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A CONVEXITY THEOREM
FOR SEMISIMPLE SYMMETRIC SPACES

KARL-HERMANN NEEB

In this paper we prove a convexity theorem for semisimple sym-
metric spaces which generalizes Kostant's convexity theorem for Rie-
mannian symmetric spaces. Let τ be an involution on the semisim-
ple connected Lie group G and H = GQ the 1-component of the
group of fixed points. We choose a Cartan involution θ of G which
commutes with τ and write K = Gθ for the group of fixed points.
Then there exists an abelian subgroup A of G, a subgroup M
of K commuting with A, and a nilpotent subgroup N such that
HMAN is an open subset of G and there exists an analytic map-
ping L: HMAN -* α = h(A) with L(hman) = log a . The set of
all elements in A for which aH C HMAN is a closed convex cone.
Our main result is the description of the projections L(aH) C α for
these elements as the sum of the convex hull of the Weyl group orbit
of log a and a certain convex cone in α.

0. Introduction. If G is a connected semisimple Lie group and
G — KAN an Iwasawa decomposition, then the convexity theorem
of Kostant describes the image of the sets aK under the projection
G = KA'N -> α' = L(A') ,kexpXn*-+X as the convex hull of the
Weyl group orbit through log a. Recently van den Ban proved a
generalization of this theorem to the following situation. Let τ be
an involution on the semisimple Lie group G with finite center, G =
KA'N a compatible Iwasawa decomposition, i.e., K is τ-invariant,
and o! = α̂  + αq the corresponding decomposition of a' = L(^4/) into
1 and — 1 eigenspaces for τ . Suppose that H c Gτ is an essentially
connected subgroup (see §1 for the definition). Then he describes the
image of the sets aH, a £ exp αq under the projection F: G —• αq

defined by g e K exp(a^) exp F(g)N. This set is the sum of the convex
hull of the orbit of log a under a certain Weyl group and a convex
cone in α q.

We generalize Kostant's theorem into another direction. We con-
sider the projection L: HMAN -> α defined by g e HMexpL(g)N,
where H c Gτ is essentially connected and M, A, and N are de-
fined in §1. This makes sense because the ^4-component in a product
hman is unique and HMAN is open in G. So the main new difficul-
ties are the non-compactness of H and the fact that the projection L
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is only defined on an open subset of G. Having identified the set of
those elements in A for which L(aH) is defined, i.e., aH c HMAN,
we describe the set L(aH) as the sum of the Weyl group orbit through
logα and a convex cone C(a) in α. This description is very similar
to the description in van den Ban's theorem. Nevertheless the result
is of a different nature and so are the methods we use in the proof.

In the first section we start with the properties of the decomposition
HMAN and state the main theorem. Then we describe the set of
elements a e A for which aH c HMAN and reduce the problem to
the case of regular symmetric spaces.

In §11 we collect some facts about finite groups which are generated
by reflections. For the applications in §IV we have to study the Weyl
group orbits of non-compact convex sets and how their intersections
with the chambers look like.

Section III provides some material about highest weight representa-
tions of Hermitian simple Lie groups, the holomorphic discrete series,
and analytic continuation of the unitary representations to contraction
representations of certain complex Lie semigroups. It turns out that
we even need general bounded representations of certain Lie semi-
groups. These facts are used in §IV to prove one inclusion of the con-
vexity theorem. The unitary highest weight representations replace the
finite dimensional ΛΓ-spherical representations which can be used to
prove Kostanf s theorem, and which were also used by van den Ban.

The fourth section contains the definitions concerning regular sym-
metric spaces and the proof of the convexity theorem. In addition to
the material of §§II and III we have to use rank-1-reduction techniques
to prove the other inclusion of the theorem. Fortunately we can use
a great deal of the results for Riemannian symmetric spaces so we
only have to consider the Sl(2, R)-case in detail, which corresponds
to the hyperboloid, an adjoint orbit of a hyperbolic element in the Lie
algebras (2, R).

The author thanks the referee for many helpful comments and for
suggesting Proposition VI. 7 and its proof.

I. Decompositions of a semisimple symmetric Lie group. In the fol-
lowing G always denotes a connected real semisimple Lie group.

DEFINITION I.I. A pair ((?, τ) of a connected Lie group G and an
involutive automorphism τ is called a symmetric Lie group. We also
write τ for the automorphism dτ(l) of the Lie algebra g = L(G)
which is induced by τ . Then (g, τ) is said to be a symmetric Lie
algebra. We set
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Gτ:={geG:τ(g) = g},

fj:={XE0:τ(X) = X}, and q := {X G g: τ(X) = -X}.

Since G was assumed to be semisimple and connected, there exists
a Cartan involution θ of G and Q respectively such that τθ = θτ
([Lo69, p. 153]). We set

t:={Xe β : Θ(X) = X}, p := {X e g: Θ(X) = -X},

and K := Gθ = (expt). Note that we have the direct vector space
decomposition

0 = fo + f)p + q* + qp >

where fo := ίjnt, f)p := f)Πp, etc. We define the associated symmetric
Lie algebra {ψ, τfl) by If := ̂  + qp and τΛ := τ|ft- = (9|^ . This is a
reductive orthogonal symmetric Lie algebra ([Wa72, p. 42]). Now we
choose α maximal abelian in qp and α' maximal abelian in p with
oCfl', Then the fact that the operators a d I , l G o are semisimple
with real spectrum ([HeΓ78, p. 184]) implies that we have the root
space decomposition

aeA

where Δ = Δ(g, α) is the set of non-zero linear functionals on α for
which the root space ga := {Y e 9: (VX e a)[X, Y] = a(X)Y} is
non-zero. Set c := Z(ί)α)Πqp and note that c c α. The set of compact
roots is defined as

and Ap := Δ\Δ^ is the set of non-compact roots. We define a positive
system Δ+ := {a e A: a(x0) > 0} where Xo G α is an element with
a(X0) φ 0 for all a G Δ, and a(X0) < β(X0) for all βeA+:= A+nAp

and α G ΔJ := Δ+ Π Δ^ . (One has to choose Xo near to an element
X\ of c where no non-compact root vanishes.) Next we write W
for the Weyl group generated by the reflections sa in the hyperplanes
ker a with ga Π ψ Φ {0} . This is the Weyl group of the pair {ψ, α).
We define the minimal and maximal cones

C m a x := {X G α: (Vα G Δ+)α(JΓ) > 0}

and

Cmin := Q a x := {X G α: (V7 G Cmax)B(X, F) > 0},
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where B(X,Y) = t r(adXad7) is the Cartan Killing form of g.
Finally we define n := φ α G Δ + 0α > N := e χ P n , A:= expα,

M := Zκ{o!) = {ke K: Ad(k)\a. = idα>}

and
m := h(M) = Zt(a') = { l G f : [ I , α / ] = {0}}. D

The following proposition is a slight generalization of Proposition
1.10 in [OS80] to our general setting.

PROPOSITION 1.2. The following assertions hold:

(i) g ^ + fj + α + n.

(ii) GQMQAN is an open subset of G.
(iii) GτΓ)MΛN = GτΠM.
(iv) f)Π(m + α + n) = ί)nm.

Proof (i) From α C qp we conclude that τ(βα) = g~a. For X e g~α

and a G Δ + we therefore have that

X = (X + τ{X)) - τ(X) el) + n.

Since g° = g° Π I) + α + g° Π qt the assertion follows if we show that
fl° Π q* C m. To see this, we first note that [α, α'] = 0 implies that
[ α ' , 0 ° ] C 0 ° . Hence

W, 0° Π q*] = [a' Π Ϊ)P, 0° Π q<] C 0° Π qp = α.

Therefore

B(a, [a', 0°nqe]) = 5([α, α ;], β°nq«) = {0}

and the positive definiteness of 5 on α imply that 0° n qt c Zt(a!) =
m.

(ii) Set P := AfΛΛΓ. It follows from (i) that t + L(P) = 0. We
define the action of the group Gτ x P on G by (h,p).g := Agp"1.
Then the tangent space of the orbit of the subgroup G$ x PQ through
1 is f) + L(JP) = 0. Hence this orbit is open. Consequently the set
GτP which is a union of translates of this open set is open, too.

(iii) Let p = man e GτnP with m eM, aeA, and neN. Then

man =p = τ(p) = τ(m)a~ιτ(n)

and therefore τ(m)~~ιma2n = τ(n) € MANnτ(N). We choose a
positive system A(g, α')+ of roots with respect to the maximal abelian
subspace α'Cp such that

Δ + :={α| α :αEΔ(0,α') + } .
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Then n C n' := φ α € Δ( 0 α')
+flα a n c * ^ e B^hat decomposition of G

implies that
MAN n τ(N) C M4W' n Θ{N') = {1}

([Wal88, p. 44]), whence TV = α = 1 and τ(ra) = m.
(iv) This follows from (iii) by considering the Lie algebra of the

intersection of the two groups Gτ and P. D

REMARK 1.3. Note that the proof of Proposition 1.2 shows that
GτMAN is an open subset of G which is a finite union of sets of the
type hGτ

0M$ANm, where m runs through a set of representatives of
M/MQ and A through a set of representatives of Gτ/Gτ

Q which is also
a finite group ([Lo 69, p. 171]). D

COROLLARY 1.4. The mapping

L: GτMAN —• α, g = Λmαn ι-> logα

is well defined and analytic.

Proof. If g = λraαn = h'm'a'n' with h, h' e Gτ, m,mf e M,
α, α7 G^4, and n, n' eN, then

= m'm~ιa!a-ι{(am)rin-ι{am)-1) eGτn MAN c Λf

(Proposition 1.2) and therefore a' = a and n' = n follow from
the uniqueness of the components in the decomposition JP := M4/V.
Again we consider the action of Gτ x P on G by (h, ?).^ = Λ^/?"1.
Then Ω' := GτMAN is the open orbit through 1 and so the analytic
structure induced on Ω' from G agrees with the analytic structure
induced by the identification

Ω' £ (Gτ x i>)/((?τ x P)1,

where (Gτ x P ) 1 = {(A, h): /* e C?τ n M} is the stabilizer of 1. The
analyticity of the mapping L now follows from the analyticity of the
mapping

(h, (man)'1) = (A, n~ιa~~ιm~ι) H+ logα

on Gτ x P which is a consequence of the Iwasawa decomposition of
G. π

DEFINITION 1.5. An open subgroup H c Gτ is said to be essentially
connected if H =
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We are interested in the sets L(aH), where H is an essentially
connected open subgroup of Gτ. Clearly these sets are well defined if
and only if the set aH is contained in GτMAN. So we first have to
study the set of those elements a G A for which this is true.

DEFINITION 1.6. An element a G A is called admissible if aH c
GτMAN. The set of admissible elements is denoted Aaάm. D

Now we have all definitions available which are necessary to state
our main result.

THEOREM 1.7 (The Convexity Theorem). Let (G, τ) be a connected
semisimply symmetric Lie group, H c Gτ essentially connected, and
ae A an admissible element Then

L(aH) = conv(W\oga) + C(a),

where

C(a) = {Ye C m i n : (Vα G Δ+, α(2Γlogα) = {0})a(Y) < 0}.

Moreover, if Δ+ := { Q G A + : J Ω Π (ΪJP + qt) Φ {0}} and

Cn:={Yea:(VaeAt)a(X)>0},

then

logΛdm= Π W(C»Ϊ' D

The proof of this theorem will be completed in §IV. In the remain-
der of this section we reduce the result to an essential nonreducible
case which will be proven in §IV. We will also obtain more explicit
descriptions of the cones C(a) and a^m := log^4adm

REMARK 1.8. It is clear that 1 G A is always admissible. So C(a) =
{0} and C(a) Φ C m i n whenever a = 1 and C m i n φ {0}. Thus C(a)
cannot be replaced by the larger cone C m i n .

If 0 is the smallest τ-invariant ideal in Q , i.e., if (g, τ) is irre-
ducible, then we will see in Theorem 1.20 that there are three cases.
The Riemannian case, where Aaάm = A and Cmjn = C(a) = {0} for
all a G A, the regular case, where Aaάm = exρ(Cm a x) and C(a) = Cmin

if and only if a Φ 1, and a third case where Aaάm = {1} and
C(l) = C m i n = {0}. D

LEMMA 1.9. Let aeA, H c Gτ an essentially connected subgroup,
and Ω := GQMQAN . Then the following are equivalent:
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(1) a is admissible.
(2) aHocΩ.
(3) aΩcΩ.
(4) aHQa-{ C Ω .
(5) aHa-ιcZKnH(a)Ω.
(6) aHCHMΛN.

Proof. (1) =» (2): If a is admissible, then aHo is contained in the
connected component of GτMAN which contains a. Hence aHo C
HQMQAN = Ω according to Remark 1.3.

(2) => (3): If (2) is satisfied, then αΩ C ΩM0AN = Ω.
(3) => (4): This follows from

" 1 = aΩ c Ω.

(4) => (5): From // = ZKnH(a)H0 we conclude that

1 = ZKnH(a)aHoa-1 c

(5) => (6): This is a consequence of i/Ωα = HΩ C HMAN.
(6)=>(1): If (6) holds, then

c //M4ΛΓ c GτMAN

shows that <z is admissible. D

LEMMA 1.10. If aeA is admissible, then L(aH) = L(aH0).

Proof. Since L{hfga') = L(g) for every ^ e GτMAN, heGτ, and

α E ^4, we use H = ZKΠH(^)HO
 t 0 s e e that

= L{aZKnH(a)Ho) = L(ZKnH(a)aH0) = L

REMARK I.I 1. In view of Lemmas 1.9 and 1.10 the essential case is
when H is connected. One may say that the essential connectedness
of H insures that the disconnectedness of H causes no additional
difficulties. D

Next we reduce the convexity theorem to the case where Z(G) = {1}
and Ad(G) = G.

LEMMA 1.12. If the Convexity Theorem holds for the adjoint group
Ad((j) with respect to the involution

τ: Ad(g) H-> τ Ad(g)τ = Ad(τ(g)),

then it holds for G.
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Proof. According to Remark 1.11 we may assume that H is con-
nected. Then

Ad(Ω) = Ad(H)0 Ad(M)0 Ad(A) Ad(N) = Ω,

where Ω is the corresponding subset in the symmetric group Ad(G).
Let a e A be admissible. Then αΩ C Ω (Lemma 1.9) and therefore

Ad(α)Ω = Ad(αΩ) c Ad(Ω) = Ω.

It follows that Ad(α) is admissible in Ad(G) (Lemma 1.9). For the
following we note that Ω is the connected component of the unit
element in the open set GτMAN. If Ad(α) is admissible, then

aHCaΩc Ad"1 Ω = ΩZ(G) = Ω,

and therefore a is admissible. Consequently Ad \A maps the set of
admissible elements in A bijectively onto the set of admissible ele-
ments in Ad(^4).

From ah e HMexpL(ah)N we deduce that

Ad(a) Ad(h) e Ad(H) Ad(M)eaάL{ah^ Ad(N),

so that the function

Z: Ad(Ω) -> α defined by g E Ad(HM) exp(Z(#)) Ad(7V)

satisfies the relation

L(Ad(g)) = sd(L(g)).

This proves that

L(Ad(a) Ad{H)) = aά(L(aH)).

Since the cones C(ά) only depend on the Lie algebra, the Convexity
Theorem for Ad(G) implies the Convexity Theorem for G because
ad is an isomorphism of Lie algebras. D

According to the preceding lemma we may assume that Z(G) =
{1}. This assumption implies in particular that G is a direct product
of its simple factors.
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LEMMA 1.13. The simple ideals of g are invariant under θ.

Proof, Let g = 0 ? = 1 g/ be a decomposition of g into simple ideals
and θi a Cartan involution of g/. Then θ := 0 " = 1 0/ is a Cartan in-
volution of g which preserves the simple ideals. According to [Hel78,
p. 183] there exists g G G with θ = θoAd(g). Thus θ preserves the
simple ideals because this holds for Ad(g) and θ. π

LEMMA 1.14. Suppose that Z(G) = {1}. If the Convexity The-
orem holds for all minimal connected τ-invariant normal subgroups
of G, then it holds for G. Moreover, G = Π/LiΦ, where the
Gt are the minimal connected τ-invariant normal subgroups, A =
Π/Li(Λ n G{), Λdm = Π/Li(^adm n (?/), and if a = aλ απ e

Proof. Let g = 0^ = 1 g/ be a decomposition into minimal τ-invariant
ideals. Then fj = 0 " = 1 fj,, where ϊj/ := ί) Π gz, and similarly q =
0/Li m Λ = 0 ? = 1 ί, , and p = 0 ? = 1 p, (Lemma 1.13). If we choose
α/ maximal abelian in qpDgz, then α := 0/Li αz is maximal abelian in
qp, and α is conjugate to α under eadί)e ([Hel78, p. 247] or [Ne91b,
2.9]). Hence α = 0 " = 1 ( α Π g z). The same argument and the fact
that p = 0 " = 1 pi imply that every maximal abelian subspace o ' C p
with α C o ' satisfies α' = 0" = 1 (α ' Πg;). All these facts together prove
that G = YIU Gi9H = UU(H n Gi),K = UU(K n G,) ? M =
ΠίUC^ΠGϊ), ^ = n?=i(^nGi), and that TV = UU(NnGi) > w h e r e

Gi := (expβ/). This entails that

n

HMAN = Y[(H Π Gi)(M Π G/)(^ Π G/)(7V Π G, ),
i = l

and a = a\ - - an with at e An Gi is admissible if and only if α; is
admissible in 4̂ n Gi (Lemma 1.9).

In addition, we have that
n n

C m i n = Σ ( C π π n Π Qi) , log fl = ] Γ log Λ/,
i = l ι = l

and
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where W log αz agrees with the Weyl group orbit under the Weyl group
W[ associated to the ideal &. This is the group generated by the
reflections sa with ga n (i)a Π &) Φ {0} .

Suppose that a is admissible. Then the definition of C(a) and the
preceding paragraph show that

Thus, under the assumption that the Convexity theorem holds for
the factors Gi, we find that

n

L(aH) = '

ί = l
n

= conv(^Ίogα) + C(a). π

This lemma implies in particular that we can restrict our attention
to irreducible symmetric Lie algebras, i.e., g is a minimal non-zero
τ-invariant ideal of g. We note that this implies in particular that
& = h 5 q] because q + [q, q] is an ideal of g (the case where ϊ) = 0 is
trivial). In the remainder of this section we also assume that Z(G) =
{1} which is justified by Lemma 1.12. We set Ha := (expϊf) = Ggτ.
This is a closed connected subgroup of G.

The crucial idea to classify the essentially different situations in the
irreducible case is to consider the semigroup SQ .

DEFINITION 1.15. We set SΩ := {g e G: gΩ c Ω}, where Ω =

Gτ

0M0AN. D

COROLLARY 1.16. SQΠA is the set of admissible elements in A.

Proof. This follows from Lemma 1.7 and the definition on SQ . D

The following proposition is a crucial ingredient in the classification
of the irreducible situations.
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PROPOSITION 1.17. Let G be a connected reductive Lie group with
the Cartan decomposition G = Λ^expp, where Z(G) c K > and S c G
a subsemigroup which contains K. Then S is a connected closed
subgroup which is a product S = KG\, where G\ is a connected normal
subgroup.

Proof. Since Z{G) C K we have that S = Z(G)(SnGf) and G' =
(KnG') exp p is a Cartan decomposition of G'. Hence we may assume
that G is semisimple. Let α c p be a maximal abelian subspace, C :=
exp-^SJnα, and W := Nκ(a)/Zκ(ά) the Weyl group. It follows from
G = KAK ([Hel78? p. 402]), where A := exp α, that S = K(A n 5)AΓ
and therefore that C Φ {0} if and only if S Φ K. We assume this.
Then C = exp~1(5n^4)Πα is a ^"-invariant subsemigroup of α. We
will prove that C is a vector subspace of α.

SUBLEMMA. If a e Δ(fl, α) am/ I G C WZYA a(X) ^ 0, then C

contains the line segment

{2X, X + 5a(X)} = {7 G a: Y - 2X e [0, l](sa(X) - X)}.

Proof. Choose Xa e 0a\{O} and set

Ya := Xα + 0(Xα), ZQ := [XQ, ΘXa], and

0α := span{Xα, (9XQ, Za}.

Then ZQ G α because ZQ G [gα, 0~α] Π p = Zp(a) = α. Therefore
Qa = sl(2, R) is a three dimensional simple subalgebra with

gα ΠI = RYa, Qa n α = RZa, and

0α n p = span{Zα, Xα - ΘXa}

([Hel78, p. 407]). Moreover a(Za) Φ 0 and by interchanging a and
-a we may assume that a(Za)a(X) > 0. By rescaling of Xa we may
even assume that XQ:= X -Za satisfies a(Xo) = 0. This entails that
[Xo, flα] = {0}. We define β{t) e R+ by

exp(Zα) exp(^ a d ί ^Z α ) G Ka exp(β(t)Za)Ka,

where Ka = expR7α c K. Then jff(0) = 2 and there exists ί G
R+ with jS(ί) = 0. It follows that [0,2] c β([0, t]) because β is
continuous and [0, 1] is connected. Now

exp(X) exp(e*dtY°X) eSScS
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and therefore

exp(X)exp(£>adίr°X) = exp(ZΩ) exp(X0) exp(f?adίr«ZQ) exp(X0)

= exp(Zα)exp(ea d < r«Zα)exp(2Z0)

e Ka exp(β(t)Za)Ka eχp(2X0)

Hence β(t)Za + 2X0 e C for all t € R and in particular

C D 2X0 + [0, 2]ZΩ = {2X, 2X0> = {2X,X + sa(X)}. D

We continue with the proof of Proposition 1.17. Let X € C be
arbitrary and set E := span WX. For every β e Δ(g, α) with β(E) Φ
{0} there exists iϋ0 € 3Γ such that ^(iϋO.X) # 0. Then the sublemma
shows that

{2wo.X, wo.X + sβ(w0.X)} c C.

Set Z := Σwew w x τ h e n w z = ZforaΆweW and therefore
α(Z) = 0 for all α G Δ(g, α) because 5α(Z) = Z for all such α.
Hence Z = 0 because g is semisimple. Consequently

[0,l](sβ(w0.X)-w0.X)

C {2WQ.X , wo.X + sβ(w0.X)} +

for every )ff with β{E) φ {0}. But ΣweW w.X = 0 implies that

E= span{2.y-r: YeE,weW}

= span-jV.^.X) - w.X: w ,w' e W}

= sveLn{sβ(w.X)-w.X:βeA(g,α), weW, β{w.X)φO}.

Thus C contains a generating simplex of E, and in particular int^(C)
Φ 0 . Let Y eC ΠE be an inner point. Then

0 =

shows that E c C Since X G C was arbitrary, we have proved
that C is a ^"-invariant subspace of α. Hence S = K exp(C)K is a
closed connected subgroup of G which is invariant under conjugation
with K. Let Q = 0"= 1 0/ be a decomposition into simple ideals and
Pi := P Πfli. Then p = 0^=1 pf is the decomposition of p into simple
t-modules ([Hel78, p. 379]). Therefore L(S) = t + ΣPιnL(s)ϊ{θ}Bi a n d

the assertion follows. D
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COROLLARY 1.18. If G is a connected simple Lie group, G = K exp p
a Cartan decomposition, and S a subsemigroup containing K, then
either S = K or S = G. π

In the classification of the irreducible cases (Theorem 1.20) we will
use some sl(2)-reduction arguments. So we have to consider this case
first.

EXAMPLE 1.19. We consider the Lie algebra Q = sl(2, R) and the
group G = Sl(2, R) with the involution τ defined by conjugation
with the matrix (° * ) . Then

(a b\_(-a c\
\c -a)-\ b a)'

and the elements

* - ( S ί ) '
satisfy

Y = τX, Z = [X,Y], f) = R{X+Y), a = RZ, and ga = RX,

where α(Z) = 2.

The corresponding groups are
„ f fcosht sinhΛ 4 TO1 λ ((et 0 \

\ V smh / cosh ίy J [\0 e 7

^ = SO(2), and

The formula

L( exp(s(X + Y)) exp(ίZ) exp(wX))

_ j ίe^oshs ewcoshi + ̂ s i n h ^ λ _
~ \ eι sinh 5 ^̂ w sinh s + e~ι cosh .s / ~~

implies that the analytic function L: HAN -> α is given by

and the open subset HAN C G is described by the inequality a2

c2>0.
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In particular we have that

r/ / ^ x , / v m u τ ( eΌcoshs eΌsinhs \
L(exp(ί0Z) exp(s(X + τX))) = L[ t . u , uv FV υ y FV v ^/ V^-'osinhs e'^coshs)

log(e2Ό cosh2(s) - e~2to sinh2(s))Z

= (ί0 + J Iog(cosh2(s) - έT4Ό sinh2(s)))Z

= (ίo + i log(l + (1 - e~4ίo) sinh2(s)))Z.

The same argument as in the proof of Lemma 1.12 shows that this
formula holds for all connected Lie groups which are locally isomor-
phic to Sl(2, R). We observe that for *o < 0 this analytic function
of s has no extension to the whole set exρ(ίoZ)//. D

THEOREM 1.20. If (g , τ) is an irreducible semisimple symmetric Lie
algebra, then one of the following assertions hold:

(i) (g, τ) is orthogonal, i.e., τ = θ, t)a = 0,Adm = A, and

(ii) Z{ψ) c fo, Λdm = {1}, and C m i n = {0}.
(iii) Z{ψ) Π qp Φ {0}, gc := ί) + iq is a semisimple Hermitian Lie

algebra and Q is simple.

Proof. First we note that the condition that c = Z(ψ) Π qp = {0}
entails that Ap = 0 and therefore that C m i n = {0}. This applies in
the case (i) and (ii).

Moreover, (i) holds precisely when Q = ψ. So we assume that
β φ \)a and that Z(\)a) c fo. We have to show that Λdm = {1}
We consider the reductive subgroup Ha = (expi)*) of (?. Then the
restriction of τ to //α is a Cartan involution and

is a Cartan decomposition. Moreover the assumption Z(fjα) n qp =
{0} implies that Z{Ha) c ( i ί n ^ o Set 5 := S Ώ n ^ f l . Then
S is a subsemigroup of Ha which contains (i/ Π ̂ )o and therefore
Proposition 1.17 applies. Hence S is a closed subgroup of Ha.

Set C := a Π L(S). Suppose that there exists a e Δ(g, α) with
gα ^ t)a and Z G C with α(Z) ^ {0}. From a C ffa = {X e
g: θτ(X) = X} we conclude that θτ(ga) = gα and there exists Xα e
flα\{0} such that θτ(Xα) = -Xa, i.e., τ(Zα) = ~0(Xα). Again we
set Qa := spanl^Q,, ΘXa 9 [Xa 9 ΘXa]}. This is a three dimensional
subalgebra isomorphic to sl(2, R) which is invariant under θ and τ .
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We set ία := R(Xa + ΘXa), t)a := R(Xa - ΘXa) = R(Xa + τXa), αα :=
R[Xa, ΘXa], Ka := (exptα), Ha := expί)α, and Aa := expαα. Now
Ha Q Ho c SQ and therefore Xα + τXa e L(5Ώ). Moreover Z G C
implies that RZ c L(S) c L(SΩ) := {X G g: expR+X c 5Ω} and
therefore the subalgebra generated by Z and Xa + τXa is contained
in L(Sh) ([HHL895II. 1.85 IV. 1.27]). From

[Z , Xa + τZα] = a(Z)(Xa - τXa) φ 0

we conclude that this subalgebra contains ga. Hence Ga := (expflα) c
5Ώ C HMAN. It follows from the uniqueness of the function

La: HaAaNa -> aa, han H-> log α

that A* = £ | # Λ JV We normalize Xα such that the element Za :=
[Xa, τXα] satisfies the relation α(Zα) = 2. Then Example 1.19 shows
that

L(exp(ίZα) exp(s(Xa + τXa)))

= (ί + i log(l + (1 - έT4') sinh2(5)))Zα.

For ί < 0 this contradicts the fact that L is an analytic mapping
defined on the whole set exp(tZa)Ha Q Ω, whence ga C ψ whenever
a{C)φ{0}.

Set fli := L(5Ώn5'Ω

1) and αi := C = g\ n o . Then this implies that

We note that the two subspaces $ and \f are invariant under the
involution θτ. Therefore t)p QQI shows that

Moreover the θτ-invariance of H, M, A, and N entails that 0τ(Ω)
= Ω ? and therefore that ΘT(SQ) = SQ. SO θτfa) = Q\ implies that
Θ(Q\) = 0i . This leads to the decomposition

01 = fo + bp + <fc,i + fy,i>

where q t>1 =qtΠfli,flp,i = q p ngi ? and (f)f, 0|£) with ί)f : = ^ + q p l

is an orthogonal symmetric Lie algebra. In particular we have that
q P j l = eadO.αi ([Hel785 p. 247] or [Ne91b, 2.9]). So [fo, r>p] C f,p
implies that

[qP,i, I)P] C e^Hm , ^ ^ W C ^ft«[ f l l , ()P] = {0}.
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Together with the ίjrinvariance of qPy\ this proves the f)-invariance

of q p > 1 . Set 02 "-= qP,i + [q p , i , qp,i] Then g2 is an f)-mvariant

subalgebra of g. We claim that 02 is an ideal of 0 . First

^ ( ϊ ) p 5 [ q P , i ? q t ] ) = ^ ( [ ί ) p ? q p , i ] ? q 0 = {0} and [qp, 1, q«] C f>p

entail that [q*, qp,1] = {0} and hence that [q*, 92] = {0} . We write

q ^ ! for the orthogonal complement of qPfϊ in q q . Then [q^ ! , qp,1]

c ί)t and

Therefore [qp, iq^ J = {0} and consequently [q^ x, 02] = {0}. So 02

is a τ-invariant ideal of 0 . Since (0, τ) is assumed to be irreducible,
there are two possibilities. The first one is 0 = 02 > f) = [qp, 1, qp, 1] = £
and q = qp,i = p. This is impossible if \f Φ 0. So j 2 = {0},
qP, 1 = {0}, ax = {0}, and finally Λdm = {1}.

The remaining case is Z(ί)α) Π qp Φ {0}. It is clear that
Z{t)a) Di)t + Z(ψ) n qp and therefore

Set lc := ^ + iqp . This is a maximal compactly embedded subalgebra
of the dual symmetric Lie algebra gc := I) + /q. If 0 is not simple,
then 0 = 01 Θ 01, where τ acts by τ(X, Y) = (Y, X) and gc =
(fli)c = 0i + iβi, where 01 is a simple real Lie algebra. If 01 = t\ +pi
is a Cartan decomposition of 01, then lχ + /pi = ί)t + /qp = lc is
a compact real form of the complex Lie algebra gc. It follows in
particular that Z(F) = {0} which is a contradiction. Consequently 0
is simple. Moreover (0C, τ) is an irreducible symmetric Lie algebra
and there are two cases:

(1) 0C is simple. Then Z{ϊc) Φ {0} implies that QC is a Hermitian
simple Lie algebra.

(2) QC = ί) Θ ίj and 0 = ^c, where q = it). Then tc = fy* = /f)e and
therefore Z(fjt) ^ {0}. It follows that ί) is a simple Hermitian Lie
algebra. D

REMARK 1.21. In Case (i) the Convexity Theorem reduces to Ko-
stant's Convexity Theorem ([Hel84, p. 476])

VaeA

because K = 77, C(a) = C m i n = {0}, and Adm = A.
In Case (ii) the statement

UaH) = c o n v ( ^ log a) + C(a) Vα
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of the Convexity Theorem reduces to

HH) = {0}

because C(l) = C m i n = {0} and Λdm = W °

Summing up the reductions of this section it remains to prove the
Convexity Theorem only in Case (iii) of Theorem 1.20 and when H
is connected and Z(G) = {1}. This will be done in Section IV, where
we will also prove the general formula for Aaάm and show that Aaάm =
exp(Cmaχ) in this case. For a e Aaάm we will see that

II. Groups generated by reflections. In this section E denotes the fi-
nite dimensional Euclidean vector space, βf is a finite set of codimen-
sion-one subspaces, and W the subgroup of the orthogonal group gen-
erated by the reflections in the hyperplanes from %?. We make the
following assumptions:

(Al) The group W leaves the set X invariant.
(A2) W is finite.

DEFINITION ILL A connected component C of E\[)βf is called
a chamber. If C is a chamber, then we associate to C a system
E#9c = {^H H G <%*} of unit vectors defined by

ejj = H and (eH,Y)>0(\/YeC).

For a subset F c E we define the dual cone

F*:={YeE: (yXeF)(X9 Y)>0}. a

PROPOSITION II.2. Let C c E be a chamber. Then the following
assertions hold:

(i) C is a fundamental domain for the action of the group W,
i.e., every W-orbit meets C in exactly one point.

(ii) IfXec and YeC, then

(x,Y)>{x,s(Y)) \tseW.

Proof, (i) We note that our assumptions imply that (Dl) and (D;2)
in [Bouδl, Ch. V, §3] are satisfied. Therefore (i) is Theorem 2 in
[Bou81, Ch. V, §3, 3.3].
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(ii) It follows from the proof of Lemma 2 in [B0118I, Ch. V, §3, 3.1]
that

\\x-γ\\<\\x-s(Y)\\ vsew.
Therefore

2 2 + \\Y\\2-2(X,Y)

and the assertion follows from the orthogonality of s e W. u

COROLLARY II.3. For Y e C and seW we have that Y - s(Y) e
C*. •

DEFINITION Π.4. Let F c E be a non-empty closed convex subset.
We denote with

co(F) := F

the closed convex hull of the W-oτbii of F. For F = {X} we also
write co(X) := co({Z}). •

From now on C denotes a fixed chamber in E.

LEMMA II. 5. Let FCC be a closed convex subset and X G F.

Then the following assertions hold:

(i) co(F)CF-_C*.
(ii) (X-C*)nCQco(X). _ _

(iii) (F-C*)nCCco(F)nCCF-C*nC.
(iv) a e ^ s(F - C ) C co(F) c a € y s(F -C*).

Proof, (i) Since F — C* is obviously closed and convex, it suffices
to show that W(F) C F - C*. Let X e F and 5 € 2Γ. If s(X) $
F — C*, then by the Hahn-Banach Theorem, there exists Y eE such
that

(s(X), Y) > sup{(y, Z): ZGF-C*}.

In particular the functional f:Z>-^{Y,Z) is bounded from above
on the set X-C*. Consequently Y € -(-C*)* = C. Using Corollary
II. 3 we find that

(X, Y) > {X, s-ι(Y)) = <ί(ΛΓ), Y) > {X, Y)

because X e F-C*. This contradiction shows that W(X) QF - C*.
(ii) If (ii) is false, then there exist Y e E and Z e C* such that

X - Z e C and

(Y,X-Z)>(Y,s(X)) VseW.
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Select ( J G f with σ~ι(Y) e C (Proposition II.2). Then, since the
relations

ZeC* and (X - Z)-σ~ι(X - Z) eC*

(Corollary II.3) imply by addition that

X-σ-ι(X-Z)eC*9

we obtain

(σ-ι(Y)9X-σ-ι(X-Z))>0,

i.e., {Y, σ(X) - X + Z) > 0. Hence

(Y,σ(X))>(Y,X-Z),

a contradiction.
(iii) The inclusion

co(F) nccF-c*nC
follows from (i). The other inclusion follows from (ii) because

(F-c )nc = | J ( i - c * ) n c c (J co(X)cco(F).
xeF xeF

(iv) The ^"-invariance of co(,F) and (i) shows that

c f|

If, conversely, X e f)seyS(F - c * ) » t h e n t h e s e t 3 Γ W meets C in
a point of F - C* (Proposition II.2). Now

x e ar((F - c*) n c) c ar(co(JF)) = co(F)

is a consequence of (iii). D

REMARK II.6. Note that the inclusions in (iii) and (iv) in Lemma
II. 5 are equalities if the set F - C* is closed. This is true if F is
compact and in particular if F = {X} consists of a single point. In
the latter case Lemma II.5 specializes to Lemma 8.3 in [Hel84]. D

Next we show that F - C* is closed in the case which is of interest
to us in §IV.

DEFINITION II.7. A closed convex cone W in a finite dimensional
vector space E is called a wedge. The vector space H(W) := W n
(-W) is called the edge of W. We say that W is pointed if fΓ(FΓ) =
{0} and that W is generatingif W = {-W) = E,i.e., if int(J^) ^ 0 .
A polyhedral wedge is defined to be a finite intersection of half spaces.
In this terminology a closed chamber C is a generating polyhedral
wedge. D
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LEMMA II. 8. Let X\, . . . , Xn e E. Then the convex cone
n

W : =

is closed, i.e., a wedge.

Proof. Set Wm := Σ ^ R + X , C W. We prove by induction on
ra that Wm is closed. This is clear for m = 0, 1, 2. Assume that
0 <m <n and that all cones which are sum of less than m rays are
closed. Then Wm = H^_! + R+X w . If -M+Xw Π Wm.x = {0} then
the closedness of Wm follows from [HHL89, 1.2.32]. Suppose that
-Xm e Wm_x. Then

m-\

with ax > 0. We may assume that αz > 0 iff 1 < i <k < m - 1. Let
i 7 := span{Xi, . . . , Xk, X m } . Since

0 = JΓm

we conclude that 0 e intir(R+Xw + £f= 1 R+X/) and therefore that
F = R + X w + Σ f = i l M / Let j?: £ ~> F± denote the orthogonal
projection. Then, since F c f̂ m,

m-l

The cone Fi := ΣSk+i R+P(^/) ^ f̂1 i s closed by the induction
hypothesis. So we see that Wm = F + F\ is closed because E =

D

COROLLARY II.9. If C is a chamber, then

C*=

Proof. If follows from the definition that

C* =

In view of Lemma II. 8 this proves the assertion. D



A CONVEXITY THEOREM 325

LEMMA 11.10. If E = E\ θ E2 is an orthogonal decomposition into
-invariant subspaces, then the following assertions hold:

(i) Every hyperplane H e %? decomposes as H = {HΠEi) φ (Hn

(ii) C = (C

(iii) C* = (C

Proof, (i) Let SJJ denote the reflection on the hyperplane H. Then
SH leaves E\ and E2 invariant. We may assume that SH\E1 Φ ^E1

Then there exists X eE\ such that SH(X) φ X - Therefore SH(X) -
XeEχ\{0} and consequently

H = (sH(X) -X)± = (HnEι)eE2.

(ii) The set C is the intersection of half spaces bounded by hyper-
planes in %?. Since all these hyperplanes are adjusted to the decom-
position of E, the same is true for C.

(iii) This follows from (ii) and JE^ = E\ = E2 . •

LEMMA 11.11. Let W c E be a W-invariant wedge. Then the
convex cones W - C* and (W n C) - C* are closed.

Proof, (i) Since W is invariant, the subspace E\ := H{W) is also
^-invariant. Therefore E2 := E^ is ^-invariant and

where WπE2 is a pointed ^"-invariant wedge in E. We know from
Lemma 11.10 that

Hence

w - c* = H{W) + ((wn E2) - (C* n E2)).

So it remains to show that {W Π E2) - (C* Π E2) is closed. Set

2̂,fix := {XeE2: (\/s e W)s(X) = X}

and

E2,Qff := span{5(Z) - I : I G J ? 2 ) J e

Then
C*ΠE2=
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and

([Ne90,1.10]). We conclude that

(wnE2)n(C*ne2) =

This implies that (W n E2) - (C* Π E2) is closed ([HHL89,1.2.32]).
(ii) As in (i) we have that

(w n c n E2) n (C* n E2) = {0}

and therefore
(WnCnE2)-(C*nE2)

is closed. But

(WnC)-c* =

and so it remains to show that the cone W :==_{H{W) n C) - (C* Π
if (JF)) is closed. Each of the cones H{W) n C and C* Π H{W) is
polyhedral and therefore a sum of finitely many rays ([HHL89,1.4.2]).
So the same holds for W and the closedness follows from Lemma
II. 8. D

PROPOSITION 11.12. Let W QE be a W-invariant wedge and X €
C. Then

co(ΛΓ) + JF = f| 5(X + W - C ).

Proof. "C": First we note that co(X) + W is a closed convex ^ r -
invariant set because co(JQ is compact. Therefore it suffices to show
that

co(ΛΓ) + WCX+W-C*.

This follows from co(X) C I - C * (Lemma II.5). _
"D": lϊ ZeW, then there exists 5 € y such that s(Z) eCnW

(Proposition II.2). Therefore

z = s(Z) - (s(Z) -z)€(wnc)-c*.

(Corollary II. 3). Using Lemma II. 5 (in) and Lemma II. 11, we find that

f| s(X + W - C*) = f) s(X + (W nC) - C*)
sςW

= co(X + (W Π C)) c co(X) + W. Ώ
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In the remainder of this section we consider the following situation:
Let E' C E be a subspace, p: E —• E' the orthogonal projection,

and W the group generated by the reflections on the hyperplanes in
%". We make the following assumption:

(A') W c {s\E< :seW, s(E') c E'}.

Note that (A') implies in particular that the system (E', %?') satisfies
(Al) and (A2).

LEMMA II. 13. If H = ejj, then HnE' = piEπ)1- n E'.

Proof. For X eEf the conditions {X,eH) = 0 and (X,p(eH))=0
are equivalent. This implies the assertion. D

LEMMA 11.14. Let C^c E_ be a chamber. Then C* :=vaXE>(Cr\E')
is a chamber in E', ~O = C n F , and C* = p(C*).

Proof. Choose eH e E such that C = {X e E: (VH e %f){X, eH)
> 0}. Then Lemma 11.13 shows that we may set eH> := p{eu) to find
that _

CnE' = {XeE': (VH'eJr')(X,eH')>0}.

Hence

C = {Xe E' . (V/f' e X")(X, eH ) > 0}.

Therefore C is a chamber and

C * = ^ R+eH, = p [ Σ R+eH) = p(C*). π

We note that, if W CE is a wedge, then it is a general fact that

{w n E'γ = w* + E'-i- n E' = p{w*).
For X € E' we denote the closed convex hull of W'{X) with

co'(X).

THEOREM II. 15. Let XeE'. Then p(co(X)) = co'(X).

Proof. Set K := p(co(X)). This is a compact convex subset of E'.
Let s' eW and seW with j | £ / = s'. Then

= p o ί(co(Λf)) = p(co(X)) = K
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because co(X) is invariant under W. Therefore K is invariant under
W and, since X eK ,we have that

co'(X) c K.

Choose s1 e W such that s\X) eOQC znάseW with s\E> = s'.
We use Lemma 11.14 and Lemma II. 5 to obtain

K = p(co(X)) c p(s(X) - σ) = sf(X) - p(C*) = s'(X) - C*.

Again with Lemma II. 5 this implies that

K n σ c (s'(X) - c'*) n c c co'

Together with Proposition II.2 and the ^'-invariant of K this com-
pletes the proof. D

COROLLARY 11.16. Let W c E' be a W-invariant wedge. Then
W := co(ίF') is a W-invariant wedge in E with p{W) = WnE' =
W.

Proof. Clearly W C W n Er c p(W). To see that p(W) C ^
it suffices to show that p(W(X)) c W for all X e ^ . This is a
consequence of Theorem II. 15. D

REMARK 11.17. Let us assume that W0CE is a ^-invariant edge
wedge such that

W£ c Wo

and that fF' C Ef is a ^"'-invariant wedge with

We would like to extend Wf to a wedge W in E which is
invariant and which satisfies

WJCWCWo and

We set PΓ := fΓ0* + c o ( ^ ) . Then W* CWC Wo and

W'cWnE'cp{W) c

III. Unitary representations with highest weight. Let H be a Lie
group with ί) = L(//), π: H -> t/(^) a unitary representation of
// on the Hubert space X , X°° (X ω ) the corresponding spaces of
smooth (analytic) vectors. We write dπ for the derived representation
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of ί) on %f°°. We extend this representation to a representation of
the complexified Lie algebra fjc and set

W{π) := {X e ii): dπ{X) < 0}.

Note that the operators dπ(X), X e i\) are essentially selfadjoint be-
cause β?ω is dense in 2? ([We76, p. 244]). Therefore the condition
X e W{π) is equivalent to the existence of a strongly continuous
one-parameter semigroup of selfadjoint contractions o n ^ whose in-
finitesimal generator is the closure of dπ(X).

Now let (G9 σ) be a complex symmetric Lie group, where the in-
duced involution σ on Q is complex antilinear and induces an iso-
morphism Q = fyc We assume that ί) is simple Hermitian. Note that
this implies that H = Gζ is real reductive in the sense of [Wal88,
p. 43]. Let H denote the universal covering group of H. Then
(HnK)~ = (exp^ fa) because H Γ)K is a maximal compact subgroup
of H.

PROPOSITION III.l. The symmetric Lie algebra (g, σ) has the fol-
lowing properties :

(i) dim c = 1.
(ii) ia is a compactly embedded Cartan subalgebra of f).

(iii) αc is a Cartan subalgebra of g.
(iv) There e x i s t s a n e l e m e n t Z e e s u c h t h a t

= 1}.

(v) p + := Σ α e Δ + gα is an abelian subalgebra.

(vi) There exist Ad(H)~invaήant pointed cones Wm{n C Wmax in

such that

P(Wmin) = tfminΠα= C m i n and p(Wm&x) = WmΆXnα = C m a x ,

where p: i\) —> α w ί/ẑ  orthogonal projection.

Proof, (i) This follows immediately from c = ϊZ(fo) and qp = zί)e.

(ii) Since α is maximal abelian in ifa, the subspace /α is a Cartan
algebra of fo. Hence α is a compactly embedded Cartan algebra of
0 because rank fa = rank I).

(iii) This is immediate from (ii).
(iv) The existence of an element Zee with Spec(adZ) = {-1,0,

1} is a consequence of [HeΓ78, p. 382], Let a be a non-compact
positive root. We normalize Z such that α(Z) = 1. Suppose that
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) 8 G Δ + with β(Z) = - 1 . Then (a - β){Z) = 2 and therefore a- β
is no root. Moreover (a + β)(Z) = 0 shows that a + β cannot be
a root because the compact roots are smaller than a (cf. Definition
I.I). In the following we identify the roots with elements in α via
the restriction of the Cartan Killing form to α. If γ is a compact
root which is not orthogonal to β, then we choose the sign of β
such that sγ(β) is greater than β . Now sγ(β)(Z) = - 1 implies that
also a ± Sγ(β) £ Δ. Inductively this proves that a is orthogonal
to the Weyl group orbit W β. But the span of this orbit contains c
because Y^we^ w(β) is ^"-invariant and therefore in c. This is a
contradiction because a{Z) Φ 0. We conclude that β{Z) = 1.

(v) If a, β G Δ+ , then (a + β)(Z) = 2 and (iv) implies that a + β
is no root. Hence p+ is abelian.

(vi) [HHL89, p. 277, 279]. D

We identify α with its own dual via the Cartan Killing form. The
corresponding coroots are denoted with Za = τ ^ r . The set 3ί of
highest weights of all possible irreducible unitary representations of
(HnK)~ is given by

& := {λ e ia: (Vα G Δ+)(Λ, Za) e No}

([Wal88? p. 36]). We write 3%κ for the subset of 31 corresponding to
the unitary representations of HnK. For λ^3ί let Uλ denote the
corresponding irreducible representation of Q with highest weight λ.

If π is an irreducible unitary representation of H, we denote with
<#? the corresponding g-module of i/n^-finite vectors, and set ^ ° :=
{v G β^: p+.v = {0}}. Then π is called a representation with highest
weight if ^ ° ^ {0}. In this case there exists a unique λ € & such
that the representation of Q in ^ ° is equivalent to Uλ ([Wal88,
p. 85], [Bou90, Ch. VIII, §6]). We write πλ for the corresponding
irreducible unitary representation of H.

We write Q for the closed Weyl chamber in α with respect to the
positive system Δ£ of compact roots and C£ for its dual.

Let 9° c 3ZK denote the set of all functional for which πχ exists.
According to Theorem 3 in [HC55], which is proved in [HC56] (cf.
p. 612), we know that

where

^ i = {λe^K' (Vjff G Δ ; ) ( Λ + p, β) < 0}

parametrizes the holomorphic discrete series, and p = \ Σ « E Δ + a -
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LEMMA III.2.

(3.1)

Proof (cf. [Ols82, 2.7]). Let B = {α0, aλ, . . . , an} be a basis
of the positive system Δ + such that ao is non-compact and
{c*i,..., an} constitute a basis of Δ£ . Define the element ωo G α* by
G>o(iV)t> W n α) = {0} and ωo(Z) = 1, where Z € iZ(t)t) is the ele-
ment with β(Z) = l for all β G Δ+ . Then we have that

(3.2) M'κ := (Zω0 + Zαi + + Zan) Γ)& C ^

([Kn86, p. 85], [Wal88, p. 88]). We set ^ := ^ n ^ ? i . Then it

suffices to show that R+£S![ = (-C m a x ) Π Ck.
The inclusion

TQ>4- Cϋ$l Γ~ TΠ>4- Off Γ~ ( ί^ \ Γ\ ί^

M^ΛCγ L_ K^έπ\ ^ (,—i-max; ' • ̂ k

follows immediately from the definitions. For the converse let λ G
- int(Cm a x) n Ck and ε > 0. We have to find an element v' G R+C^{
with \\v' - λ\\ < a. Then the assertion follows from the density of
- int(Cm a x) n Ck in - C m a x n Ck .

Since α = UmeN(~int(C'maχ) - mλ) 5 there exists m e N such that
mλ + p e- int(C m a x ) . Then

-δ := max(mλ + p 5 β) < 0

holds. But {ω0 > αx ? . . . , αn} is a base of α, and therefore there exist
k G N and an element v G MΉ

V with

Hfcmλ - v\\ < min ̂  — ^^, ε I.linj

For β G Δ+ this implies that

(1/ + p, β) = (z/ - kmλ, β) + ((k - l)mA, /?) + (mλ + p, β)

<\\kmλ-v\\\\β\\-δ <δ -δ = Q.

Consequently v e &[ and the element v1 := ^ z / satisfies the condi-
tion

DEFINITION III.3. A pair (S,#) of a topological semigroup 5 and
an involutive antiautomorphism s \-+ s# is called an involutive semi-
group. A representation of an involutive semigroup (S, #) is a homo-
morphism &~ from S into the semigroup W(<%") of all contractions
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on a complex Hubert space %? which is continuous with respect to
the weak operator topology, and which satisfies

THEOREM III.4. Let Wmin be as in Proposition III. 1. Theset Smin:=
Hexp(Wmin) is a closed subsemigroup of G and s* := σ(s)~ι defines
an involutive antiautomorphism of S. Moreover, every representation
%χf λ e &, has a continuation to a representation πχ of (Smin, #)
which is holomorphic on the interior i/exp(int(W^nin)) of »Smin.

Proof. [Ols82, 4.5]. D

Let λ G 3*. We write A(λ, α) for the set of all weights of α on J f
and %fμ for the corresponding weight spaces, i.e.,

&* = {w e J%: (VX G α) dπλ(X)w = μ(X)w}.

LEMMA III. 5. Every weight μ1 e Δ(λ, α) which is extremal with
respect an irreducible t-submodule is W-conjugate to a weight of the
form

μ = λ-

where the na are non-negative integers.

Proof. See for example [Sta86]. The idea is to realize the represen-
tation of g on the algebra of polynomials on p + . D

LEMMA III.6. Set S\ := exρ(Cm a x) C exp(α). Then there exists a
homomorphism πλ\ S\ -*38{%?) such that

^lexp(C m i n )

Moreover, if X e C m a x Π Ck, then

Proof. Let X e C m a x . Then Lemma III. 5 shows that every weight
μ G A(λ, α) satisfies

(3.3) μ(X) < maxλ(s(X))
sew

because Wί^ c Δ+ and X G C m a x . If, in addition, X G Q , in view
of Proposition 1.2, this implies that

(3.4) μ(X)<λ(X) VμeΔ(λ,α).
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We define
πλ(expX)(w) := eμ^w Vw e JP".

Then (3.3) shows that πλ(expX) is a bounded operator on the dense
subspace %?ι and therefore it permits a continuation to the whole
space ^ with the same operator norm. For X e C m a x Π Ck the
relation (3.4) shows that | |πλ(expX)|| = eλW . That πλ: S{

is a semigroup homomorphism follows from the fact that

for a\, a>2 € S\. It is clear that %χ agrees with %χ on exp(Cmin)
because the corresponding operators are equal on ^ . D

In the following we write

πλ: exp(ια + Cm a x) -+ &{&), exp(iJΓ + 7) ^ πA(exp /X)π

for the combination of πλ with πλ on /α + C m a x . From Lemma
III. 5 it is clear that this defines a semigroup homomorphism because
π^(expzα) commutes with π^(expCm a x). We recall that n : = φ α € Δ + g α .

LEMMA III.7. Let λe^Gf X e m + (C m a x n Q ) c αc, and v e /
α vector of highest weight λ. Then the following assertions hold:

(i) πχ
(ii) | |π λ

(iii) / / ί G int^min) and λs and ρs denote left and right multipli-
cation with s in S, then

dπλ{s)dλs(l)Z(w) = πλ{s)dπλ(Z)w

and
dπλ(s)dps(l)Z(w) = dπλ(Z)πλ(s)w

for Z G fl and w e ^°°.

Proof, (i) The curve y: ί ι—• πχ(exp(tX)).v is the unique solution
of the initial value problem

7(0) = υ, y>{t) = dπλ{X)y{t).

Since

y\t) = dπλ(X)πλ(cxptX)v = πλ(exptX)dπλ(X)v

= λ(X)ftλ(exptX)υ=λ(X)γ(t)9

it follows that γ(t) =
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(ii) Let X = Xx + X2 with Xx e m and X2 € Cmax Π Q . Then we
use Lemma II. 6 to obtain that

(iii) First we assume that Z e ί). Then

πA(sexp(Z)) = πλ(s)πλ(expZ)

and therefore
rf«Λ(j) dλs(l)Z = Λλ(s) o dπλ(Z)

on %?°° . Now the assertion follows from the complex linearity of the
mappings dπλ(s)dλs(l) and πλ(s)odπλ (Theorem IIL4). The other
formula follows similarly. D

LEMMA III. 8. Let v e %? be a vector of highest weight λ. Then the
mapping

Fi: int(Cm a x) x H - , X , (*,*) .-> πA(expX)πA(Λ)t;

w analytic.

Proof. Let X e int(Cm a x) and h e H. Then there exists X ; e
int(Cm a x) such that X e X1 + int(C m i n ). For Y e C m i n we have that

Fx{Xr + 7 , A) = πΛ(

(Lemma III.6). Hence the analyticity on the open neighborhood

(X/ + i n t ( C m i n ) ) x / ί

of (X, h) follows from the linearity and the boundedness of the linear
operator π^expX') and the analyticity of the mapping

int(Cmin) xH-^JT, {Y,h')» π^expY)πλ{h
f)v

(Theorem III.4). D

PROPOSITION III.9. Let Ω c αc x n be the connected component
of the set of all pairs (X, Y) with exp(X)exρ(F) e int^min) which
contains int(C m i n ). Suppose that λ e &G and that U E / is a vector
of highest weight. Then

πλ(exp(X)exp(Y))v = eλ{x)υ

holds for all (X,Y)eΩ.
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Proof. First we note that Ω is an open connected submanifold of
the complex manifold α c x n . We define

F: Ω -> %T, (X, Y) H+ πλ(

Then JF is a holomorphic function because it is the composition of
the holomorphic mappings π^Ltf5 ) (Theorem III.4) and

Ω -> int(Smin), (X,Y)~ exp(X)exp(Y).

Let (Xo, Yo) € Ω(X, 7) € αc x n, and s := exp(Λf0)exp(Γo) €
int(.Smjn). We recall the definition of the power series / ( Z ) =
(1 - e~z)/Z and note that / ( adX 0 )* = X, and that /(ad Y0)Yen
is a finite sum because the Lie algebra n is nilpotent. Now we use
Lemma III.7 and [HeΓ78, p. 105] to obtain

dF(X0,Y0)(X,Y)

= dπλ(s)(dpexp yo

= dπλ(s)(dpexp yo(exp Xo) dλexpχo(l)X

+ dλcxpXo(exp Yo) ̂ exPr0(l)/(ad YQ)Y)v

= dπλ(s)(dpexpYΰ(expX0) dpexpX<i(l)X + dλs(l)f(ad Y0)Y)υ

= dπλ(s)(dps(l)X + dλs(l)f(adY0)Y)v

= dπλ(X)πλ(s)v + ήλ(s) dπλ(f(ad Y0)Y)v

= dπλ(X)F(X0,Y0)

because dπλ(n)v = {0}.
Now let X\ e int(Cmjn), U\ be an open connected neighborhood

of X\ in αc, and U2 an open connected neighborhood of 0 such
that U\ x Όi C Ω. Then the calculation above shows that

F(X2, Y2) = F(X2, 0) = eλ^v for (X2, Y2) eUxx U2.

Now the analyticity of F on the connected set Ω shows that F(X, Y)
= eλWv for all (X, Y) € Ω. •

ΓV. Symmetric spaces of regular type. In this section we complete
the proof of the Convexity Theorem (Theorem 1.7). We keep the
notation from §1. As we have already remarked at the end of §1, we
may assume that Z(G) = {1}, H is connected, and that (Q, τ) is
an irreducible symmetric Lie algebra such that Z(ί)a) Πqpφ {0}, i.e.,
(0, τ) is irreducible of regular type (cf. [Ola91], [FHO91]).
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These assumptions imply in particular that G = Ad(G) is contained
in a complex Lie group Gc with L(C?c) = flc. We set QC := f) + iq and
Gc := (expjjc). We collect some facts on the structure of symmetric
Lie algebras of regular type.

PROPOSITION IV. 1. For every irreducible symmetric Lie algebra
(fl > τ ) of regular type of the following assertions hold:

(i) QC is a Hermitian semisίmple Lie algebra.
(ii) c := Z(ί)α) Π qp is one-dimensional

(iii) Z0(c) = lf andZq(c) = qp.
(iv) α is maximal abelian in p and q.
(v) A root a e Δ( f l, α) is compact iff Q<* c ϊ>' # βα n if ^ {0}.

. (i) Theorem 1.20.
(ii) The Lie algebra lc := f)* + zqp is maximal compactly embedded

in QC . There are two cases. If gc is simple, then Z{lc) is one-
dimensional ([Hel78, p. 382]) and therefore c = iZ(tc) is also one-
dimensional. If QC = f) Θ f), then g = ί)c > ϊ) is simple Hermitian, and
\f = ^ t + /fjt. Hence c = /Z(ljt) is one-dimensional.

(iii) This is equivalent to ZQc(U) = tc. If QC is simple, then this
follows from [Hel78, p. 382], If gc is not simple, then g = ί)c and
Z0(c) = Zίjc(cc) = (l)0c = Ψ - The second assertion follows trivially
from the first one.

(iv) Since c c α we have that

Z p ( α ) C Z p ( c ) = p n ϊ ) β = qp

and that
Zq(a)CZq(c) = qnt)a = qp.

This shows that α is maximal abelian in p and q.
(v) That a is a compact root means that α(c) = {0} (cf. Definition

I.I). This is equivalent to [c, ga] = {0} and in view of (iii) this
is equivalent to f C |) f l , The second assertion follows from the
observation that gαn Φ {0} implies that α(c) = {0} . D

Note that Proposition IV. 1 shows that our definition of an irre-
ducible symmetric Lie algebra of regular type agrees with the defini-
tion in [Ola91], [HO90], [FHO91] etc.

As we have already seen, there are two different cases. In the first
one β = f)c and in the second one gc is simple Hermitian. To handle
these two cases simultaneously we introduce some notation.
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DEFINITION IV.2. If fj is a simple Hermitian Lie algebra and g = fjc
with q = ifj, we set g# := g, τ # := τ , f)# := I) etc.

If gc is simple Hermitian, we set (g#, τ#) := (jjc, τ) , where τ is
the complex antilinear extension of τ . Then f)# = gc, the complex
antilinear extension 0# of θ is a Cartan involution of gc commuting
with τ , and therefore the notions of Definition 1.1 are also available in
this case. In particular we have that \f = {ψ)c = (%c)c, q* = &c > and
c# := Z(f)α#) Π iq* = iZ(ϊc) is one-dimensional. We choose α# as a τ-
invariant subspace of it? which contains α and write Δ# := Δ(g#, α#)
for the corresponding root system. Note that c# c o. D

For easier reference we collect the properties of the symmetric Lie
algebra (g#, τ # ) . In the following we identify g always with the cor-
responding subalgebra of g#.

PROPOSITION IV.3. The symmetric Lie algebra (g#, τ#) has the fol-
lowing properties:

(i) f)# is simple Hermitian and g# = fj* .
(ii) (g#, τ#) is an irreducible symmetric Lie algebra of regular type.

(iii) ια# w α compactly embedded Cartan algebra of \f.
(iv) α* is a Cartan algebra of g#.
(v) dim c# = 1 and there exists an element Zee* such that

j = 1}.

(vi) Δ+ = { α | β : α e Δ j + } .

Proof, (i) This follows from the definition.

(ii) This follows from the simplicity of g# which is a consequence
of (i) and Definition IV.2.

(iii) —(v) Proposition III. 1.
(vi) Take Z as in (v). Then a root is non-compact if and only if

it does not vanish on Z . Now (v) implies (vi). α

Next we have to clarify the relations between the cones C^ i n and

LEMMA IV.4. Let p: α# -» α be the orthogonal projection. Then the
relation between the cones in a and α# may be described as follows:

(i) The set of positive non-compact roots is invariant under the Weyl
group.
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(ii) The cones C£ i n c C£ a x are W*-invariant.
(in) C m a x = C ^ a x n α = jp(C^ a x).
(iv) C m i n = J p(C^ i n )CC m a χ.
(v) The subspace a c α# satisfies the condition (A') of §11 wίίλ

respect to the system ofhyperplanes defined by the compact roots.

Proof, (i) If a is non-compact positive and w e W#, then a(w.Z)
= α(Z) = 1 (Proposition IV.3).

(ii) This is a consequence of Definition LI, (i), and Proposition
III.1.

(iii) The first equality follows from Proposition IV.3(vi) and the
second one from - τ ( C m a x ) = C m a x ([Ne90,1.10]).

(iv) The closedness of the polyhedral cone p(C^in) (Lemma II.8)
entails in view of [HHL89, p. 5] that

= Q a x = (C£ax n α)* = C£ in + a±Πa = p(C*J = p(C*J.

The inclusion p(C^in) C p(C£ a x) = C m a x is a consequence of (iii).
(v) (cf. [OS80, 1.3], [S84]) It follows from Proposition IV.l(iv)

that the subspace α# n ifa is a maximal abelian subspace of iZ^^a).
But (Zj,t(α)c, τ) is an orthogonal symmetric Lie algebra and there-
fore all maximal abelian subspaces in /Z^t(α) are conjugate under
inner automorphisms coming from ZKΠH(^) So we find for ev-
ery g e K n H with Ad(#)α ^ α an element gr e ZKnH(a) with
Ad(g')Ad(g)(a#nit)t) = ( α # n % ) Hence g'g e NKnH(a#) and
A d ( £ 7 £ ) | α = Ad(g)|α. So every element of W is induced by an el-
ement in W* := {s € W*: s(a) C α}. This means that condition
(A') of Section II is satisfied by the pair α C α# with respect to
the corresponding systems of hyperplanes defined by the compact
roots. D

LEMMA IV. 5. If (G, τ) is irreducible of regular type, then

oQH and Ω =

Proof. First we note that α is maximal abelian in p (Proposition
IV. 1) so that M = Zκ(a). Moreover, m = L(Af) = Z*(α) c Zt(c) =
i)t. Therefore m C fa and MQ = expm C H. D

PROPOSITION IV.6. If (G,τ) is irreducible of regular type, then
= exp(Cm a x).
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Proof. Let W* C q# be an Ad(/7#)-invariant cone with W* n α# =
cmaχ (Proposition III.l) and set W := W* n q. Then

^ Π α = W* n α = C* a x n α = C m a x

by Lemma IV.4. We set Γ := exp(W). Then it follows from [FHO91,
2.14] that this is a semigroup which satisfies

Γ c Ω = HAN.

It follows in particular that exp(Cm a x)iy Q Ω and therefore that
exp(Cmaχ) C Aaάm .

To see the converse, we use sl(2, R)-reduction (cf. [HO90]). Let
X G α\C m a x . Then there exists a positive non-compact root a such
that a(X) < 0. We consider the semigroup SQ = {g e G: gΩ c
Ω} (cf. Definition 1.15). We choose Xa € Qa such that Za :=
[Xa, τXα] satisfies a(Za) = 2. Note that ga Π ί)α = {0} (Proposi-
tion IV. 1) implies that θτ(Xa) = -Xa, i.e., θ(Xa) = - τ ( Z α ) . We
set Qa := span{JΓα, 0Xα, Z α } . This is a three dimensional subalgebra
isomorphic to sl(2, R) which is invariant under θ and τ . We set
ϊ)α := M(Xα + τZα) and Ha := exp f)α. Let Z o := X -tZa, where
ί = 2α(JΓ) < 0. Then α(Z 0) = 0 and therefore [Z o , flα] = {0}. Now
the formula in Example 1.19 implies that

L(exp(Z) expC?(Xα + τXa)))

= L(exp(Z0) exp(ίZα) e x p ^ ^ + τXa)))

= L(exp(ίZα) exp(s(Xa + τXa)) exp(Z0))

= Z o + L(exp(ίZα) exp(.y(Xα + τXa)))

= Z o + (ί + ilQg(l + (1 - O s i n h 2 ( s ) ) ) Z α .

This analytic function has no extension to R (as a function of s)
and therefore exp(X)Ha cannot be contained in Ω. This proves that
Λdm = exp(Cmaχ) . D

Now we are prepared to give a general description of the set Aaάm.
We thank the referee for the suggestion and the proof of the following
proposition. We resume the notation from §1.

PROPOSITION IV.7. Let (G, τ) be a semisimple symmetric Lie group,

Δί:={α€Δ+: 0«n(Dp + q,)

and
Cn := {Y G man α: (Vα e Δ+)α(X) > 0}.
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Then

wew

Proof. In view of Theorem 1.20 it suffices to assume that (g , τ) is
irreducible. We consider the three cases of Theorem 1.20.

Case (i). If (g, τ) is Riemannian, then ϊ)p + q* = {0}, so Δ+ = 0
and Cw = α = log^4adm by Theorem 1.20.

Case (ii). In this case Z(ψ) C fy{, and in terms of roots this means
that Δ = Δfc separates the points of α, i.e., Δ spans α*. Since g
is semisimple and (g, τ) non-Riemannian, the set Δ+ is non-empty
because the involution θτ preserves the root spaces gα, a e Δ, so
that

is the eigenspace decomposition of gα with respect to θτ.
We claim that Δ+ spans α*. Suppose that this is false. Then there

exists X e a with β(X) φ 0 for all β e An . Whence

Since (g, θτ) is symmetric Lie algebra, the centralizer of \)p + q* in
ψ is a τ-invariant ideal in g. In view of the assumption that g Φ ψ,
this contradicts the assumption that g is irreducible.

Now the fact that An spans α* shows that Cn is a pointed W-
invariant cone in α ([HHL89, p. 5]). By assumption, Z(ίja)Πa = {0},
so W acts on α without any non-zero fixed points. Finally Theorem
1.10 in [Ne90] yields Cn = {0} = αadm (Theorem 1.20).

Case (iii). Then Δ£ = Δ+, Cn = C m a x , and the ^"-invariant of
(Lemma IV.4) yields that

Now the assertion is a consequence of Proposition IV. 6. α

PROPOSITION IV.8. Let X e C m a x and a = exρ(Z). Then the
set L{aH) is invariant under the Weyl group W. Moreover, if Y e
L(aH), then co{Y) C L{aH).

Proof. Set F := L[aH). The Weyl group W is generated by the
reflections sa, where a is a positive compact root contained in a fixed
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set Σ of simple indivisible roots in Δ£ . We claim that the line seg-
ment {Y, sa(Y)} between Y and sa(Y) is contained in F whenever
Y <Ξ F (cf. [Hel84, p. 477]). Let a be a simple compact root. We
consider the semisimple subalgebra g^ of g which is generated by
the root spaces ga and g~a ([Hel78, p. 407]). Note that g^ c \f by
Proposition IV. 1. Then

2a + g-a + g~2a + RXa + m n g{a)

fl(") = fl« + g2a + g-a + g~2a + RXa + m n g

where Xa is the unique element in α which satisfies (Xa, Y) = α(
for all y G α and m = Zen()(α). Thus τ(gα) = g~α shows that
τ(fl(*)) = fl(

α). We set (α) := Δ+ n {a, 2a} ,

0 ^ ? and n^:=ga + g2a.
βeA+\(a)

Then

(4.1) n = n; + n(α) and [g^a), n;] C n'

because α is simple and therefore sα(Δ+\(α)) C Δ + . According to
[Hel84, pp. 440, 477] we have the diffeomorphic decomposition N —
NaN', where N' = expn' and Na = expn^ .

L e t Y € F a n d b = e x p ( Γ ) . T h e n t h e r e ex i s t h,veH a n d n e N
s u c h t h a t

aυ = hbn.

We decompose Y =Ya + Y^-, where Ya e RXa and Yj- e X^ . Then

sa(Y) = sa(γa) + y.-1 = -γa + Y^

and

We put δα := exp(ΎQ), b^ := exp 1^ and write n — nan! in accor-
dance with N = NaN'. Then

(4.2) / r 1 ^ = bn = bab^nan
f = banab^n'.

Let cα € exp([- l , l]7α) and set Gα := (expg^). Then Ga c Ha =
(H nK)exp(qp). According to Lemma 10.7 in [Hel84, p. 476] there
exist elements ka,υaeGaΓ\K CH and n® e Na such that

(4.3) kabanava = can®,

whence [X^ n o , g^] = {0} and (4.2) imply that

kah~xavva = canlv-χb^n'va = cab^nlv-lnrva.
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We use (4.1) to see that

Thus

L{kah~ιavva) = L(aυυa) = log(cab^) = logcα

Since ca was arbitrary in exp([-l, l]Ya) we conclude that

{Y, sa(Y)} C L(aH).

This proves the ^-invariance of L(aH) because W is generated
by the reflections sa for a simple. Let β be an arbitrary indivisible
compact root. Then there exists w eW such that w.β is simple.
Then we have for each Y eF that

w{w~ιY, saw'ι.Y} = {Y, ws-lw~l.Y} = {Y, w . r } c F.

Now Lemma 10.4 in [Hel84, p. 474] implies that co(Y) c i 7 for every
element Y eF. π

LEMMA IV.9. Let X = logα e C m a x and a e Δ+ swcA ί/zαί α(X) >
0. Then

X + R+Zα C L(aH),

α(Zα) = 2 am/ Z a = [JΓa, τXa] for Xa e ga.

Proof. We proceed as in the proof of Proposition IV. 6 and we use
the same notation. We also set ZQ := X - tZa, where t = \a(X) > 0.
Then α(Zo) = 0 and [ZQ , flα] = {0}. Again the formula in Example
1.19 implies that

L(exp(X) εxp(s(Xa + τXa)))

= Zo + (t + j log(l + (1 - e~4t) sinh2 (s)))Za

= X + \ log( 1 + (1 - e'4t) sinh2 j )Z α .

Hence
L(exp(X) exp(R(Xα + τXa))) = X + R + Z α . D

DEFINITION IV. 10. We write

Ck := {X e α: (Vα G Δ+)α(X) > 0}

for the closed Weyl chamber with respect to the positive compact
roots. Note that C£ = Σ α G Δ

+ K + Z α , where Z α e α is defined by
Z ^ = kerα and α(Zα) = 2. If we identify α with α* via (X, Y) :=
B(X, Γ) , where 5 is the Cartan Killing form of g, then

Za = η r-a. D
(a, a)



A CONVEXITY THEOREM 343

LEMMA IV. 11. There exists a non-compact root y e Δ + such that

C m i n c R + Z 7 - q and C m i n =

Proof. Let Σ = {αo, a\, . . . , α/} be a basis of the positive system
Δ+ ([Hel78, p. 531]). Set Σk := Σ n Δ + . Every element α G Σ\Σ0

satisfies α(Z) = 1 (Proposition IV.3). Let 2 = ΣβeΣnββ e Δjt w ^ t h

«^ G NQ . Then λ(Z) = 0 and therefore nβ = 0 whenever β e A+.
The system Δ^ is the system of restricted roots of the Lie algebra l)α .
Therefore

| Σ | - | Σ o | = d i m c = l

(Proposition IV.3). Hence Σ contains exactly one non-compact root
and we may assume that αo is non-compact. Let Δi c Δ be the irre-
ducible subsystem which contains αo and therefore all non-compact
roots, and write γ = Σ( = 0 «/α/ for the highest root in Δi ([Bou81,
Ch. VI, §1, no. 1.8]). Then γ is non-compact because no = 1 and
every non-compact root β = Σ / = o ^i«i € Δ+ satisfies ra; < n\ for
/ > 1 and mo = 1. Hence β — y —Σ/=1(Λ| —m, )α/ and consequently

Now we apply Lemma II.5(iv) to find that

co(R-%) D f l s(R+Zγ - CD D Π s(CmiΆ) = C
m i n

(Lemma IV.4). Thus

C m i n = co(M+X,,) = Σ ^+s(Zγ). •

LEMMA IV. 12. Let X e C m a x and w eW. Then

L(e\p(X)H) = L(exp(

Proof. We choose g G -/V̂ nΛ:(β) such that Ad(g)|α = w and set
a := expX. Then txpw(X) = gag~λ and therefore

L(aH) = L(ag-ιH) = L{g-χgag-{H)

= L{gag-χH) = L{exp(w.X)H). o



344 KARL-HERMANN NEEB

PROPOSITION IV. 13. Let a e exp(Cm a x)\{l}. Then

co(loga) + CmίnCL(aH).

Proof. In view of Lemma IV. 12 and Proposition 1.2 we may assume
that X € Q \ { 0 } . Since X Φ 0, there exists a non-compact positive
root β such that β(X) > 0. Let γ denote the highest non-compact
root (Lemma IV. 11). Then γ(X) > β(X) > 0 because XeCk. Using
Lemma IV. 9 we see that

X + R+ZγCL(aH).

In view of Proposition IV. 8 it remains to be proved that

co(X + R+Z 7) = co(X) + C m i n .

Since R+Zγ C Cmjn and both sets are closed, convex and invariant
under W, it suffices to show that

(co(JΓ) + cm i n) n ck c co(x + R + Z 7 ) n ck.

But Lemma IV. 11 and Lemma 1.5 imply that

CO{Λ ) H- C m i n ± Λ — L,k-t K Zsγ — L,k — Λ -t K Z,γ — C^.

Again with Lemma 1.5 this leads to

(co(X) + cm i n) n ck) c(x + R+Zy - σk) n ck

LEMMA IV. 14. Let (g, τ) be an irreducible symmetric Lie algebra
of regular type. Then

C(a) = {Xe C m i n : (Vα G Δ+, α(^logα) = {0})a(Y) < 0}

•{ {0} if a = 1.

. If a = 1, then C(α) = C m i n Π - C m a x = {0} because C m a x is
pointed and Cm{n C C m a x (Proposition III. 1, Lemma IV.4).

If a Φ 1, then

w ( i o g 0 ) e c n c m a x .

Hence α(y) = 0 is equivalent to a e Ak, so C(α) = C m i n .
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We note that, in view of Aaάm = exp(Cmax) and

Proposition IV. 13 proves the inclusion

co(logα) + C(α) CL(aH)

of the Convexity Theorem.

PROPOSITION IV. 15. Let X e C m a x Π Ck and a = exρ(X). Then

Proof. We recall that we assume that H is connected. By continuity
and closedness of the cone Cm{n — C£ (Lemma II. 11) we may assume
that X e int(-C m a x ) Π Ck because int(Cm a x Π Ck) C int(Cm a x) Π Ck is
dense in the generating cone C m a x Π Ck .

Recall the definition of the complex symmetric Lie group (G#, τ # ) ,
where H# := (exp f)#) is a simple Hermitian Lie group and G* = Hjt.

Let λ G 3°H*. Then, according to Theorem III.4, the representation
πχ\ H* -> %{%?) has a holomorphic extension to a representation
*λ ^min = H* exp( W£in) -> Ψ(%f). Let v e %* be a vector of highest
weight with ||v|| = 1.

We define the analytic mappings a:H#A#N#-+H# and β:H*A*N*
-+ N# (cf. §1) by

^ = a(g) πp(L(g))β(g) Vg € H*A*N*.

Let

i7!: int(Cmax)

be the analytic mapping from Lemma III. 8. We define another map-
ping

F2: int(Cmax) xH*-+<r, (X, h) ^ πλ(a(exp(X)h))eλ^ex»Wh»v.

This mapping is well defined because exp(Cm a x) = Aaάm (Proposi-
tion IV.6) and it is analytic because Y *-+ π^(exρ Y)υ is analytic on
int(Cm a x) (Lemma III.8). We claim that F\ = Fι. Since both are
analytic and int(Cm a x) x H* is connected, it suffices to show that they
are equal on int(Cmjn) x H#. So let Xo e int(Cmin), a§ := exρ(Xo) 9

and
γ(h) := (L(aoh), log β(aoh)) G α x n C o J x n * .

Then, since H was supposed to be connected, γ(H) is contained in
the connected component of the set of all pairs (X, Y) e α£ x n#



346 KARL-HERMANN NEEB

for which exp(X)exp(7) € int^min) because exp(L(aoh))β(aoh) =
a(aoh)~ιaoy e int^min). Thus Proposition III.9 shows that

πλ{exp(L(aoh))β(aoh))v =

We conclude that

F2(X0,h) =

= πλ(a{aoh))πλ(e\p(L(aoh))β(aoh))υ

= πλ{a(aoh)exp(L(aoh))β{aoh))v

= πλ(aoh)υ = πλ(a0)πλ(h)v

= πλ(a0)πλ(h)v = F1(X0,h)

for all XQ e int(Cmin) and h e H*. Hence F\ = F2. Taking norms
we obtain with Lemma III.7 that

\\F2{X, h)\\ =

= eλ^ah^\\πλ(a(ah))υ\\

= eλ{L{ah» = \\Fι(X, h)\\ =

<\\πλ(a)\\

We conclude that

λ(L(ah) - log(a)) < 0

for all λ e 3?H*, i.e.,

log(α) - L{ah) e ( (-C* a x ) Π C*k)* n α

c((-cm a x)nQr
— t m i n ' ^ ^ — ^min ' ^k

because the cone C m i n - Q is closed (Lemma 11.11). Finally this
proves that

L(aH) c log(α) + C m i n - q . D

THEOREM IV. 16 (The Convexity Theorem for groups of regular type).
Let (C7, τ) be an irreducible symmetric group of regular type. Then
Adm = exp(Cmax) and for X e Cmax\{0} we have that

L(cxp(X)H) = co(X) + C m i n . D

Proof Propositions 1.12, IV.6, IV.7, IV.13, IV.15. D
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REMARK IV. 17. With the notations of Theorem IV. 16 and 0 φ X e
- C m a x we have that

where Z : NAH —• α, nah •-• logα.

Proof. Set X1 := -X. Then the assertion follows from Theorem
IV. 16 and from L(g) = -L(g~ι). D

COROLLARY IV. 18. Let I G R + Z \ { 0 } . Then

Proof. Theorem IV. 16 and the invariance of X under the Weyl
group. D

Applications of the Convexity Theorem.

PROPOSITION IV. 19. Let a e exp(-Cm a x) and n e ~NnHAN. Then
a~ιna eHAN and

L(a-ιna) - L(n) e Cmin.

Proof. Let a: HAN -» H denote the projection. Then L(xy) =
L(xa(y)) + L(y) implies that

L(a~ιna) = L{a'xa{n)) + L(n) + loga.

Now the Convexity Theorem shows that

L(a~ιa(n)) e L(a~ιH) c -logα + Cm i n.

and the assertion follows. D

COROLLARY IV.20. L(N n HAN) c - C m i n .

Proof. Let X e int(-CmaχΠ - Q ) and neΉnHAN. Then

lim exp(-tX)nexv(tX) = {1}
t—κx>

and therefore

lim L(exp(-tX)n exp(tX)) - L(n) = -L(n) € Cmjn. D
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