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A CONVEXITY THEOREM
FOR SEMISIMPLE SYMMETRIC SPACES

KARL-HERMANN NEEB

In this paper we prove a convexity theorem for semisimple sym-
metric spaces which generalizes Kostant’s convexity theorem for Rie-
mannian symmetric spaces. Let 7 be an involution on the semisim-
ple connected Lie group G and H = Gj the 1-component of the
group of fixed points. We choose a Cartan involution 6 of G which
commutes with © and write X = G° for the group of fixed points.
Then there exists an abelian subgroup A of G, a subgroup M
of K commuting with 4, and a nilpotent subgroup N such that
HMAN is an open subset of G and there exists an analytic map-
ping L: HMAN — a = L(A) with L(hman) = loga. The set of
all elements in 4 for which aH C HMAN is a closed convex cone.
Our main result is the description of the projections L(aH) C a for
these elements as the sum of the convex hull of the Weyl group orbit
of log a and a certain convex cone in a.

0. Introduction. If G is a connected semisimple Lie group and
G = KA'N an Iwasawa decomposition, then the convexity theorem
of Kostant describes the image of the sets aK under the projection
G = KAN — o =L(A4A"), kexpXn — X as the convex hull of the
Weyl group orbit through log a. Recently van den Ban proved a
generalization of this theorem to the following situation. Let 7 be
an involution on the semisimple Lie group G with finite center, G =
KA'N a compatible Iwasawa decomposition, i.e., K is 7-invariant,
and o' = ay + a4 the corresponding decomposition of o’ = L(4’) into
1 and —1 eigenspaces for 7. Suppose that H C G* is an essentially
connected subgroup (see §I for the definition). Then he describes the
image of the sets aH, a € expa, under the projection F: G — aq
defined by g € K exp(ay) exp F(g)N . This set is the sum of the convex
hull of the orbit of log a under a certain Weyl group and a convex
cone in aq.

We generalize Kostant’s theorem into another direction. We con-
sider the projection L: HMAN — a defined by g € HM exp L(g)N,
where H C G7 is essentially connected and M, A, and N are de-
fined in §I. This makes sense because the A-component in a product
hman is unique and HMAN is open in G. So the main new difficul-
ties are the non-compactness of H and the fact that the projection L
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is only defined on an open subset of G. Having identified the set of
those elements in 4 for which L(aH) is defined, i.e., aH C HMAN ,
we describe the set L(aH) as the sum of the Weyl group orbit through
loga and a convex cone C(a) in a. This description is very similar
to the description in van den Ban’s theorem. Nevertheless the result
is of a different nature and so are the methods we use in the proof.

In the first section we start with the properties of the decomposition
HMAN and state the main theorem. Then we describe the set of
elements a € A for which aH C HMAN and reduce the problem to
the case of regular symmetric spaces.

In §II we collect some facts about finite groups which are generated
by reflections. For the applications in §IV we have to study the Weyl
group orbits of non-compact convex sets and how their intersections
with the chambers look like.

Section III provides some material about highest weight representa-
tions of Hermitian simple Lie groups, the holomorphic discrete series,
and analytic continuation of the unitary representations to contraction
representations of certain complex Lie semigroups. It turns out that
we even need general bounded representations of certain Lie semi-
groups. These facts are used in §IV to prove one inclusion of the con-
vexity theorem. The unitary highest weight representations replace the
finite dimensional K-spherical representations which can be used to
prove Kostant’s theorem, and which were also used by van den Ban.

The fourth section contains the definitions concerning regular sym-
metric spaces and the proof of the convexity theorem. In addition to
the material of §§II and III we have to use rank-1-reduction techniques
to prove the other inclusion of the theorem. Fortunately we can use
a great deal of the results for Riemannian symmetric spaces so we
only have to consider the SI(2, R)-case in detail, which corresponds
to the hyperboloid, an adjoint orbit of a hyperbolic element in the Lie
algebras (2, R).

The author thanks the referee for many helpful comments and for
suggesting Proposition V1.7 and its proof.

1. Decompositions of a semisimple symmetric Lie group. In the fol-
lowing G always denotes a connected real semisimple Lie group.

DEFINITION L.1. A pair (G, 7) of a connected Lie group G and an
involutive automorphism 7 is called a symmetric Lie group. We also
write 7 for the automorphism dt(1) of the Lie algebra g = L(G)
which is induced by 7. Then (g, 7) is said to be a symmetric Lie
algebra. We set
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G':={geG:1(8) =g},
={Xe€g:1(X)=X}, and q:={Xeg:1(X)=-X}.

Since G was assumed to be semisimple and connected, there exists
a Cartan involution 6 of G and g respectively such that 760 = 6t
([Lo69, p. 153]). We set

t={Xe€g:0X)=X}, p={Xe€g:0X)=-X},

and K := G% = (expt). Note that we have the direct vector space
decomposition

g=bhe+by+ae+aqp,

where be := hNE, b, := hNp, etc. We define the associated symmetric
Lie algebra (h%, 1%) by h? := by +q, and 1% := 1|y« = 6|;.. Thisis a
reductive orthogonal symmetric Lie algebra ([Wa72, p. 42]). Now we
choose a maximal abelian in q, and «’ maximal abelian in p with
a C o’. Then the fact that the operators ad X, X € a are semisimple
with real spectrum ([Hel78, p. 184]) implies that we have the root
space decomposition

g= Zg(a)@@ga>
a€A
where A = A(g, a) is the set of non-zero linear functionals on a for
which the root space g* := {Y € g: (VX € a)[X, Y] = a(X)Y} is
non-zero. Set ¢ := Z(h%)Ngq, and note that ¢ C a. The set of compact
roots is defined as

Ap :={a € A: a(c) ={0}},

and A, := A\A, is the set of non-compact roots. We define a positive
system A" := {a € A: a(xp) > 0} where X € a is an element with
a(Xp) # 0 forall a € A, and a(Xp) < B(Xp) forall B € Af :=ATNA,
and a € Af := A* NAj. (One has to choose X near to an element
X, of ¢ where no non-compact root vanishes.) Next we write 7~
for the Weyl group generated by the reflections s, in the hyperplanes
kera with g®*Nh? # {0}. This is the Weyl group of the pair (§¢, a).
We define the minimal and maximal cones

Cmax == {X € a: (Va € Af)a(X) > 0}

and
Chin := Cr;ax = {X €a: (VY € Cnax)B(X, Y) > O} >



308 KARL-HERMANN NEEB

where B(X,Y) = tr(adXadY) is the Cartan Killing form of g.
Finally we define n := @, g%, N :=expn, 4:=expa,
M = Zk(d)={k € K: Ad(k)|, =id, '}

and
m:=L(M) =Z(d)={X €t: [X, d]={0}}. o

The following proposition is a slight generalization of Proposition
1.10 in [OS80] to our general setting.

PrOPOSITION 1.2. The following assertions hold:
(1) g=b+h+a+n.

(ii) GJMoAN is an open subset of G.

(iii) G'NMAN =G*"NM.

(iv) pNn(m+a+n)=hNm.

Proof. (i) From a C g, we conclude that 7(g*) =g~*. For X e g™
and o € At we therefore have that

X=X+1X)-t(X)€bh+n.

Since g° = g® N h+ a+ g° N q¢ the assertion follows if we show that
g°Nge € m. To see this, we first note that [a, a'] = 0 implies that
[¢, g°] C ¢°. Hence

[0, g’ Nael =[a' Ny, ° Nl Sg° Ny = a.
Therefore

B(a, [al’ 90 N CIE]) = B([aa Cl,], 90 N CIE) = {0}
and the positive definiteness of B on a imply that g0 Nqe C Z(o') =
m.
(ii) Set P := MAN . It follows from (i) that ¢+ L(P) = g. We
define the action of the group G* x P on G by (h,p).g := hgp~!.
Then the tangent space of the orbit of the subgroup Gj x Py through
1 is h+ L(P) = g. Hence this orbit is open. Consequently the set

G'P which is a union of translates of this open set is open, too.
(iii) Let p=man € G°'NP with me M ,a€ A,and n € N. Then

man = p = 1(p) = t1(m)a"1(n)

and therefore t(m)~'ma?n = t(n) € MAN N t(N). We choose a
positive system A(g, a’)* of roots with respect to the maximal abelian
subspace o’ C p such that

At = {a]: a € Adg, o)t}
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Then n C n' := @,ep(g, o)+ 8 and the Bruhat decomposition of G
implies that
MAN N t(N) C MAN' N O(N') = {1}
([Wal88, p. 44]), whence N =a=1 and t(m)=m.
(iv) This follows from (iii) by considering the Lie algebra of the
intersection of the two groups G* and P. O

REMARK 1.3. Note that the proof of Proposition 1.2 shows that
G*MAN is an open subset of G which is a finite union of sets of the
type hGiMoANm , where m runs through a set of representatives of
M /M, and h through a set of representatives of G*/G{ which is also
a finite group ([Lo 69, p. 171)). m]

CoOROLLARY 1.4. The mapping
L:G°"MAN — a, g =hmanv loga

is well defined and analytic.

Proof. If g = hman = Wm'a’'n’ with h, ' €¢ G*, m,m' e M,

a,a’e€eA,and n,n € N, then
W=th = (m'a'n')(man)™!
=m'm-'da Y((am)n'n"Y(am)™ ) e GFNMAN C M

(Proposition 1.2) and therefore a’ = a and n’ = n follow from
the uniqueness of the components in the decomposition P := MAN .
Again we consider the action of G* x P on G by (h, p).g =hgp™!.
Then Q' := G*MAN is the open orbit through 1 and so the analytic

structure induced on Q' from G agrees with the analytic structure
induced by the identification

Q = (G* x P)/(G* x P)!,

where (G* x P)! = {(h, h): h € G* N M} is the stabilizer of 1. The
analyticity of the mapping L now follows from the analyticity of the
mapping

(h, (man) ™Y =(h, n"'a"'m™!) — loga
on G* x P which is a consequence of the Iwasawa decomposition of
G. O

DEFINITION L.5. An open subgroup H C G* is said to be essentially
connected if H = HyZgnp(a). o
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We are interested in the sets L(aH), where H is an essentially
connected open subgroup of G*. Clearly these sets are well defined if
and only if the set aH is contained in G*MAN . So we first have to
study the set of those elements a € A for which this is true.

DEFINITION 1.6. An element a € A is called admissible if aH C
G*MAN . The set of admissible elements is denoted A,qp - O

Now we have all definitions available which are necessary to state
our main result.

THEOREM 1.7 (The Convexity Theorem). Let (G, 1) be a connected
semisimply symmetric Lie group, H C G* essentially connected, and
a € A an admissible element. Then

L(aH) = conv(# loga) + C(a),
where
C(a) ={Y € Cpin: Va €Ay, a(¥ loga) = {0})a(Y) < 0}.
Moreover, if A} :={a € At: g*N(bp +qe) # {0}} and
Cp:={Y € a: (Vo € A})a(X) > O},

then

log Aagm = [] w(Cn). o
weY

The proof of this theorem will be completed in §IV. In the remain-
der of this section we reduce the result to an essential nonreducible
case which will be proven in §IV. We will also obtain more explicit
descriptions of the cones C(a) and a,qm := 10g Aadm -

REMARK 1.8. It is clear that 1 € A is always admissible. So C(a) =
{0} and C(a) # Cpi, whenever a =1 and Cpy;, # {0}. Thus C(a)
cannot be replaced by the larger cone Cpp -

If g is the smallest 7-invariant ideal in g, i.e., if (g, 7) is irre-
ducible, then we will see in Theorem 1.20 that there are three cases.
The Riemannian case, where 4,4, = A and Cyn = C(a) = {0} for
all a € A, the regular case, where A,gm = €Xp(Cmax) and C(a) = Cyin
if and only if a # 1, and a third case where 4,4, = {1} and
C(1) = Cpin = {0} . o

LEMMA 1.9. Let ac€ A, H C G* an essentially connected subgroup,
and Q := GEMoAN . Then the following are equivalent:
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(1) a is admissible.

(2) aHy C Q.

(3) aQ C Q.

(4) aHpa ' C Q.

(5) aHa™' C Zgnp(a)Q.
(6) aH C HMAN .

Proof. (1) = (2): If a is admissible, then aHj is contained in the
connected component of G*MAN which contains a. Hence aHy C

HyMyAN = Q according to Remark I.3.
(2) = (3): If (2) is satisfied, then aQ C QMuAN = Q.
(3) = (4): This follows from

aHpa ' CaQa ' =aQ c Q.
(4) = (5): From H = Zg~g(a)Hy we conclude that
aHa ' = Zxag(a)aHoa™' C Zgng(a)Q.

(5) = (6): This is a consequence of HQa = HQ C HMAN .
(6) = (1): If (6) holds, then

aH C HMAN C G*MAN
shows that a is admissible. ]
LemMa 1.10. If a € A is admissible, then L(aH) = L(aHy) .
Proof. Since L(h'ga’) = L(g) for every g € G'MAN , h € G*, and
ac€ A, weuse H=Zg~y(a)Hy to see that
L(aH) = L(aZgnu(a)Ho) = L(Zknr(a)aHy) = L(aH). 0

REMARK 1.11. In view of Lemmas 1.9 and 1.10 the essential case is
when H is connected. One may say that the essential connectedness
of H insures that the disconnectedness of H causes no additional
difficulties. O

Next we reduce the convexity theorem to the case where Z(G) = {1}
and Ad(G) =G.
LEMMA L.12. If the Convexity Theorem holds for the adjoint group
Ad(G) with respect to the involution
7: Ad(g) — TAd(g)T = Ad(7(g)),
then it holds for G.
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Proof. According to Remark 1.11 we may assume that H is con-
nected. Then

Ad(Q) = Ad(H)o Ad(M)o Ad(4) Ad(N) = Q,

where Q is the corresponding subset in the symmetric group Ad(G).
Let a € A be admissible. Then aQ2 C Q (Lemma 1.9) and therefore

Ad(a)Q = Ad(aQ) C Ad(Q) = Q.

It follows that Ad(a) is admissible in Ad(G) (Lemma 1.9). For the
following we note that € is the connected component of the unit
element in the open set G*MAN . If Ad(a) is admissible, then

aHCaQCAd'Q=Q7(G)=Q,

and therefore a is admissible. Consequently Ad|, maps the set of
admissible elements in 4 bijectively onto the set of admissible ele-
ments in Ad(A4).

From ah € HM exp L(ah)N we deduce that

Ad(a) Ad(h) € Ad(H) Ad(M)e?dL@h) Ad(N),
so that the function
L: Ad(Q) — a defined by g e Ad(HM)exp(L(g))Ad(N)
satisfies the relation
L(Ad(g)) = ad(L()).
This proves that
L(Ad(a) Ad(H)) = ad(L(aH)).

Since the cones C(a) only depend on the Lie algebra, the Convexity
Theorem for Ad(G) implies the Convexity Theorem for G because
ad is an isomorphism of Lie algebras. O

According to the preceding lemma we may assume that Z(G) =
{1}. This assumption implies in particular that G is a direct product
of its simple factors.
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LEMMA 1.13. The simple ideals of g are invariant under 6.

Proof. Let g = @}_, g; be a decomposition of g into simple ideals
and 6; a Cartan involution of g;. Then 6 := @’ 0; is a Cartan in-
volution of g which preserves the simple ideals. According to [Hel78,
p. 183] there exists g € G with 8 = §oAd(g). Thus 6 preserves the
simple ideals because this holds for Ad(g) and 6. O

LemMmA 1.14. Suppose that Z(G) = {1}. If the Convexity The-
orem holds for all minimal connected t-invariant normal subgroups
of G, then it holds for G. Moreover, G = []}_, G;, where the
G; are the minimal connected t-invariant normal subgroups, A =

?:1(14 N Gi), Aagm = ?:1(Aadm NGy, and lf a=a----a, €
Aagm » then

C(a)=>_ Clay).
i=1

Proof. Let g=@7_, g; be a decomposition into minimal 7-invariant
ideals. Then h = @} h;, where bh; := hNg;, and similarly q =
D9, t =P}, ¢t,and p=P.,p; (Lemma L.13). If we choose
a; maximal abelian in g,Ng;, then & := @}, a; is maximal abelian in
qp, and a is conjugate to & under ¢2d% ([Hel78, p. 247] or [Ne91b,
2.9]). Hence a = @} ,(ang;). The same argument and the fact
that p = @7, p; imply that every maximal abelian subspace o C p
with a C o satisfies o/ = @]_,(a’Ng;). All these facts together prove
that G = [[,G,,H =[[l_,(HNG;),K = [[L{(KNG;), M =

iMNGy), A=[]L,(ANG;), and that N =[]i_;(NNG;), where
G; := (expg;) . This entails that

n
HMAN = [[(HNG)(M N G)(ANG)NNG)),
i=1
and a = a;---a, with a; € AN G; is admissible if and only if a; is
admissible in 4 N G; (Lemma 1.9).
In addition, we have that

n

n
Chin = Z(Cmin ng;), loga = ZIOgai s

i=1 i=1
and
n
X loga = ZWlogai,

i=1
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where 7 loga; agrees with the Weyl group orbit under the Weyl group
7Z; associated to the ideal g;. This is the group generated by the
reflections s, with g*nN(h?Ng;) # {0}.

Suppose that a is admissible. Then the definition of C(a) and the
preceding paragraph show that

C(a) =) C(a).
i=1

Thus, under the assumption that the Convexity theorem holds for
the factors G;, we find that

LaH) = 3 L@(HN Gy)

i=1

= i(conv 7 (loga;) + c(a;))

i=1

= zn: conv 7 (loga;) + z": C(ai)

i=1 i=1

= conv(Z loga) + C(a). o

This lemma implies in particular that we can restrict our attention
to irreducible symmetric Lie algebras, i.e., g is a minimal non-zero
T-invariant ideal of g. We note that this implies in particular that
b =1[q, q] because q+[q, q] is an ideal of g (the case where h =g is
trivial). In the remainder of this section we also assume that Z(G) =
{1} which is justified by Lemma 1.12. We set H? := (exph?) = G§*.
This is a closed connected subgroup of G.

The crucial idea to classify the essentially different situations in the
irreducible case is to consider the semigroup Sgq .

DEeFINITION 1.15. We set Sq := {g € G: gQ C Q}, where Q =
GiMyAN . o

COROLLARY 1.16. Sg N A is the set of admissible elements in A.
Proof. This follows from Lemma 1.7 and the definition on Sq. O

The following proposition is a crucial ingredient in the classification
of the irreducible situations.



A CONVEXITY THEOREM 315

ProrPoOsITION 1.17. Let G be a connected reductive Lie group with
the Cartan decomposition G = K expp, where Z(G) C K, and S C G
a subsemigroup which contains K. Then S is a connected closed
subgroup which is a product S = KG;, where G is a connected normal
subgroup.

Proof. Since Z(G) C K we have that S = Z(G)(SNG’') and G’ =
(KNG')expp is a Cartan decomposition of G’. Hence we may assume
that G is semisimple. Let a C p be a maximal abelian subspace, C :=
exp~!(S)Na, and 7 := Ng(a)/Zk(a) the Weyl group. It follows from
G = KAK ([Hel78, p. 402]), where A4 :=expa, that § = K(ANS)K
and therefore that C # {0} if and only if S # K. We assume this.
Then C =exp~!(SNA)Na isa 7 -invariant subsemigroup of a. We
will prove that C is a vector subspace of a.

SUBLEMMA. If a € A(g, a) and X € C with a(X) # 0, then C
contains the line segment

(2X, X +5.(X)} ={Y €a: ¥ - 2X €0, 1](s«(X) = X)}.

Proof. Choose X, € g*\{0} and set

Yo :=Xo+0(Xs), Za:=[Xa,0X,], and
8q = span{X,, 0X,, Z,}.
Then Z, € a because Z, € [g*, g7*]Np = Zy(a) = a. Therefore
8o = sl(2, R) is a three dimensional simple subalgebra with
goNt=RY,, g.Na=RZ,, and
8o NP =span{Z,, X, — 0X,}
([Hel78, p. 407]). Moreover a(Z,) # 0 and by interchanging o and
—a we may assume that a(Z,)a(X) > 0. By rescaling of X, we may

even assume that X, := X — Z, satisfies a(Xy) = 0. This entails that
[X0, 8o] = {0}. We define B(t) € R* by

exp(Za) exP(eath"Za) € Ka exP(ﬁ(t)Za)Ka s

where K, = expRY, C K. Then S(0) = 2 and there exists ¢ €
R* with B(¢) = 0. It follows that [0, 2] C B([0, t]) because B is
continuous and [0, 1] is connected. Now

exp(X)exp(e®dY.X) eSS C S
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and therefore
exp(X) exp(e*d Y- X) = exp(Z,) exp(Xo) exp(e*!: Z,,) exp(Xo)
= exp(Z,) exp(e*!"1-Z,) exp(2X)
€ K, exp(B(t)Z,)K, exp(2Xp)
= Ko exp(B(t)Za + 2X0)Ko.
Hence B(t)Z, + 2Xp € C for all ¢t € R and in particular
C22Xy+[0, 2]1Z, ={2X, 2Xy} = {2X, X + s4(X)}. O

We continue with the proof of Proposition I.17. Let X € C be
arbitrary and set E :=spanZ X . For every f € A(g, a) with B(FE) #
{0} there exists wy € 7" such that f(wy.X) # 0. Then the sublemma
shows that

{2?1)0.X, wo. X +sﬂ('wo.X)} cC.
Set Z:=3 ,cpw.X. Then w.Z =Z forall w e # and therefore
a(Z) = 0 for all o € A(g, a) because s,(Z) = Z for all such a.
Hence Z = 0 because g is semisimple. Consequently
[0, 1](Sﬁ(’U)0.X) - on)
C {2wo. X, wo.X + sg(wo.X)} + Z 2w.X
weW \{w,}

cd ccc
weY
for every g with B(E) # {0}. But ), .o w.X = 0 implies that
E=span{2.Y-Y:YeE,weZ}

= span{w’.(w.X)-w.X: w,w € 7}

= span{sg(w.X) —w.X: €A(g,a), we? , B(w.X)#0}.
Thus C contains a generating simplex of E, and in particular intz(C)
# @. Let Y € CNE be an inner point. Then

0= Y w.Y €intg(C)
weX

shows that £ C C. Since X € C was arbitrary, we have proved
that C is a 7 -invariant subspace of a. Hence S = Kexp(C)K is a
closed connected subgroup of G which is invariant under conjugation
with K. Let g = @}, g; be a decomposition into simple ideals and
pi:=pNg;. Then p =@/, p; is the decomposition of p into simple
t-modules ([Hel78, p. 379]). Therefore L(S) = ¢+3_, nL(s)£{0} 8 and
the assertion follows. O
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CoRrROLLARY L.18. If G is a connected simple Lie group, G = K expp
a Cartan decomposition, and S a subsemigroup containing K, then
either S=K or S=G. O

In the classification of the irreducible cases (Theorem 1.20) we will
use some sl(2)-reduction arguments. So we have to consider this case
first.

ExaMPpLE 1.19. We consider the Lie algebra g = sl(2, R) and the
group G = SI(2, R) with the involution 7 defined by conjugation
with the matrix (9)). Then

[ b\ _(-a c
c —-a) b a)’
and the elements

01 00 1 0
X:(O O)’ Y=(1 O)’ and Z—(O _1)

satisfy
Y=1tX, Z=[X,Y], h=R(X+Y), a=RZ, and g¢g°=RX,

where a(Z) =2.
The corresponding groups are

cosh? sinht) (e 0.
H_{(sinht cosht)'teR}’ A_{<O e")'tER}’
K =S0(2), and

N={((1) i):teR}, M={1, -1} = Zx(a).

The formula
L(exp(s(X +Y))exp(tZ) exp(uX))
_ . (€e'coshs e'ucoshs+e 'sinhs) _ 7
- e'sinhs e'usinhs +e~‘coshs )

implies that the analytic function L: HAN — a is given by

a b _1 2_ 2
L(c d)—zlog(a c)Z

and the open subset HAN C G is described by the inequality a2 —
2
c->0.
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In particular we have that

elocoshs ehsinhs
L(exp(tpZ)exp(s(X +tX))) =L (e‘ »sinhs e coshs)

= % log(e2% cosh?(s) — e~ %% sinh?(s))Z

= (tp + } log(cosh?(s) — e~* sinh*(s))) Z
= (tp + L log(1 + (1 — e~*h) sinh’(s))) Z.

The same argument as in the proof of Lemma 1.12 shows that this
formula holds for all connected Lie groups which are locally isomor-
phic to SI(2, R). We observe that for 7y < O this analytic function
of s has no extension to the whole set exp(#Z)H . o

THEOREM 1.20. If (g, ) is an irreducible semisimple symmetric Lie
algebra, then one of the following assertions hold:

(i) (g, T) is orthogonal, ie, T = 0, b = g, Aagm = A, and
Cmin = {0}.
(ii) Z(b?) C be, aam = {1}, and Cpin = {0}.
(iii) Z(h?) Ngp # {0}, ¢° := b + iq is a semisimple Hermitian Lie
algebra and g is simple.

Proof. First we note that the condition that ¢ = Z(§?) Nngqp, = {0}
entails that A, = @ and therefore that C,;, = {0}. This applies in
the case (i) and (ii).

Moreover, (i) holds precisely when g = h%. So we assume that
g # b% and that Z(h%) C he. We have to show that A4, = {1}.
We consider the reductive subgroup H? = (exph?) of G. Then the
restriction of 7 to H? is a Cartan involution and

H?=(HNK)oexpaqp

is a Cartan decomposition. Moreover the assumption Z(h?)Ngq, =
{0} implies that Z(H?%) C (HNK)g. Set S := SqnN H%. Then
S is a subsemigroup of H% which contains (H N K)q and therefore
Proposition 1.17 applies. Hence S is a closed subgroup of H¢.

Set C := anL(S). Suppose that there exists a € A(g, a) with
g* £ h? and Z € C with o(Z) # {0}. From a C h? = {X €
g: 07(X) = X} we conclude that 67(g®) = g* and there exists X, €
g*\{0} such that 07(X,) = —X,, i.e, ©(X,) = —0(X,). Again we
set go := span{X,, 0X,, [X,, 0X,]}. This is a three dimensional
subalgebra isomorphic to sl(2, R) which is invariant under 6 and 7.
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We set &, := R(Xy + 0X,), ho := R(Xy — 0X,) = R(Xy +1X,), a4 :=
R[Xa, 0X,], K, := (expt,), H, := exph,, and 4, := expa,. Now
H, C Hy C Sg and therefore X, + tX, € L(Sq). Moreover Z € C
implies that RZ C L(S) C L(Sp) := {X € g: expR*X C Sq} and
therefore the subalgebra generated by Z and X, + tX, is contained
in L(Sq) ([HHLS89, 11.1.8, IV.1.27]). From

[Z, Xo+1Xa] = A(Z)(Xa — TXa) # 0

we conclude that this subalgebra contains g, . Hence G, := (expg.) C
Sq € HMAN . Tt follows from the uniqueness of the function

L,: HA,N, — a,, hanw—loga

that L, = L| HA4N - We normalize X, such that the element Z, :=
[Xa, 1X,] satisfies the relation a(Z,) = 2. Then Example 1.19 shows
that
L(exp(tZa) exp(s(Xa + 7Xa)))
= (¢ + Llog(1 + (1 — e~#)sinh?(s))) Zo.
For ¢t < 0 this contradicts the fact that L is an analytic mapping
defined on the whole set exp(tZ,)H, C Q, whence g* C h? whenever

a(C) # {0}.
Set g; :=L(SqnSg') and a; := C = g;Na. Then this implies that

n=0l® P scad+p"
a€l(g, ,qa,))

We note that the two subspaces 9(1) and h“ are invariant under the
involution 67. Therefore h, C g; shows that

by C {X €g1: 07(X) = -X} C gl

Moreover the ft-invariance of H, M, A,and N entails that 67(Q)
= Q, and therefore that 67(Sq) = Sq. So 67(g;) = g; implies that
0(g1) = g1 . This leads to the decomposition

g1=be+bp+de1+dp,1,

where q¢, 1 = deNg1, 8p,1 = dpNo1, and (b, O[7 ) with by :=bhe+g,
is an orthogonal symmetric Lie algebra. In particular we have that
dp,1 = €*9eq; ([Hel78, p. 247] or [Ne91b, 2.9]). So [be, by] C by
implies that

[qp, 1, bp] - eadb![al ’ eadbebpl - eadb’[al ’ bp] = {O}
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Together with the he-invariance of g, this proves the h-invariance
of qp,1. Set g := qy,1+[9p,1,9p,1]. Then g, is an bh-invariant
subalgebra of g. We claim that g, is an ideal of g. First

B(by, [dp,1, 9e]) = B([bp, 95,11, 9e) = {0} and [qp, 1, qe] € by

entail that [q¢, g, ;] = {0} and hence that [q¢, g2] = {0}. We write
qu-,1 for the orthogonal complement of q, ; in qq. Then [qu,l, dp 1]
C b and

B(hts [qp,l’ q‘JJ-,I]) = B([bt’ Qp,q]s q#,l) C B(q,l > q;Jg-,l) = {O}

Therefore [q,,,lqpi’l] = {0} and consequently [q,-,'-,l , 821 ={0}. So g,
is a t-invariant ideal of g. Since (g, 7) is assumed to be irreducible,
there are two possibilities. The firstoneis g =gy, b =[qp,1, qp,1] = ¢
and q = qp,; = p. This is impossible if h? # g. So g, = {0},
dp,1 = {0}, a; = {0}, and finally A,g4m = {1}.

The remaining case is Z(§%) Nqp, # {0}. It is clear that Z(h?) =
Z(h?*)Nhe + Z(h*) Ngqp and therefore

IZ(H*) Ny € Z(he + iqy).

Set € := by + iqy. This is a maximal compactly embedded subalgebra
of the dual symmetric Lie algebra g¢ := h + iq. If g is not simple,
then g = g; & gy, where' 7 acts by 7(X,Y) = (Y, X) and ¢° =
(81)c = g1 +ig;, where g, is a simple real Lie algebra. If g; = & +p;
is a Cartan decomposition of g;, then & + ip; = by + iq, = € is
a compact real form of the complex Lie algebra g¢. It follows in
particular that Z(#) = {0} which is a contradiction. Consequently g
is simple. Moreover (g°, 7) is an irreducible symmetric Lie algebra
and there are two cases:

(1) g¢ is simple. Then Z(¥) # {0} implies that g¢ is a Hermitian
simple Lie algebra.

(2) ¢ =haobh and g = hc, where q = ih. Then ¥ = b, = ih; and
therefore Z(h¢) # {0}. It follows that h is a simple Hermitian Lie
algebra. O

REMARK 1.21. In Case (i) the Convexity Theorem reduces to Ko-
stant’s Convexity Theorem ([Hel84, p. 476])
L(aK) = conv(# loga) Vae€ A

because K = H, C(a) = Cpin = {0}, and Apgy = 4.
In Case (ii) the statement

L(aH) = conv(#Z loga) + C(a) Va € Aagm
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of the Convexity Theorem reduces to
L(H) = {0}
because C(1) = Cyin = {0} and A4, = {1}. O

Summing up the reductions of this section it remains to prove the
Convexity Theorem only in Case (iii) of Theorem 1.20 and when H
is connected and Z(G) = {1}. This will be done in Section IV, where
we will also prove the general formula for 4,4, and show that 4,4, =
exp(Cmax) in this case. For a € 4,4, we will see that

Chin ifa#1,
{0} ifa=1

I1. Groups generated by reflections. In this section E denotes the fi-
nite dimensional Euclidean vector space, # is a finite set of codimen-
sion-one subspaces, and 7 the subgroup of the orthogonal group gen-
erated by the reflections in the hyperplanes from /#. We make the
following assumptions:

(Al) The group 7 leaves the set /# invariant.

(A2) 7 is finite.

DEeFINITION II.1. A connected component C of E\|JZ is called
a chamber. If C is a chamber, then we associate to C a system
Ey ¢ ={ey: He Z} of unit vectors defined by

e;=H and (ey,Y)>0 (VY € Q).

C(a) = {

For a subset F C E we define the dual cone

F*:={YeE: VXeF)(X,Y)>0}. O

ProrosiTiON I1.2. Let C C E be a chamber. Then the following
assertions hold

(i) C is a fundamental domain for the action of the group %,

i.e., every ¥ -orbit meets C in exactly one point.
(i) If X€c and Y € C, then

(X,Y)>(X,s(Y) VseZ.

Proof. (i) We note that our assumptions imply that (D1) and (D’2)
in [Bou81, Ch. V, §3] are satisfied. Therefore (i) is Theorem 2 in
[Bou81, Ch. V, §3, 3.3].
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(ii) It follows from the proof of Lemma 2 in [Bou81, Ch. V, §3, 3.1]
that
X -Y|[[<||X=s(Y)| VseZ.

Therefore
IX = Y|* =1 X|1* + | Y]* - 2(X, Y)
< IXI2 + Is()I1* = 20X, s(Y))
and the assertion follows from the orthogonality of s € 7" . 0

CoROLLARY I1.3. For Y € C and s €% we have that Y —s(Y) €
C*. O

DEeFINITION I1.4. Let F C E be a non-empty closed convex subset.
We denote with
co(F) := conv(# (F))
the closed convex hull of the 7 -orbit of F. For F = {X} we also
write co(X) :=co({X}). O

From now on C denotes a fixed chamber in E.

LEMMA IL1.5. Let F C C be a closed convex subset and X € F.
Then the following assertions hold:
(i) co(F)CF —-C*.
(ii) (X -=C*NC Cco(X).
(iii) (F-C*)NCCco(F) NCCF-C*nC.
(iv) Nsex S(F = C*) Cco(F) C Nseqp S(F — C*).

Proof. (i) Since F — C* is obviously closed and convex, it suffices
toshowthat Z(F) CF—-C*. Let Xe€e F and seZ . If s(X) ¢
F — C*, then by the Hahn-Banach Theorem, there exists Y € E such
that

(s(X),Y)>sup{(Y, Z): Z e F — C*}.
In particular the functional f: Z — (Y, Z) is bounded from above
on the set X —C*. Consequently Y € —(—C*)* = C. Using Corollary

I1.3 we find that
(X, Y)>(X,s7(Y)) = (s(X), Y) > (X, Y)

because X € F—C*. This contradiction shows that 7' (X) C F — C*.
(i) If (ii) is false, then there exist ¥ € E and Z € C* such that
X-ZeC and

(Y, X-2Z)>(Y,s(X)) VseZ.
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Select ¢ € #° with 6~(Y) € C (Proposition I1.2). Then, since the
relations
ZeC* and (X-Z)-o}(X-2)ecC*

(Corollary 1I1.3) imply by addition that

X-ol(X-2Z)ecCr,
we obtain

(e }(Y), X-o"}(X-2)) >0,
ie., (Y,o(X)—X+Z)>0. Hence
(Y,o(X)2(Y,X-2),
a contradiction.
(iii) The inclusion

co(F)NCCF-C*nC

follows from (i). The other inclusion follows from (ii) because
(F-C)nC= |JX-C)nCc | co(X) C co(F).
X€F XeF
(iv) The 7 -invariance of co(F) and (i) shows that
co(F) C [ s(F=C%).
SEW
If, conversely, X € (\,co S(F — C*), then the set Z'(X) meets C in
a point of F — C* (Proposition II.2). Now
Xe# (F-C*)NC)C ¥ (co(F)) = co(F)

is a consequence of (iii). o

REMARK I1.6. Note that the inclusions in (iii) and (iv) in Lemma
IL.5 are equalities if the set F — C* is closed. This is true if F is
compact and in particular if F = {X} consists of a single point. In
the latter case Lemma I1.5 specializes to Lemma 8.3 in [Hel84]. O

Next we show that F — C* is closed in the case which is of interest
to us in §IV.

DEeFINITION I1.7. A closed convex cone W in a finite dimensional
vector space E is called a wedge. The vector space H(W) := W n
(—=W) is called the edge of W . We say that W is pointed if H(W) =
{0} and that W is generatingif W = (-W) =E,ie.,if int(W) # 2.
A polyhedral wedge is defined to be a finite intersection of half spaces.
In this terminology a closed chamber C is a generating polyhedral
wedge. o
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LemMA I1.8. Let X, ..., X, € E. Then the convex cone

n
W=) R'X;
i=1
is closed, i.e., a wedge.

Proof. Set Wy, := > R*X; C W. We prove by induction on
m that W,, is closed. This is clear for m = 0, 1, 2. Assume that
0 < m < n and that all cones which are sum of less than m rays are
closed. Then W,, = W,,_; + Rt X,,. If —R*X,, "N W,,_; = {0} then
the closedness of W,, follows from [HHL89, 1.2.32]. Suppose that
—Xm € W,,,_1. Then

m—1
—Xm = Z a;X;

i=1
with a; > 0. We may assume that a; >0 iff 1 <i<k<m-—1. Let
F :=span{X;, ..., X;, X»}. Since

k
0=Xpm+ ) aX;
i=1
we conclude that 0 € intg(R* X, + Y5, R*X;) and therefore that
F = R*X,, + Eﬁ-‘zl R*X;. Let p: E — FL denote the orthogonal
projection. Then, since F C W,,,
m—1
Win=F +(WnNFY) = F+p(Wm)=F + ¥ R*p(X)).
i=k+1

The cone F, := Y7 +1 R*tp(X;) C FL is closed by the induction
hypothesis. So we see that W,, = F + F; is closed because E =
FoFL. o

COROLLARY 11.9. If C is a chamber, then

C* = Z R*eH.
HeX?

Proof. If follows from the definition that

C*= ( N RYen)* ) I Ren.

HeX# He#
In view of Lemma II.8 this proves the assertion. o
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LemMA 11.10. If E = E,| & E, is an orthogonal decomposition into
¥ -invariant subspaces, then the following assertions hold:
(i) Every hyperplane H € # decomposes as H=(HNE;)®(HN
E,).
(ii) C= (_C—ﬂEl) + (?ﬂ E,).
(iii) C*=(C*NE|)+C*NE,).

Proof. (i) Let sy denote the reflection on the hyperplane H. Then
sy leaves E; and E; invariant. We may assume that sy|g # idg, .
Then there exists X € E; such that sg(X) # X . Therefore sy(X) —
X € E1\{0} and consequently

H= (SH(X)—X)J' =(HNE)®E,.

(ii) The set C is the intersection of half spaces bounded by hyper-
planes in # . Since all these hyperplanes are adjusted to the decom-
position of E, the same is true for C.

(ili) This follows from (ii) and E{ = E} = E;. i

LEMMA I1.11. Let W C E be_ a ¥ -invariant wedge. Then the
convex cones W — C* and (WNC)— C* are closed.

Proof. (i) Since W is invariant, the subspace E; := H(W) is also
% -invariant. Therefore E, := E{- is # -invariant and
W =E +(WnNE,),

where WNE, is apointed 7 -invariant wedge in E. We know from
Lemma II.10 that

C*=(C*NE)+ (C*NE,).
Hence
W-C*=HW)+ ((WnEj;)—-(C*NEy)).
So it remains to show that (W N E;) — (C*N E,) is closed. Set
E) gx:={X€Ey: Vse?)s(X) =X}
and
E; g:=span{s(X)-X: X € E,, s€¥'}.

Then
C*'NE; = Z R+eH§E2,etf

eHGEzﬁE},,C
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and
W NE; = {0}

([Ne90, 1.10]). We conclude that
(WNE)N(C*Nney) ={0}.

This implies that (W N E,y) — (C*N E,) is closed ((HHLS9, 1.2.32]).
(ii) As in (i) we have that

(WNCNE)N(C*NEy) = {0}

and therefore
(WNCNE,)) - (C*NE,)

is closed. But
(WNC)-C* = (HW)NC)—(C*NH(W))+(WNCNE;)—(C*NE,)

and so it remains to show that the cone W' := (H(W)NnC) - (C*n
H(W)) is closed. Each of the cones H(W)NC and C*nNH(W) is
polyhedral and therefore a sum of finitely many rays ((HHLS89, 1.4.2]).
So the same holds for W' and the closedness follows from Lemma
I1.8. o

ProrosITION I1.12. Let W C E be a % -invariant wedge and X €
C. Then
coX)+W =[] s(X+W -C".
SEW

Proof. “C™: First we note that co(X) + W is a closed convex 7 -
invariant set because co(X) is compact. Therefore it suffices to show
that

coX)+WCX+W-C~
This follows from co(X) C X — C* (Lemma IL.5).

“2”. If Z € W, then there exists s € 77 such that s(Z) € cnw

(Proposition I1.2). Therefore

Z=5(Z)-(s(Z)-Z)e(WnC)-C*
(Corollary I1.3). Using Lemma II.5(iii) and Lemma II.11, we find that

N sXx+wW-Cc)= [ s(X+(WnC)-C)
SEW SEW
= co(X + (W nC)) C co(X) + W. 0



A CONVEXITY THEOREM 327

In the remainder of this section we consider the following situation:

Let E' C E be a subspace, p: E — E’ the orthogonal projection,
Z':={HNE:HeX, E'¢{ H},

and 7" the group generated by the reflections on the hyperplanes in
Z". We make the following assumption:
(A) V' C{s|gp:seW, s(E')C E'}.
Note that (A’) implies in particular that the system (E’, #') satisfies
(Al) and (A2).

LEMMA IL13. If H = e}, then HNE' = p(Ex)* NE'.

Proof. For X € E’ the conditions (X, ey) =0 and (X, p(ey)) =0
are equivalent. This implies the assertion. O

LemMA I1.14. Let C C E be a chamber. Then C':=intg(C NE')
is a chamber in E', C'=CNE', and C* =p(C*).

Proof. Choose ey € E such that C ={X € E: (VH € Z)(X, ey)
> 0} . Then Lemma II.13 shows that we may set ey := p(ey) to find
that

CNE ={X€eE:(VH € Z'){X, ey) > 0}.

Hence
C'={XeFE" (VH e Z'){X, eg) > 0}.
Therefore C’ is a chamber and
C"= > Rley=p (Z R““eH) =p(C"). o
H'e#' He#
We note that, if W C E is a wedge, then it is a general fact that
(WNEY =W*+ELNE =p(W*).
For X € E’ we denote the closed convex hull of 7Z”(X) with
co’(X).
THEOREM I1.15. Let X € E'. Then p(co(X)) = co’(X).
Proof. Set K := p(co(X)). This is a compact convex subset of E’.
Let s’ € 7" and s € 77" with s|g =s'. Then
s'(K) = 5'(p(co(X))) = s(p(co(X)))
=pos(co(X))=p(co(X)) =K
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because co(X) isinvariant under 77" . Therefore K is invariant under
#"' and, since X € K, we have that

co’(X) C K.

Choose s’ € 7" suchthat s'(X) € C' C C and s € 7 with s|p = 5'.
We use Lemma II.14 and Lemma I1.5 to obtain

K = p(co(X)) € p(s(X) - C*) = 5'(X) = p(C*) =5'(X) - C"™.
Again with Lemma IL.5 this implies that
KnC' C(s'(X) - C™*)NC" C co(s'(X)) = co'(X).
Together with Proposition II.2 and the 7Z”'-invariant of K this com-

pletes the proof. ]

COROLLARY I1.16. Let W' C E' be a % '-invariant wedge. Then
W :=co(W’) is a # -invariant wedge in E with p(W)=WNE' =
w'.

Proof. Clearly W/ C WNE' C p(W). To see that p(W) C W’
it suffices to show that p(Z'(X)) C W' for all X € W’'. Thisis a
consequence of Theorem II.15. o

REMARK II.17. Let us assume that W, C E is a 7 -invariant edge
wedge such that
Wy C Wy

and that W’ C E’ is a 7 "'-invariant wedge with
p(Wg) S W' C WynE'.

We would like to extend W’ to a wedge W in E which is 7 -
invariant and which satisfies

WoeCWCWy, and WnNE' =W'.
We set W := Wy +co(W’). Then Wy C W C W, and
W CWNE Cp(W)Cp(Wy)+plcoW')CW +W =W'. O

III. Unitary representations with highest weight. Let H be a Lie
group with h = L(H), n: H — U(#) a unitary representation of
H on the Hilbert space 7, #> (#%“) the corresponding spaces of
smooth (analytic) vectors. We write dzn for the derived representation
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of h on Z>. We extend this representation to a representation of
the complexified Lie algebra hc and set

W(r):={X €ib: dn(X) < 0}.

Note that the operators dzn(X), X € i are essentially selfadjoint be-
cause Z“ is dense in # ([We76, p. 244]). Therefore the condition
X € W(m) is equivalent to the existence of a strongly continuous
one-parameter semigroup of selfadjoint contractions on.# whose in-
finitesimal generator is the closure of dn(X).

Now let (G, o) be a complex symmetric Lie group, where the in-
duced involution o on g is complex antilinear and induces an iso-
morphism g = hc. We assume that § is simple Hermitian. Note that
this implies that H = Gf is real reductive in the sense of [Wal88,
p. 43]. Let H denote the universal covering group of H. Then
(HNK)~ = (expﬁ he) because HNK is a maximal compact subgroup
of H.

ProposiTioN II1.1. The symmetric Lie algebra (g, o) has the fol-
lowing properties :
(i) dime=1.
(ii) ia is a compactly embedded Cartan subalgebra of .
(ii1) ac is a Cartan subalgebra of g.
(iv) There exists an element Z € ¢ such that

APt ={a€A: a(Z)=1}.

(v) " =3¢ Ar g% is an abelian subalgebra.

(vi) There exist Ad(H)-invariant pointed cones Wyin C Whax in ib
such that

P(Whin) = WninNa = Cpin  and p(Wmax) = Wimax N a = Cnax,

where p: iy — a is the orthogonal projection.

Proof. (i) This follows immediately from ¢ = iZ(h¢) and q, = ibe.

(i) Since a is maximal abelian in ih,, the subspace ia is a Cartan
algebra of h. Hence a is a compactly embedded Cartan algebra of
g because rank hy = rank}.

(iii) This is immediate from (ii).

(iv) The existence of an element Z € ¢ with Spec(ad Z) = {-1, 0,
1} is a consequence of [Hel78, p. 382]. Let a be a non-compact
positive root. We normalize Z such that a(Z) = 1. Suppose that
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B €A} with B(Z)=—1. Then (a— B)(Z) =2 and therefore o — f
is no root. Moreover (a + B)(Z) = 0 shows that a + f cannot be
a root because the compact roots are smaller than a (cf. Definition
I.1). In the following we identify the roots with elements in a via
the restriction of the Cartan Killing form to a. If y is a compact
root which is not orthogonal to B, then we choose the sign of S
such that s,(f) is greater than f. Now s,(8)(Z) = —1 implies that
also a +5,(f) ¢ A. Inductively this proves that o is orthogonal
to the Weyl group orbit 77" . But the span of this orbit contains ¢
because >, .o w(B) is # -invariant and therefore in c¢. This is a
contradiction because «(Z) # 0. We conclude that f(Z) =1.

(v) If a, B €A}, then (a+f)(Z) = 2 and (iv) implies that a+ S
is no root. Hence p™* is abelian.

(vi) [HHLS9, p. 277, 279]. O

We identify a with its own dual via the Cartan Killing form. The
corresponding coroots are denoted with Z, = Za%) The set % of
highest weights of all possible irreducible unitary representations of
(HNK)™ is given by

F = {A € ia: (Vo € A})(A, Za) € No}

([Wal88, p. 36]). We write Hk for the subset of % corresponding to
the unitary representations of HN K. For A € # let U, denote the
corresponding irreducible representation of g with highest weight 4.

If n is an irreducible unitary representation of H , we denote with
7% the corresponding g-module of HNK-finite vectors, and set %0 :=
{veZ:pt.w=1{0}}. Then = is called a representation with highest
weight if Z° # {0}. In this case there exists a unique A € % such
that the representation of g in %0 i1s equivalent to U, ([Wal88,
p. 85], [Bou90, Ch. VIII, §6]). We write n; for the corresponding
irreducible unitary representation of H .

We write C), for the closed Weyl chamber in a with respect to the
positive system A of compact roots and C} for its dual.

Let & C #x denote the set of all functionals for which 7, exists.
According to Theorem 3 in [HCSS], which is proved in [HC56] (cf.
p. 612), we know that

"Cmax O%K Qv@ Qﬂla

where
F ={reFx: (VB eA;)(i+p, B) < 0}

parametrizes the holomorphic discrete series, and p =3 A+ .
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LEmMMa II1.2.
(3.1) R+<@ = ("‘Cmax) n Ck.

Proof (cf. [Ol1s82, 2.7]). Let B = {ag, i, ..., an} be a basis
of the positive system At such that oy is non-compact and
{ay, ..., ap} constitute a basis of A; . Define the element wg € a* by
wo(i[he, helNa) = {0} and wo(Z) =1, where Z € iZ(h) is the ele-
ment with #(Z) =1 for all § € A} . Then we have that

(3.2) Ky = (Zwo + Zay + - - + Zap) NFE C Kk

([Kn86, p. 85], [Wal88, p. 88]). We set #| := F; NF . Then it
suffices to show that R+*#| = (—Cmax) N C .
The inclusion

R+$1I CR*Z C (_Cmax) n Ck

follows immediately from the definitions. For the converse let A €
—int(Cmax) N Cx and & > 0. We have to find an element v’ € R*%]
with |»' — A|| < ¢. Then the assertion follows from the density of
—int(Cpax) N Cy, in —Crax N Cy .

Since a = |J,,en(— int(Cmax) — mA) , there exists m € N such that
mA + p € —int(Cpax) - Then

—oJ :=max(mi+p, ) <0
BeA’

holds. But {@wyg, a1, ..., a,} is a base of a, and therefore there exist
k €N and an element v € % with

|lkmA — v|| < min —6———, €.
max e 161

For B € A} this implies that

(v+p, B)=(v—kmi, B)+((k-1)mi, B) + (mi+p, B)
< |lkmA—v||||Bll -6 <6 -6 =0.

Consequently v € %, and the element v’ := ;-

v satisfies the condi-
tion .
A-V||<—<e. m}
I -vl < 7 <

DEeFINITION II1.3. A pair (S, #) of a topological semigroup S and
an involutive antiautomorphism s — s* is called an involutive semi-
group. A representation of an involutive semigroup (S, #) is a homo-
morphism J from S into the semigroup % (#) of all contractions
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on a complex Hilbert space # which is continuous with respect to
the weak operator topology, and which satisfies

T (s*) = T (s)".

THEOREM II1.4. Let Wy, be asin Proposition111.1. The set Sy :=
H exp(Wpin) is a closed subsemigroup of G and s* := a(s)~! defines
an involutive antiautomorphism of S. Moreover, every representation
T, A € P, has a continuation to a representation #; 0of (Smin, #)
which is holomorphic on the interior H exp(int(Wpin)) 0f Smin -

Proof. [Ols82, 4.5]. O
Let A€ . We write A(4, a) for the set of all weights of a on Z
and #Z* for the corresponding weight spaces, i.e.,
AFr={weH: (VX € a)dn;(X)w = u(X)w}.

LEMMA IIL.5. Every weight u' € A(A, a) which is extremal with
respect an irreducible t-submodule is % -conjugate to a weight of the

form
U=Ai— Z nao,

.
aeAp

where the n, are non-negative integers.

Proof. See for example [Sta86]. The idea is to realize the represen-
tation of g on the algebra of polynomials on p+. O

LEMMA IIL6. Set S| := exp(Cmax) C exp(a). Then there exists a
homomorphism #;: S, — % (#) such that

Talexp(C ) = alexp(C

min min).
Moreover, if X € Cmax N Cy, then

172 (exp X)|| = e*.

Proof. Let X € Cpax. Then Lemma IIL.5 shows that every weight
u € A4, a) satisfies

(3.3) #(X) < max A(s(X))
SEW
because WA‘; C Aj; and X € Cnax . If, in addition, X € Cy, in view
of Proposition 1.2, this implies that
(3.4) U(X) SMX) VueA, a).
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We define
7 (exp X)(w) := e* O vw e -,

Then (3.3) shows that 7;(exp X) is a bounded operator on the dense
subspace # and therefore it permits a continuation to the whole
space # with the same operator norm. For X € Cpax N C; the
relation (3.4) shows that ||#;;(exp X)|| = e*X) . That #,: S|, — B (#)
is a semigroup homomorphism follows from the fact that

(@) (a2)| 7 = ta(ara2) |z

for a;,ay € S;. It is clear that 7, agrees with 7; on exp(Cpin)
because the corresponding operators are equal on 7. O

In the following we write
ty: exp(ia+ Cmax) = B(#), exp(iX +Y)w— m(expiX)i,(expY)

for the combination of 7#; with 7; on ia + Cpax. From Lemma
ITL.5 it is clear that this defines a semigroup homomorphism because
m)(exp ia) commutes with 7;(exp Cmax). We recall that n:=@ 5+ g%

LeEMMA IIL.7. Let A€ P5, X €ia+ (CnaxNCy) Cac, and v € #
a vector of highest weight 2. Then the following assertions hold :
(i) #,(expX).v =erXy,
(ii) [17(exp X)|| = eReAX)
(iii) If s € int(Syin) and As and ps denote left and right multipli-
cation with s in S, then

dfty(s) dAs(1)Z(w) = #;(s) dmy(Z)w
and

d#t;(s)dps(1)Z(w) = dry(Z)7;(s)w
for Zeg and we#H>.

Proof. (i) The curve y:t — @;(exp(¢X)).v is the unique solution
of the initial value problem

Y0)=v, Y(t)=dm(X)y().

Since
Y(t) = dr,(X)ft,(exptX)v = &)(exptX)dn,(X)v

= A(X)f;(exp tX)v = A(X)y(2),
it follows that y(¢) = e X)y ,
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(i1) Let X = X; + X, with X; € ia and X; € Cpax N Cy, . Then we
use Lemma II.6 to obtain that

“ﬁl(exp(Xl + XZ))” = ||7Z/1(6Xp Xl)ftl(exp X2)||
= ||71(exp Xo)|| = e*K2) = gReAK +Xy)

(iii) First we assume that Z € h. Then
(s exp(Z)) = fiy(s)7ma(exp Z)

and therefore
dy(s)dAis(1)Z = 7;(s) odmy(Z)

on #Z > . Now the assertion follows from the complex linearity of the
mappings d7;(s)dAs;(1) and #,(s) o dn,; (Theorem II1.4). The other
formula follows similarly. O

LeEMMA II1.8. Let v € # be a vector of highest weight .. Then the
mapping
Fi: nt(Chax) X H-Z, (X, h)— fy(expX)my(h)v

is analytic.

Proof. Let X € int(Cmax) and A € H. Then there exists X' €
int(Cmax) such that X € X’ + int(Cpyy,) - For Y € Cpin We have that

Fi(X'+Y,h)=#;(exp X )7;(exp Y)m;(h)v
(Lemma III.6). Hence the analyticity on the open neighborhood
(X' +int(Cpin)) x H

of (X, h) follows from the linearity and the boundedness of the linear
operator 7;(exp X’) and the analyticity of the mapping

int(Cuin) x H = Z, (Y, I') = #y(exp Y)m;(h")v
(Theorem II1.4). O

ProrosiTION I11.9. Let Q C ac X n be the connected component
of the set of all pairs (X, Y) with exp(X)exp(Y) € int(Syin) Which
contains int(Cp;,) . Suppose that A € F; and that v € Z is a vector
of highest weight. Then

7, (exp(X) exp(Y))v = XMy
holds for all (X,Y)e Q.
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Proof. First we note that Q is an open connected submanifold of
the complex manifold ac x n. We define

F:Q-%2, (X,Y)w it;(exp(X)exp(Y))v.

Then F is a holomorphic function because it is the composition of
the holomorphic mappings #3linys,_ ) (Theorem IIL.4) and

Q —int(Smin), (X, Y)r— exp(X)exp(Y).

Let (Xo, Yp) € Q(X,Y) € ac X n, and s := exp(Xp)exp(¥p) €
int(Spin). We recall the definition of the power series f(Z) =
(1 —e~%)/Z and note that f(ad Xp)X = X, and that f(ad Y)Y €n
is a finite sum because the Lie algebra n is nilpotent. Now we use
Lemma III.7 and [Hel78, p. 105] to obtain

dF(XOa YO)(X’ Y)

= dt;(s)(d pexp v,(€xp Xo) d exp(Xo) X
+ dAexp Xo(exp Yo)d exp(Yy)Y)v

= dt(s)(d pexp v,(exp Xo) dlepro(l)X
+ dAexp x, (XD Y0) dAexp v, (1) f (ad Y)Y )

= dt;(s)(d pexp v, (€xp Xo) d pexp x,(1) X + dAs(1) f(ad Yo)Y)v

= dft;(s)(dps(1)X +dAs(1) f(ad Y)Y )v

=dm(X)7t,(s)v + 7, (s)dn;(f(ad Yp)Y)v

= dny(X)F(Xo, Yo)

because dn;(n)v = {0}.
Now let X; € int(Cyin), U; be an open connected neighborhood

of X; in ac, and U, an open connected neighborhood of 0 such
that U; x U, C Q. Then the calculation above shows that

F(X;, V) = F(X;,0) =%y for (X,, Y2) € Uy x Us.

Now the analyticity of F on the connected set € shows that F (X, Y)
=e* Xy forall (X,Y)eQ. O

IV. Symmetric spaces of regular type. In this section we complete
the proof of the Convexity Theorem (Theorem 1.7). We keep the
notation from §I. As we have already remarked at the end of §I, we
may assume that Z(G) = {1}, H is connected, and that (g, 7) is
an irreducible symmetric Lie algebra such that Z(h%) ngq, # {0}, i.e.,
(g, 7) is irreducible of regular type (cf. [Ola91], [FHO91]).
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These assumptions imply in particular that G = Ad(G) is contained
in a complex Lie group G¢ with L(G¢) = gc. We set g¢ := h+iq and
G° := (expg). We collect some facts on the structure of symmetric
Lie algebras of regular type.

ProvposiTION IV.1. For every irreducible symmetric Lie algebra
(g, T) of regular type of the following assertions hold:

(i) ¢¢ is a Hermitian semisimple Lie algebra.
(ii) c:=Z(H*)Nqyp is one-dimensional.
(iii) Zg(c) = b and Zy(c) = qy.
(iv) a is maximal abelian in p and q.
(v) Aroot a € Ag, a) is compact iff g* C h? iff g*NHh? # {0}.

Proof. (i) Theorem 1.20.

(i1) The Lie algebra € := b + iq, is maximal compactly embedded
in g¢. There are two cases. If g¢ is simple, then Z(¥) is one-
dimensional ([Hel78, p. 382]) and therefore ¢ = iZ(¢¢) is also one-
dimensional. If g = ha b, then g = hc, b is simple Hermitian, and
h? = by + ihe. Hence ¢ = iZ(he) is one-dimensional.

(iii) This is equivalent to Z(ic) = ¢ . If g° is simple, then this
follows from [Hel78, p. 382]). If g¢ is not simple, then g = hc and
Zy(c) = Zyp (cc) = (he)c = h*. The second assertion follows trivially
from the first one.

(iv) Since ¢ C a we have that

Zy(a) € Zp(c) =pNh* =g

and that
Zy(a) € Z4(c) =qNh? =qp.

This shows that a is maximal abelian in p and q.

(v) That « is a compact root means that a(c) = {0} (cf. Definition
I.1). This is equivalent to [c, g*] = {0} and in view of (iii) this
is equivalent to g® C h?. The second assertion follows from the
observation that g®N # {0} implies that a(c) = {0}. O

Note that Proposition IV.1 shows that our definition of an irre-
ducible symmetric Lie algebra of regular type agrees with the defini-
tion in [Ola91], [HO90], [FHO91] etc.

As we have already seen, there are two different cases. In the first
one g = hc and in the second one g¢ is simple Hermitian. To handle
these two cases simultaneously we introduce some notation.
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DEerFINITION IV.2. If b is a simple Hermitian Lie algebra and g = ¢
with q = ih, we set g* :=g, ¥ :=1, h* ;= h etc.

If g¢ is simple Hermitian, we set (g*, t*) := (gc, 7), where T is
the complex antilinear extension of 7. Then h* = g¢, the complex
antilinear extension 6* of 6 is a Cartan involution of gc commuting
with 7, and therefore the notions of Definition I.1 are also available in
this case. In particular we have that h% = (h9)¢c = (¥)¢, qf = i, and
* := Z(p*) Niqf = iZ(¥°) is one-dimensional. We choose a* as a 7-
invariant subspace of it¢ which contains a and write A* := A(g#, a¥)
for the corresponding root system. Note that ¢* C a. O

For easier reference we collect the properties of the symmetric Lie
algebra (g”, t*). In the following we identify g always with the cor-
responding subalgebra of g*.

PROPOSITION 1V.3. The symmetric Lie algebra (g*, %) has the fol-
lowing properties :
(i) b* is simple Hermitian and g¢* = b..
(i) (g%, t*) is an irreducible symmetric Lie algebra of regular type.
(iii) ia* is a compactly embedded Cartan algebra of b*.
(iv) af is a Cartan algebra of g¢*.
(v) dimc* =1 and there exists an element Z € ¢* such that

Al ={aeA: a(Z)=1}.

(Vi) A ={afe: o € AFF}.

Proof. (i) This follows from the definition.

(ii) This follows from the simplicity of g* which is a consequence
of (i) and Definition IV.2.

(iii) —(v) Proposition III.1.

(vi) Take Z as in (v). Then a root is non-compact if and only if
it does not vanish on Z . Now (v) implies (vi). O

Next we have to clarify the relations between the cones C*. and

min
Cmin .

LEMMA IV.4. Let p: a* — a be the orthogonal projection. Then the
relation between the cones in a and o may be described as follows:

(i) The set of positive non-compact roots is invariant under the Weyl
group.
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(ii) The cones C¥. C C%,, are # *-invariant.
(iii) Cmax = Cmax Na= (Cr?iax)
(iv) Cpin = P(Cﬁlm) C Crmax -
(V) The subspace o C o* satisfies the condition (A’) of §1I with
respect to the system of hyperplanes defined by the compact roots.

Proof. (i) If a is non-compact positive and w € Z'#, then a(w.Z)
= a(Z) =1 (Proposition IV.3).

(ii) This is a consequence of Definition 1.1, (i), and Proposition
IIL.1.

(iii) The first equality follows from Proposition IV.3(vi) and the
second one from —7(Cpax) = Cmax ([Ne90, 1.10]).

(iv) The closedness of the polyhedral cone p(C?*
entails in view of [HHLS89, p. 5] that

Cin = Chax = (CExNa)*=C* +alna= p(C:nn =p(C*.).

mm

) (Lemma II.8)

min

The inclusion p(C%, ) C p(C#.x) = Cmax is a consequence of (iii).
(v) (cf. [OS80, 1.3], [S84]) It follows from Proposition IV.1(iv)
that the subspace a” N ih; is a maximal abelian subspace of iZy,(a).
But (Z; (a)c,7) is an orthogonal symmetric Lie algebra and there-
fore all maximal abelian subspaces in iZy (a) are conjugate under
inner automorphisms coming from Zxny(a). So we find for ev-
ery g € KN H with Ad(g)a C a an element g’ € Zgny(a) with
Ad(g')Ad(g)(a* N ihs) = (a* Nihe). Hence g'g € Ngnp(a*) and
Ad(g’'g)|le = Ad(g)|a- So every element of 7" is induced by an el-
ement in Z;* := {s € #*: s(a) C a}. This means that condition
(A’) of Section II is satisfied by the pair a C o with respect to
the corresponding systems of hyperplanes defined by the compact
roots. ]

LeMMA IV.5. If (G, 1) is irreducible of regular type, then
My=Zk(a) g CH and Q= HMyAN = HAN.
Proof. First we note that a is maximal abelian in p (Proposition

IV.1) so that M = Zg(a). Moreover, m = L(M) = Z(a) C Z(c) =
he. Therefore m C he and My =expm C H. O

ProrosiTioN 1V.6. If (G, 1) is irreducible of regular type, then
Aagm = €XP(Crax) -
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Proof. Let W# C q* be an Ad(H?*)-invariant cone with W# N a* =
C# .« (Proposition IIL.1) and set W := W#nq. Then

Wna=W*na= C:laxnazcmax

by Lemma IV.4. We set I := exp(W). Then it follows from [FHO91,
2.14] that this is a semigroup which satisfies

I' C Q= HAN.

It follows in particular that exp(Cmax)H C Q and therefore that
eXP(Cmax) € 4adm -

To see the converse, we use sl(2, R)-reduction (cf. [HO90]). Let
X € a\Cnax. Then there exists a positive non-compact root a such
that a(X) < 0. We consider the semigroup Sg = {g € G: gQ C
Q} (cf. Definition 1.15). We choose X, € g® such that Z, :=
[Xa, 7X,] satisfies a(Z,) = 2. Note that g* N h% = {0} (Proposi-
tion IV.1) implies that 01(X,) = —X,, i.e., 0(X,) = —1(X,). We
set g, :=span{X,, 6X,, Z,}. This is a three dimensional subalgebra
isomorphic to sl(2, R) which is invariant under 6 and 7. We set
ha := R(X, + 7X,) and H, := exph,. Let Zp := X — tZ,, where
t=3a(X) < 0. Then a(Zy) =0 and therefore [Z, g,] = {0} . Now
the formula in Example 1.19 implies that

L(exp(X) exp(s(Xa + 7X4)))
= L(exp(Zy) exp(tZ,) exp(s(Xa + 1Xa)))
= L(exp(tZ,) exp(s(Xo + TXa)) €xp(Zp))
= Zo + L(exp(tZ,) exp(s(Xo + 7Xa)))
= Zo + (t + Llog(1 + (1 — e~*) sinh’(s))) Zo.
This analytic function has no extension to R (as a function of s)

and therefore exp(X)H, cannot be contained in Q. This proves that
Aagm = €Xp(Crax) - a

Now we are prepared to give a general description of the set 4,4y, -
We thank the referee for the suggestion and the proof of the following
proposition. We resume the notation from §I.

ProrosiTIONIV.7. Let (G, 1) be a semisimple symmetric Lie group,
A} = {a €AT: g*N(by + qe) # {0}}

and
Cn:={Y e mana: (Va € Af)a(X) > 0}.
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Then

log Apam = ) w(Cn).
weX

Proof. In view of Theorem 1.20 it suffices to assume that (g, 7) is
irreducible. We consider the three cases of Theorem 1.20.

Case (i). If (g, 1) is Riemannian, then b, + q¢ = {0}, s0 A} =@
and C, = a =1log A,gy by Theorem 1.20.

Case (ii). In this case Z(h?) C b, and in terms of roots this means
that A = A; separates the points of a, i.e., A spans a*. Since g
is semisimple and (g, ) non-Riemannian, the set A} is non-empty
because the involution A7 preserves the root spaces g*, a € A, so
that

g% = (g*NH?) + (g% N (bp + qe))
is the eigenspace decomposition of g* with respect to 67.

We claim that A} spans a*. Suppose that this is false. Then there

exists X € a with B(X) # 0 for all p € A,. Whence

Xe qu (bp +q¢) C Zb“(bp + qe).

Since (g, 7) is symmetric Lie algebra, the centralizer of b, + q¢ in
h? is a 7-invariant ideal in g. In view of the assumption that g # h?,
this contradicts the assumption that g is irreducible.

Now the fact that A, spans a* shows that C, is a pointed 7 -
invariant cone in a ([HHLS89, p. 5]). By assumption, Z(§%)Nna = {0},
sO 7  acts on a without any non-zero fixed points. Finally Theorem
I.10 in [Ne90] yields C, = {0} = a,gm (Theorem 1.20).

Case (iii). Then Af = A}, Cy = Cpax, and the 7 -invariant of
Cmax (Lemma 1V.4) yields that
() w(Cn) = Crax-
weX
Now the assertion is a consequence of Proposition IV.6. O

PROPOSITION IV.8. Let X € Cnax and a = exp(X). Then the
set L(aH) is invariant under the Weyl group 7% . Moreover, if Y €
L(aH), then co(Y) C L(aH).

Proof. Set F := L(aH). The Weyl group 7  is generated by the
reflections s, , where a is a positive compact root contained in a fixed
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set X of simple indivisible roots in A . We claim that the line seg-
ment {Y, s,(Y)} between Y and s,(Y) is contained in ¥ whenever
Y € F (cf. [Hel84, p. 477]). Let a be a simple compact root. We
consider the semisimple subalgebra g(®) of g which is generated by
the root spaces g* and g~* ([Hel78, p. 407]). Note that g(® C h* by
Proposition IV.1. Then

g(a)=ga+92a+g—a+g—2a+RXa+mﬂg(a)’

where X, is the unique element in a which satisfies (X,, Y) = a(Y)
for all ¥ € a and m = Zyp(a). Thus 7(g*) = g shows that
7(gl®)) = gl . We set (a) := At N{a, 2a},

n = Z g, and nl®:=g® 4+ g%
BEAT\(a)
Then
(4.1) n=n"+n® and [g¥, n]Cn

because o is simple and therefore s,(A™\(a)) € A*. According to
[Hel84, pp. 440, 477] we have the diffeomorphic decomposition N =
NeN’, where N’ = expn’ and N® =expn® .
Let Y € F and b =exp(Y). Then thereexist #,v € H and n€ N
such that
av = hbn.

We decompose Y = Y, + Y-, where Y, € RX, and Y; € X} . Then
5o(Y)=85u(Yo)+ Y=Y, + Y}

and
(Y, 5,(Y)} =[-1, 1]Y, + Y.
We put b, = exp(Y,), b} := exp Y} and write n = n,n’ in accor-
dance with N = N“N’. Then
(4.2) h~'av = bn = bybfnan' = banabyn'.

Let ¢, € exp([—1, 1]Y,) and set G := (expg!®). Then G* C H* =
(H N K)exp(qy) . According to Lemma 10.7 in [Hel84, p. 476] there
exist elements k,, v, € G*NK C H and n% € N such that

(43) kabanava = cang s
whence [Xi Na, g@®]= {0} and (4.2) imply that

koh~tavv, = condu; btn'v, = cobtnlu; n'v,.
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We use (4.1) to see that
ndv;'n'v, € AN’ C N.
Thus
L(koh~lavv,) = L(avv,) = log(c,by) = loge, + Y.
Since ¢, was arbitrary in exp([—1, 1]Y,) we conclude that
{Y, 5a(Y)} C L(aH).

This proves the #-invariance of L(aH) because 7  is generated

by the reflections s, for o simple. Let f be an arbitrary indivisible

compact root. Then there exists w € Z such that w.f is simple.
Then we have for each Y € F that

w{w 'Y, s,w Y} = {YV, ws;'w LY} = {Y, 540.Y} C F.

Now Lemma 10.4 in [Hel84, p. 474] implies that co(Y) C F for every
element Y € F. o

LEMMA IV.9. Let X =loga € Cmax and o € A} such that o(X) >
0. Then
X+R*Z,C L(aH),
where a(Z,) =2 and Z, = [Xa, TX,] for X, € g*.

Proof. We proceed as in the proof of Proposition IV.6 and we use
the same notation. We also set Z; := X —tZ,, where t = %a(X )>0.
Then a(Zy) =0 and [Zj, g.] = {0} . Again the formula in Example
1.19 implies that

L(exp(X) exp(s(Xa + TX4)))
= Zo+ (t+ L 1og(1 + (1 — e~#)sinh’(s))) Z,,
= X + Llog(1 + (1 — e~*)sinh’5)Z,.

Hence
L(exp(X) exp(R(X, + 7X,))) = X + RT Z,. ]

DEerFINITION IV.10. We write
Cy :={X € a: (Va € A})a(X) > 0}
for the closed Weyl chamber with respect to the positive compact
roots. Note that Cp = 3 ,cx: R7Z,, where Z, € a is defined by
Z) =kera and o(Z,) = 2. If we identify a with a* via (X, Y):=
B(X,Y), where B is the Cartan Killing form of g, then
2
Z,

" {a,a)

a. O
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LEMMA IV.11. There exists a non-compact root y € Ay such that

Cmin CRYZ, - Ci and Cpin= Y _ R¥s(Z,).
SEW

Proof. Let X = {ag, a1, ..., oy} be a basis of the positive system
A* ([Hel78, p. 531]). Set X; := ZNA;. Every element a € Z\Z,
satisfies a(Z) =1 (Proposition IV.3). Let 1 = 3 4.5 ngf € Af with
ng € Ng. Then A(Z) = 0 and therefore ng = 0 whenever g € A} .
The system A is the system of restricted roots of the Lie algebra h¢.
Therefore

|Z| — |Zo] = dimc =1
(Proposition IV.3). Hence X contains exactly one non-compact root
and we may assume that « is non-compact. Let A; C A be the irre-
ducible subsystem which contains oy and therefore all non-compact
roots, and write y = Eé:o n;a; for the highest root in A; ([Bou81,
Ch. VI, §1, no. 1.8]). Then y is non-compact because ny = 1 and
every non-compact root f = }:ézo mia; € A} satisfies m; < n; for
i>1and my=1. Hence f = y—Zﬁzl(n,-—mi)a,- and consequently

I
Zg = B ﬂ>B€R (V_izzl(ni—mi)ai)

!
CR*Z, - > R*Z, =R*Z, - C}.
i=1
Now we apply Lemma I1.5(iv) to find that

co(R*Z,) 2 () s(R*Z, = C}) 2 () 5(Cmin) = Crmin

SEYW NS4
(Lemma IV.4). Thus
Chrin = cO(RT X,) = Z R*s(Z,). ]
SEW

LEMMA IV.12. Let X € Cpax and w € 7. Then
L(exp(X)H) = L(exp(w.X)H).
Proof. We choose g € Nyng(a) such that Ad(g)l« = w and set
a:=expX. Then expw(X) = gag~! and therefore
L(aH) = L(ag™'H) = L(g"'gag™'H)
= L(gag™'H) = L(exp(w.X)H). ]
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ProrosITION IV.13. Let a € exp(Cmax)\{1}. Then
co(loga) + Cpin € L(aH).

Proof . In view of Lemma IV.12 and Proposition 1.2 we may assume
that X € C;\{0}. Since X # 0, there exists a non-compact positive
root B such that g(X) > 0. Let y denote the highest non-compact
root (LemmaIV.11). Then p(X) > B(X) > 0 because X € C;. . Using
Lemma IV.9 we see that

X +R*Z, C L(aH).
In view of Proposition IV.8 it remains to be proved that
co(X + R*Z,) = co(X) + Cpip.

Since R*Z, C Cpin and both sets are closed, convex and invariant
under 7, it suffices to show that

(€o(X) + Cmin) N Ci € co(X +R*Z,) N Cy.
But Lemma IV.11 and Lemma L.5 imply that
O(X)+ Cnin CX - C; +R*Z, - C = X +R*Z, — C}.
Again with Lemma 1.5 this leads to

(co(X) + Cuin) N Cr) C (X +RYZ, — C{) N Cy,
C co(X +R*Z,) N C;. 0

LeMMA IV.14. Let (g, ©) be an irreducible symmetric Lie algebra
of regular type. Then

C(a) = {X € Cpin: (Yo €A}, a(# loga) = {0})a(Y) < 0}
— { Cmin lfa 76 1 ’
{0} ifa=1.
Proof . If a=1,then C(a) = Cpin N —Cmax = {0} because Cpax is

pointed and Cp;, € Cmax (Proposition II1.1, Lemma IV .4).
If a#1, then

0# ) w(loga) € ¢N Cax.
weX

Hence «(Y) =0 is equivalent to a € A, so C(a) = Cpjn - |
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We note that, in view of A,gm = €xp(Cmax) and
C(a) = Cnin Va € 4uam\{1},
Proposition IV.13 proves the inclusion
co(loga) + C(a) C L(aH)

of the Convexity Theorem.

PRrOPOSITION IV.15. Let X € Cpax N Cy and a = exp(X). Then
L(aH) —log(a) € Cpin — C;.

Proof. We recall that we assume that H is connected. By continuity
and closedness of the cone Cp;, — €} (Lemma II.11) we may assume
that X € int(—Cpax) N Cy, because int(Cmax N Cy) € int(Crmax) N Cy is
dense in the generating cone Cpax N Cy .

Recall the definition of the complex symmetric Lie group (G*, 7¥),
where H* := (exph*) is a simple Hermitian Lie group and G* = HZ.

Let A € #+. Then, according to Theorem III.4, the representation
n,: H* — %/(#) has a holomorphic extension to a representation
iyt Smin = H* exp(WE ) — @ (7). Let v € # be a vector of highest
weight with |jv||=1.

We define the analytic mappings a: H* A* N* — H* and g: H* A4* N*
— N* (cf. §I) by

g =a(g)exp(L(g))B(g) Vg e HA*N*.
Let
Fi: int(Cmax) x H* = Z, (X, h) — 7 (exp X)m;(h)v
be the analytic mapping from Lemma II1.8. We define another map-
ping
F: int(Cuax) X H* = #, (X, h) — 7;(a(exp(X)h))eHLExp(X)R),,

This mapping is well defined because exp(Cmax) = Aagm (Proposi-
tion IV.6) and it is analytic because Y +— 7;(exp Y)v is analytic on
int(Cpmax) (Lemma IIL.8). We claim that F; = F,. Since both are
analytic and int(Cpax) X H* is connected, it suffices to show that they
are equal on int(Cpi,) x H*. So let Xg € int(Cpin), @o := exp(Xp),
and

y(h) := (L(aph), log B(aoh)) € a x n C af x n*.
Then, since H was supposed to be connected, y(H) is contained in

the connected component of the set of all pairs (X, Y) € af x n*
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for which exp(X)exp(Y) € int(Syi,) because exp(L(agh))f(agh) =
a(aph)~'agy € int(Smin) . Thus Proposition II1.9 shows that

#,(exp(L(agh))B(aph))v = e* L@y,
We conclude that

Fy(Xo, h) = m;(aagh))e* @My
= m;(a(aoh)) 7, (exp(L(aoh)) B(aoh))v
= #t;(a(aoh) exp(L(aoh)) B(aoh))v
= #t;(aoh)v = #;(ao)m; (h)v
= #;(ao)m; (h)v = Fi(Xo, h)
for all Xy € int(Cyy) and h € H*. Hence F; = F,. Taking norms
we obtain with Lemma I11.7 that
1F2(X , )|l = ||7z((ah))eX ey
= M)z, (a(ah))v||
= M) = || Fy (X, h)|| = |#z(a)my(h)v||
<Nlz@| ma(h)vl = |1z (@)]| = €.
We conclude that
A(L(ah) —log(a)) < 0
for all A e QZ’H# , 1.e.,
log(a) — L(ah) € (-Cha) NCH)" Na

€ ((—Cmax) N Cy)*
= —Chin + C} = —Crin + Cj;

because the cone Cp;, — C; is closed (Lemma II.11). Finally this
proves that

L(aH) Clog(a) + Cpin — C;. O

THEOREM 1V.16 (The Convexity Theorem for groups of regular type).
Let (G, t) be an irreducible symmetric group of regular type. Then
Aagm = €Xp(Cmax) and for X € Cpax\{0} we have that

L(exp(X)H) = co(X) + Cpin- O

Proof. Propositions 1.12, IV.6, IV.7, IV.13, IV.15. o
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REMARK IV.17. With the notations of Theorem IV.16 and 0 # X €
—Cmax we have that

L(H exp(X)) = co(X) — Cpin »
where L: NAH — a, nah — loga.

Proof. Set X' := —X . Then the assertion follows from Theorem
IV.16 and from L(g) = —-L(g™!). i

COROLLARY IV.18. Let X € R*Z\{0}. Then
L(exp(X)H) = X + Cpjin.
Proof. Theorem IV.16 and the invariance of X under the Weyl
group. D

Applications of the Convexity Theorem.

PROPOSITION IV.19. Let a € exp(—Cumax) and 71 € NNHAN . Then
a~'na € HAN and

L(a~'fia) — L(7%) € Cip.

Proof. Let a: HAN — H denote the projection. Then L(xy) =
L(xa(y)) + L(y) implies that

L(a'na) = L(a"'a(®)) + L(%) + loga.
Now the Convexity Theorem shows that
L(a 'a(®)) € L(a~'H) € —loga + Cyin.

and the assertion follows. a
COROLLARY IV.20. L(N N HAN) C —Cgin -

Proof. Let X € int(—Cmax N —Cy) and 77 € N N HAN . Then
tlim exp(—tX)nexp(tX) = {1}
—00
and therefore

tllglo L(exp(—tX)nexp(tX)) — L(n) = —L(n) € Cyjn- m]
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