contained
in Q}. (That T constitutes a topology is seen easily from the fact
that ¥,(a) N ¥,(b) contains ¥,(ab) and that if a # 0, b # 0, then
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ab # 0.) Let L and R denote respectively the left and right uniform
structures on G(a)(k) for the topology T. Then we assert that a se-
quence x, € G(a)(k) is Cauchy for L if and only if it is Cauchy for
R. Assume that x, is Cauchy for L. Let / > 0 be an integer such
that x;!x, € Wu(a) for all m,n > /. Let t € A\{0} be as in
Lemma 1.6. For an ideal a # 0 let «/ # 0 be an ideal such that
xWao(a')x; ! is contained in ¥,(a). Since x, is Cauchy for L there
is an integer /(a/) > 0 such that x;'x, € Wu(«') for m, n > I(d).
Then for m, n # max(l, [(a')) we have xmx;! = Xpx; ' xmx;! =
X1 X7 X - X\ Xm (X7 Xn) 71 - X! € Wo(a). Thus x, is Cauchy for R
as well. The converse is proved analogously. It follows that there is a
canonical identification of the completions of G(a)(k) with respect to
R and L and we denote this common completion by @(a)(k) . Then
G(a)(k) is a topological group in a natural fashion. The closure of
U(a)(k) (resp. U(—a)(k)) in @(a)(k) is obviously the same as the
completion U(a)(k) (resp. U(a)(k)) of U(a)(k) (resp. U(—a)(k))
in the congruence subgroup topology. If G(a)(k) denotes the com-
pletion G(a)(k) with respect to the congruence subgroup topology we
have natural commutative diagrams as follows:

Gak) 5 Gk
N /

A G@)k)
Gk 5 Gk
N /
U(xa)(k)

Since U(xa)(k) generate G(a)(k) (as an abstract group) (Raghu-
nathan [5]) one sees that n is surjective. We will now prove the
following result.

1.8. PROPOSITION. Let G(a)(k)t denote the normal subgroup of
G(k) generated by U*(a)(k). Then G(a)(k)* centralises the kernel
of m (=C).

Proof. One knows from the work of Tits [7] that any noncentral
normal subgroup of G(a)(k) contains G(«)(k)*™. Thus it suffices to
show that C (= kernel n) is centralised by an element x in G(k)*
which is not central in G(a)—the centraliser of C in G(«) is a normal
subgroup of G(a). We know that ¥, contains a non-trivial element
of U(a)(A) (Lemma 1.6). Let u be such an element; then # can be
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written as a product:
U= XpXp—1""" X1,

where for 1 <i<r, x; € U(¢;)(A) with ¢, ¥E. Let
Uj = XiXj—1- - X2Xq.

Let A; be the following assertion: for any ideal a C A, a # O,
there is a nonzero ideal f;(a) C A such that puip“ui"1 € I'y(a) for
all p € G(a)(fi(a)). Then A, holds if we set fy(a) = a. Assume
that A4; holds for some / with 1 </ < r and we will show then
that A4;,; holds as well. Let o’ C a be a non-zero ideal such that
X1+1Ta(@)X;;} € Ta(a) (Claim 1.4 and Lemma 1.6). Let fi,(a) =
fi(@)Na. Then for p € G,4(b)b = fi,1(a), we have px;,1p~ x| €T,
while x,,1pu;p~ ur x| € X141 Ta(@)x;} € Ta(a). But one has

-1,-1 _ -1, -1,.-1
PUp A p Uy = PXp P Uy Xy
-1

11 —1,,-1
=(pxl+1p lx].H)'-xl+1(ulp Y, )x[+1

so that pul+1p‘1ul‘+‘1 belongs to I',(a). We conclude that for each
ideal a C A, a # 0, there is an ideald’ # 0 such that [u, G(a)(a')] C
Y, (a). Passing to the completions it is now clear that this means that
u centralises C in G(a)(k) proving Proposition 1.8.

1.9. Let G(a)(k)* denote the closure of G(a)(k)* in G(a)(k).

Then G(a)(k)* il G(a)(k) is a central extension where my is the
restriction of 7 to G(a)(k)*. Let Cy denote the kernel of 7y. Then
Cp is a closed subgroup of C; and since C is the projective limit of
the family {G(a)(a)/W¥.(a)|a a nonzero ideal in A} of discrete groups,
it follows that C; is the projective limit of a family of discrete abelian
groups

Co ~ leC,

We have for i > j a map fj; : C; — C; which may be assumed
to be surjective as also the natural map fi: Co — C;. Now for ev-
ery i the central extension G(a)(k)*/(kernel f;) of G(a)(k) is a
locally compact central extension split over G(k)*. But from Prasad-
Raghunathan [3] one knows that the universal locally compact central
extension G(k)(k)* — G(a)(k) split over G(k)* has ker¢ a sub-
group of the group u; of roots unity in k. It is now easy to deduce



GENERATORS FOR ARITHMETIC SUBGROUPS 371

from this that Cj is a finite cyclic group of order at most |u;|. Since
G(k)/G(k)* is finite (Margulis [2]) one concludes that C is finite.
The following result is immediate from the finiteness of C.

1.10. PRoOPOSITION. For any non-zero ideal o, ¥, is an S-arith-
metic subgroup of G(a).

Proof . If U C (/;(a)(k)+ is any open subgroup, then UNG(k)* is an
S arithmetic subgroup, since C is finite and (hence) = maps @(a)(k)
onto G(k). Since for any a # 0, ¥,(a) contains a subgroup of the
form U N G(k) with U open in @(a)(k) our contention follows.

1.11. CoROLLARY. If P(a) = Z(T)-U(«) then for any ideal a # 0
in A, there is a finite subset X,(a) in G(c)(k) such that

Z(To)(k) = Wa(a) - Za(a) - P(a)(k)

(this is a theorem due to Borel,, for a proof see Raghunathan [4, Chapter
XIII)).

1.12. THEOREM. Let a be a nonzero ideal in A. Then there is
a finite set X(a) C G(k) such that G(k) = I'(a) - Z(a) - P(k) where
P=Z(T)-U.

Proof. Let N(T) be the normaliserof T in G and W =N(T)/Z(T)
the k-Weyl group of G. Then W is generated by reflection o, cor-
responding to the simple roots a« in A and each o, has a repre-
sentative s, in (N(T) N G(a))(k). One has G(k) = U(k)WP(k),
where W is identified with a set of representatives of its elements
in N(T)(k). Let ! be an integer > 0 and W(/) the set of el-
ements of W of length / with respect to the set {sy|la € A} of
generators. We will prove the following statement by induction on
[. For any ideal a # 0 in A, there is a finite set X;(a) such that
Uk)W(l)P(k) is contained in I'(a)-X;(a)(k). When / = 1, this is
simply Corollary 1.12. Assume that the assertion holds for / < r.
Let g = uwp in G(k) be such that length w = r, u € U*(k)
and p € P(k). Then w = s,w’ for some w’ of length r — 1
and o € A. Also one can write u = ' - ¥” with ' € U(a)(k)
and ¥” € V(a)(k). Since G(a) normalises V(a)(k) we see that
g = xyw'p where x € G(a)(k) and y € V(a)(k). Let X,(a) be as
in Corollary 1.1. Clearly then g € W,(a) - Z,(a)U(k)W (r — 1)P(k).
Now let b(a) = b # 0 an ideal such that xI'(b)x~! c I'(a) for
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all x in the finite set X,(a). By the induction hypothesis we can
find a finite set X,_;(b) - G(k) such that I'(b) - X,_;(b)P(k) contains
Uk)W(r—1)-P(k). Thus g € ¥(a) - Zy(a) - I'(b) - Z,_1(b) - P(k);
and this last set is contained in ¥, (a)I'(a)Z,(a)X,_(d) - P(k). Since
Y,(a) C I'(a) and Z,(a)Z,_((b) is finite, our claim for r follows if
we set X,(a) tobe Jyep Za(a) Z,—1(b(a)) (b(a)) also dependson a).
This proves the theorem.

1.14. CoRrROLLARY. For a non-zero ideal a in A, I'(a) is an arith-
metic subgroup of G .

Proof. Let £ C G(k) be a finite set such that I'(a) - ZP(k) = G(k).
Then if g € G(A) we have g = x{p with p € P(k)x € I'(a) and ( €
Y. Since X is a finite set we conclude that there is a 4 € A\{0} such
that the following holds: if p=z-u, z€ Z(T)(k), u€ U(k),and &
is any matrix entry of z, u, z~! or u~!, then A& € A. It is also easy
to see that if B is any k-simple component of Z(7T'), B C G(a) for
some a € A. Thus BNI'(a) is an S-arithmetic subgroup of B so that
Z(T)NTI(a) is an arithmetic subgroup of Z(7T). Hence P NI'(a) is
an S-arithmetic subgroup of P. In particular [], .¢°P(ky)/°PNI(a)
is compact where °P = {ker x|y a character on P defined over k}.
From the fact that z and z~! have both entries of the form &/A
with & € A, one easily deduces that z belongs to a finite set modulo
°P. From the compactness of °P/°P NI'(b) for any b # 0 and the
discreteness of the set {p € °P| the entries of p and p~! belong
to 47!}, one sees easily now that there is a finite set X’ such that
p € P(kynTI(b)-X for all g € G(k). Now choose b such that
xT(b)x~! c I'(a) for all x € . Then one has clearly

gela) X X.

Since X - ¥’ is finite we have shown that I'(a) has finite index in
G(A). Hence the corollary.

Added in proof. T. N. Venkataramana recently drew my attention to
two papers of G. A. Margulis (Arithmetic Properties of Discrete Groups,
Russian Mathematical Surveys, 29:1 (1974), 107-156 and Arithmetic-
ity of non-uniform lattices in weakly non compact groups, Functional
Analysis and its Applications, Vol. 9 (1975), 31-38), which contain re-
sults that imply our main theorem. The methods of the present paper
are however very different, and I believe, more transparent.
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