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ON FACTOR REPRESENTATIONS
OF DISCRETE RATIONAL NILPOTENT GROUPS

AND THE PLANCHEREL FORMULA

LAWRENCE CORWIN AND CAROLYN PFEFFER JOHNSTON

The purpose of this paper is to extend the Kirillov orbit picture of
representation theory for nilpotent Lie groups to discrete groups GQ
defined over the rationale Q , following a program begun by Roger
Howe. Let Ad* be the coadjoint action of GQ on the Pontryagin dual
gQ of the Lie algebra of GQ . It is shown that each coadjoint orbit
closure is a coset of the annihilator of an ideal of gQ, that a certain
induced representation canonically associated with an orbit closure is
a traceable factor, and that there is an orbital integral formula which
gives the trace. Finally, a Plancherel formula is proved.

1. Introduction. In what follows, let gQ be a nilpotent Lie algebra
with rational structure constants; i.e., gQ has a basis {Xi, . . . , Xn}
of vectors such that

k=\

with all (Xij^eQ. Then we form a nilpotent group GQ with base
set gQ, using the Campbell-Baker-Hausdorff formula to define a poly-
nomial group multiplication, and we have a map exp: gQ —• GQ ,
exp = Id on the set gQ. We will think of gQ and GQ as having the
discrete topology. GQ has no normal abelian group of finite index;
therefore GQ is not of Type I ([Tho]). The purpose of this paper is
to develop an extension of the Kirillov orbit picture of representation
theory for nilpotent Lie groups to discrete groups GQ defined over the
rationals, following a program begun by Roger Howe ([Howl], [How2],
[How3]). In particular, in [How2], he constructs an extension of the
Kirillov theory to finitely generated discrete nilpotent groups without
torsion; this work was a chief source of inspiration to us.

Although it is in general difficult to work with non-type-I groups
(and in particular discrete groups lack some of the structure that non-
type-I connected Lie groups G possess: see [Puk], [Gdt]), it is possible
to say a great deal in the present case. Let g^ denote the Pontryagin
dual of the Lie algebra gQ we examine the structure of closures of
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orbits under the coadjoint action of GQ on g^. We find that the
following holds:

1. If λ e § Q , then the coadjoint orbit closure containing λ is of
the form λ +ij-, where î  c gQ is the largest ideal contained in the
subalgebra rλ = {X e gQ | l([X, Y]) = 1, all Y e g Q } . We note that
since iλ is an ideal in τλ, the radical of the character λ, we have
λ{X*Y) = λ(X + Y) for X, Y e iλ therefore we may regard λ, the
restriction of λ to iλ, as a character on the normal subgroup Iλ of
GQ . Let Kλ be the kernel in Iλ of λ then (GQ , Iλ) C Λ^.

2. The representation τ^ = Ind(Λ,, lχ \ GQ) is a type II traceable
factor representation which is canonically associated with the coad-
joint orbit closure containing 1; there is a simple formula for the
trace of τλ as an integral over the orbit closure.

3. A concrete Plancherel formula is proven for G Q ; Plancherel
measure is normalized Haar measure on Z(GQ) , the Pontryagin dual
of the center of gQ. (This is in contrast with other countable dis-
crete groups, for example the free group on two generators, where
Plancherel measure is atomic measure on one point; see [Mac].)

We construct the Pontryagin dual of gQ as follows. Let A denote
the ring of adeles over the rationals (a standard reference for harmonic
analysis on the ring of adeles is Tate's thesis, in [CF]); the rationals
embed diagonally as a cocompact, discrete additive subgroup. Then
Q = A/Q, when Q is regarded as a discrete countable abelian group.
If {X\, ... , Xn} is a basis for gQ over Q, then we have the isomor-
phism

(A/Q)Λ-+gQ,

(c*i, . . . , an) >->λ

where λ(q\X\ H h qnXn) = x{a\Q\ H 1- &nQn) for some standard
character χ e A, usually taken to be the product of the standard
characters on each component Qp (i.e., those characters which map
Zp to 1).

In proving the assertion about the nature of the orbit closures gQ,
we use the following result from [CP].

THEOREM. Let a\, . . . , an be non-rational elements of A. Then
the set

{(a{x, a2x
2, . . . , anx

n) , X G Q }

is dense in (A/Q)π . More generally, let p\ (x), . . . , pn(x) be polyno-
mials with coefficients in A/Q, having no constant terms, which are lin-
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early independent over Q. Then the set {{p\(x), . . . , pn(x)) x € Q}
w dense in (A/Q)rt.

2. Traceable factor representations associated with coadjoint orbit
closures. Recall that the representation τχ is a factor representation
if CR(τλ) = τλ(GQynτλ(GQ)" = C/ {si1 denotes the commutator of
the set

LEMMA 1. Let U e TX(GQY , and let Hχ be the Mackey space for
the representation τχ. Then U is entirely determined by its value on
the function δx eHλ defined by

ί 0, zφlλ9
ι[z) \λ(z), zelχ.

Proof We have that

where

I/I2 < oo,L
= λ(k)f(z), k€lλ,z€GQ.

Let H'λ = {/ e Hλ: JG v \f\ < 00}. Then H'λ is a convolution

algebra, with

/•*(*)= / f(zx-l)g(x)dx

well-defined and in H'λ. To see this, we must check that the integrand
is constant on cosets of Iχ. Let x, z e GQ , t€lχ. Then

f(x{tz)-i)g(tz) = f(xz-1r1)g(tz) = f{rι{txz-ιr1))g(tz).

W e h a v e t h a t t e l λ , s o t x z " ι Γ ι = r x z " 1 , w i t h r = ( )
Since r is in the commutator of GQ with /^, r eKλ. Therefore

f(xz-ιrι)g(tz) =

We note also that the convolution of an element in Hλ with an element
in H'λ is again in Hλ.
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We have that δ\ * g = g for g G H'λ. If U commutes with xλ,
then

δι(zχ-i)g(x)dxj

= ί U(δι(zχ-ι))g(x)dx
JGΛIλ

U(τλ(χ-ι)δι(z))g(x)dx
L

τλ(χ-ι)U(δι(z))g(x)dx
L

= / U(δι)(zx~ι)g(x)dx =

So U restricted to H'λ is really a convolution operator by the el-
ement U{δ\) G Hχ. Since H'λ is dense in Hχ9 U(δ\) determines U
on all of Hχ. This completes the proof of Lemma 1.

LEMMA 2. If U e CR(xλ), then U is convolution by an element of
Hλ which is constant on conjugacy classes. Furthermore, if f e Hλ

is constant on conjugacy classes of GQ, and if convolution by f is a
bounded operator on Hλ, then convolution by f is in CR(xχ).

Proof. We show the first part of Lemma 2 by evaluating U{δ\)
for U G CR(xχ) if λx, px are respectively the left and right regular
representations of GQ on Hλ, then both commute with U G CR(xχ).
Thus we have that

U{δx){z) = U(λxPxδι)(z)=λxPxUδι(z) = U{δx{xzχ-1)).

The second part of Lemma 2 follows when we note that x'λ is the
strong operator closure of left translation operators on Hλ. So U G x"λ

if and only if λ(g)U = Uλ(g) for all g G GQ . Therefore, convolution
by / G Hx satisfying the boundedness condition is in CR(xχ) if
and only if it commutes with both left and right translation, and we
have seen that this holds if / is constant on conjugacy classes. This
completes Lemma 2.

LEMMA 3. Let JJ2) be the inverse image in GQ of the center of
Then Xχ is a factor representation if and only if for all γ G
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- Iχ, the conjugacy class C(γ) c GQ is not contained in the set

Proof. Suppose C(γ) c γKλ. Then the function

Γ λ{z) ifx = zy, zelλ,
Sy(χ) = i ,7 i 0 otherwise

is constant on conjugacy classes and is an element of Hf

λ. Thus, by
Lemma 2, it is in CR(τχ), but it is not a multiple of the identity, and
so τλ is not a factor representation.

Conversely suppose C(γ) <£ yKλ, for all γ G if^ - lχ. Then ele-

ments of Hλ cannot be constant on C[y). If x G GQ — /j 2 ^, then

C(x) intersects infinitely many cosets of lχ. To see this, note that

GQ acts on GQ\/^ by inner automorphisms; consider the orbit of

xlχ. Since x £ if^, yxy~ι £ *h f°Γ some y G GQ therefore the
isotropy group of x under this action is a proper subgroup of GQ .
Since GQ contains no finite index subgroups, the orbit of xlχ is infi-
nite, and so the conjugacy class of x intersects infinitely many cosets
of lλ. Therefore, a function constant on C(x) could not be in Hλ.

Thus, a function in Hλ constant on conjugacy classes could be
nonzero only on Iλ, and so would have to be a multiple of δ\ G Hλ.
This completes the proof of Lemma 3.

The Pontryagin dual §Q of the discrete Lie algebra gQ is iso-
morphic to (A/Q)w, where n is the dimension of gQ as a vector
space. The coadjoint orbits of GQ in §Q are given by polynomi-
als Pi:, / = 1, . . . ,«, where Pi: GQ —> A/Q are polynomials in Qn

with coefficients in A/Q. In what follows, we rely heavily upon the
technical results in [CP].

THEOREM 1. Suppose l e g ^ . Then the closure of Ad*(GQ)1 is
"flat"; i.e., there exists a subgroup V = A/Q^ of g^ such that the
closure of the orbit is λV.

Define P(Qk, A/Q") to be the space of ^-tuples of polynomials in
k rational variables, with coefficients in A/Q. We have that Q^ =

* . Conversely, the Pontryagin dual of (A/Q)* is Q*.

LEMMA4. Supposep = (pι(x)9...9 Pn(x)) G P(Q, (A/Q)*), where
the Pi have no constant terms. Then p(Q) is dense in some subgroup
V c (A/Q)n, with V = (A/Q)*.
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Proof. First suppose that the pt are linearly independent over Q.
Then the closure of the image of Q under p is (A/Q)w, since the
conclusion of Theorem 2 in [CP] holds as well if the polynomial vector
(p\y ? Pn) consists of polynomials which are linearly independent
over Q, so that no Q-linear combination of the pi is 0.

Now suppose that p = (p\, ... ,pn) has Q-linearly dependent en-
tries. Then the map

7>:Q»->P(Q,A/Q),

q^q-p

has a nontrivial kernel K it is a vector subspace of Q" . Then Qn\K
is the dual of a subgroup KL c (A/Q)w having annihilator K since
K is 0s for some s, K1 = (A/Q)w~*. We see easily that p(Q) c KL .
Take a preimage for a basis of Qn\K in Qn, {# }£Γf, and define the
map

a = ( α i , . . . , α Λ ) H-> {qx . a, . . . , qs a).

Now consider π o p : Q —• {A/Q)n~s. The components of πop form a
linearly independent set of polynomials in (A/Q)w~5 without constant
term, so πop(Q) is dense in (A/Q)Π~5. We can show that in fact π
is a homeomorphism of KL onto {A/Q)n~s. It is injective, since if
$: a = Q for all z = 1, . . . , n - s, we have that q a = Q for all
ί E Q n , so that a = 0 in (A/Q)Λ. It is clearly a continuous map,
and is onto; the image of KL contains a dense set in (A/Q)w~5 and
is closed, since KL is compact. Thus, the image of Q under p is
dense in KL.

This completes the proof of Lemma 4; we now consider the case
where the polynomials under consideration are of several rational vari-
ables.

LEMMA 5. Let {Pi}n

i=ϊ Q P(Qk

 9 A/Q) be a linearly independent set
of polynomials in k rational variables without constant terms; then
the image of Qk under p = (p\, . . . , pn) is dense in (A/Q)Π.

Proof. We will show that there is a map φ: Q —> Q^, φ(q) =
(qNι, . . . , qNk), such that the p, o φ form a linearly independent set
in JP(Q , A/Q). The result follows immediately.

N will denote the natural numbers, including 0. We define an order
on N^ as follows: let / G l , . . . , f e be the greatest integer satisfying
rm Φ m\ then {πi\, . . . , m^) > (m\, . . . , m'k) if raz > m\.
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We will define the degree of a monomial x™1 x™k to be
(mi, . . . , wifc), and the degree of a polynomial to be the degree of
its highest-valued monomial. Then we may assume without loss of
generality, by interchanging pi and Pj and by adding rational multi-
ples of Pi to Pj, that the {/?,} satisfy

1. degpi > dεgpj if / < j
2. if deg/?/ = deg/7z+i = = deg/?,, then the leading coefficients

(i.e., the coefficients of the monomials of highest degree in each poly-
nomial) form a linearly independent set of adeles over Q.

A simple induction argument shows the following:
3. For each finite set {M/} € N*, there exists an element N =

(NΪ9...9Nk)e Nk such that N. M> > N. Mj if M{ > Mj in the
order on N* (M N denotes the usual dot product).

Now let Mi = degpi, and let JV be as in statement 3. For x e Q,
let φ{x) = (xNι, . . . , xNk). Then {/?; o φ} is a set of polynomials in
one variable, with deg/?zo0 > degpjoφ if and only if deg/?z > deg/?7

furthermore, the leading coefficients of the polynomials Pi o φ of a
given degree form a linearly independent set over Q in A/Q. Thus
the polynomials Pioφ form a linearly independent set in P(Q, A/Q).

LEMMA 6. Let p = (pΪ9 ... , pn) e P(Qk, (A/Q)"), where the pt

are polynomials without constant term. Then the closure in (A/Q)w of
the image of Qn under this polynomial is a subgroup V = (A/Q)s for
some s <k. Furthermore, V is the subgroup of (A/Q)* annihilated
by K — ker T$ where

Proof. Lemma 5 gives this result for the case when K is trivial. In
general, we see easily that if K = ker 7^, then p(Qk) c AT1. Define
π: K1 -+ (A/Q)w~5 as in the proof of Lemma 4; then the components
of πop form a linearly independent set of polynomials in (A/Q)n~*.
We now use Lemma 5 to show that the image of π op(Qk) is dense
in (A/Q)"~s, and proceed as in the proof of Lemma 4 to show that
p(Qk) is dense in K1. This completes the proof of Lemma 6.

To complete the proof of Theorem 1, we take a strong Malcev basis
{X\, . . . , Xn} of gQ and write the elements of gQ with respect to
this basis as (x\, . . . , xn). Recall that the base set of GQ is gQ and
that the exponential map with respect to our realization of GQ is the
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identity on g Q . Writing the elements of §Q = A/QΛ additively, we
have that

k=\
n

where the p^ are polynomial vectors in P(Qn, A/Qn) without
constant terms. Lemma 6 now shows that the closure of the orbit
Ad*((jQ)λ, again written additively, is λ + V for some subgroup
V = A/Q5.

This completes the proof of Theorem 1.

Let / c gQ be an ideal of gQ. Let I1 denote that subgroup of gQ
which annihilates / . We will now prove

THEOREM 2. τλ = Ind(/^ | G Q , λ) is α factor representation.

We first prove the following lemma.

LEMMA 7. The closure in gQ of the coadjoint orbit of λ i s i + i | .

Proof. From Theorem 1, we know that the closure of the orbit is a
"flat", λ + Wo. Suppose that W e iλ and Y egQ. Then

Ad*(exp(-r))l(fH =

However, [Y,W], [Y,[Y> **Ί1 > e t c

 ?

 a r e i n Pλ? 8Q]> a n d s o t h e

above is just λ{W). So Ad*(GQμ e A + if .
Conversely, consider the group K Q C ^ generated by the elements

Ad*(Go)λ - λ. We have VQCWQ, since the coadjoint orbit closure is
a flat. A typical element is

where the sum is finite. By taking linear combinations of these ele-
ments with Y = X, 2X, . . . one can see that the individual terms
are in Vo. So for each Y e g Q , a d * ( r r μ € Fo for all r e Q. Note
also that terms of the form Ad*(x) Ad*(y)λ-Ad*(y)λ are in Vo, since
Ad*(xy)λ-λ and Ad*(y)λ-λ are in Ko.
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The closure of VQ is V^-1-, so it suffices to show that V^- = iλ.
We have seen that î  c V^. If X e V^, then ad*(Y)λ(X) = 1 for
all Y € gQ , so λ([X, Γ]) = 1, and so X eτλ. The same holds if
we replace λ with Ad*(y)λ, for y e G Q , SO X e ϊΆd oo ί = ^ ( y ) ^
That is, X G ΠyeG Ad(y)r^ = i^, the largest ideal of gg contained in
r̂  . This completes the proof of Lemma 7.

We now prove Theorem 2. Let γ = exp(Γ) be in if^ - Iλ. Then

since Ad*(GQ)l -λ = \j~, the function

x>->(Ad*(x)λ-λ)(Γ)

is not identically 1 as a function of x e GQ . We may write this as

Ad*(exp(Z)μ-l(Γ)

However, since [X, Γ] e iy, all the brackets after the first are in
the kernel of λ therefore

Ad*(x)λ(Γ)=λ([X,Γ\).

This shows that ad(gQ)Γ £ k^. Therefore the conjugacy class of γ is
not contained in γKλ . By Lemma 3, xχ must be a factor. This proves
Theorem 2.

Note that for any element χ in the closure of Ad*(GQ)λ, the re-
striction of χ to î  is λ. Thus we see that the factor representation
xλ is canonically associated with the closure of the orbit Ad*(GQ)l
for each λ e §Q .

3. The trace on the factor τλ and the Plancherel formula. In this
section, we demonstrate that the factor representation xλ of the pre-
vious section is traceable, and develop an orbital trace formula and
Plancherel formula.

Let λ G gQ there is then an ideal î  of gQ such that the closure in
(A/Q)Λ of Ad*(GQμ is l + i | . Note that on iλ9 Ad*(x)l = 1 for
all x e GQ.

Let Hλ be the Mackey space for xλ as defined in the previous
section. We define GQ = GQ\/^ . Let a: GQ —• GQ give a cross
section of the cosets of GQ satisfying a(e) = e (where e denotes the
identity element of GQ) and a(x~l) — α ( x ) " 1 . Then a basis for Hλ

is given by the functions δa^ , where

~(z), ify = a(x)z, zelλ,
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Let Jτ: C^Hλ map 1 to δam . Then Ji(f) = f(a(x)) for / e Hλ.
So if A G L{Hλ), the space of bounded linear operators on Hλ, and
we write Aχ9y = J^AJj, then we have

We define c: G Q X G Q —• lχ by

We have the cocycle identity

c(x9 u)c(xΰ9 v) = c(x, uv).

Note that if u e lχ, then x = 3α7; therefore c(x, u) = a(x)ua(x)~ι,
and we have

αQcJwαCx)-1^, v) = c(x? uv)

for ue Iλ. We define £(3c, y) = /l(c(x, y)) we then have, for uelχ,

ζ(x, «) = λ ί α φ M * - 1 ) ) = Ad*(α(x))(w) = A(«),

since Ad*(GQ)A c λ + i | . It follows that

ζ(x9 v)λ(u) = ζ{x, uv) = <f(x, υii)

if WG/A.

We now compute τλ(g)χj for g e GQ . Since τχ(ug) = λ(ύ)τχ(g)
if w E /A , it suffices to consider the case where g = a(g). We then
have

)χ9y = n(g)Sa(y)(0L(x)) = δ^y^lCg)) = I * ^ _ ίί'
L C ( Λ ? 6 ) **• y — xg ?

because if y = Tg, then a(x)g = c(x 9 g)a(xg) = c{x9 g)a(y), and
$a(y)C{x, g)a(y) = λ(c{x, g)) =ξ{x, g).

Since we have chosen g = a(g) 9 it follows that

O otherwise.

This shows that τλ(g)eyg = ξ(e9 a(g)). However, a(e)a(~g) = a(g),
so that c(e, a(g)) = e and £(e, αQF)) = 1. We thus have

(1) τλ(gh9y = ξ(x, a(χ-iy))τλ{g) -^

ii g = a{-g).
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This also holds, however, if g = ua(g), u e Iλ\ both sides are
multiplied by a factor of λ(u). It holds also if x~ιy Φ g , since then
both sides are 0. Therefore, (1) holds for all Ϊ J G G Q . Since (1)
depends linearly upon τλ{g), we have also

(2) τ λ ( f h j = ξ ( x , * { χ y

for all / E CC(GQ) . This relation is preserved under the taking of
weak limits in Tχ(f)9 so that (2) holds if Tχ(f) is replaced by an
element of the Von Neumann algebra generated by the τλ{f).

We now follow Dixmier ([Dx], 1.4.2 and 1.9.2). Let sf be the Von
Neumann algebra generated by the τλ(f), for / e CC(GQ) . We define
φ: sf -> C by φ{A) =AΈίΈ. Then the following hold:

1. φ is linear.
2. φ(A*A) = φ(AA*) > 0, with equality only if A = 0.

Proof of Claim 2. We have 4̂<5α(̂ ) = Σχeβ 3̂c,β̂ α(3c)» s o t h a t

Q

(A*A)ee = (Aδaφ,

Similarly,

To see that these sums are equal, we note that Ai - — Ay % , so that in

particular A± - = A^^\ also, from (2), A%^ = ξ(x, a(x~ι))A- -- i .

Therefore, \A± ? | = 1-4^1 a n d MJC,?| = \A^ Ί-ι\. Thus the sums over

GQ which determine φ(A*A) and φ(AA*) are the same.
For the second assertion, suppose φ{AA*) = 0. Then A-% ? = 0 for

all Ϊ E G Q . By (2), we see that then A^j = 0 for all J C J G G Q .

Hence A = 0.
3. </> is normal, since 0(^4) = (Aδaφ9 δa^))\ see ([Dx], Theorem

1, 1.4.2). Therefore, φ is (up to positive multiples) the unique trace
on the factor sf .

To compute φ on L1(GQ) , we compute it on CC(GQ) and then use
the Lι norm-continuity of φ to extend to L1(GQ). Since TX(CC(GQ))

consists of finite linear combinations of elements of τλ(Gq) ,we com-
pute φ on TΛ(GQ) . We see that if g £ lχ, then φ(τλ(g)) = 0, and if
g G Iχ, then φ(τχ(g)) = λ(g). Therefore we have

(3) φ(f) = Σλ(
ueiλ
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By linearity and continuity, (3) holds also for / e L1(GQ) .
Now suppose that F e Lι (gQ), and that / = F o log e Lι (GQ) (re-

call that, as we have defined it, log on the set level is just the identity).
Let F(X) = λ(X)F(X). Then for χ e if,

= Σ
Therefore,

Φ(f) = Σ w/w = Σ λ(γ)F(γ) = Σ
i/€/A F6iA Yeiλ

= ί F-(χ)dχ= I F-{χ + λ)dχ= [_F~(χ)dχ.

The last set of equations follows from Poisson summation on i^. We
note that the measure on the closure of ffχ is the lift of normalized
Haar measure on if . This gives the orbital trace formula for τλ.

THEOREM 3. Let φ be the unique trace on the factor sf . Then for
f e Lι (GQ) , φ(f) is given by the orbital trace formula

Φ(f)=

where F = / o exp e Lι (gQ).

We finish by developing a Plancherel formula for GQ . For λ e gQ,
we call the closure of the Ad*((jQ)-orbit ffχ of λ generic if ffχ =
λ + z(gQ)-1, or equivalently if î  = z(g(j). We will refer to λ as
generic if the closure of its (?Q-orbit is generic.

We define the rising central series of ideals of gQ as follows: let
go = (0), and let π 0 be the identity map on g Q . We then let πk: gQ -+
gQ\gfc_i be the natural map, and let gk be the inverse image in gQ of
the center of gQ\g^_!. Then since gQ is nilpotent, the rising central
series terminates at some gn = gQ.

LEMMA 8. Suppose λ e § Q . Then λ is generic if and only if there

does not exist X e g2 such that ad(X)gQ c ker(λ).

Proof. If î  properly contains z(gQ), then take X e iA(Ίg2 such that

X £ z(gQ). Then λ([X, gQ]) = 1 by definition of iλ, so ad(X)gQ C

ker(A). Conversely, suppose there is an X e g2 such that ad(X)gQ c
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ker(l). Then QX 0 z(gQ) c r̂  is an ideal of gg hence it is in \λ,
and \χ properly contains z(gQ). Thus λ is not generic.

Note that the second condition of Lemma 7 implies that whether
λ is generic depends upon its restriction to z(gQ) thus we will (by
abuse of notation) refer to λ G z(gQ) as generic if any (equivalently
all) of its extensions to gg are generic. We will show that for a set
of λ G z(gQ) of full Haar measure, the second condition of Lemma 7
holds; in fact, we will show something stronger than that.

LEMMA 9. The λ G z(gg) with kerA = 0 are of full Haar measure

in

Proof. Suppose z(gQ) = Q*, and let {Z\, . . . , Zk} be a basis over

Q for z(gQ). If λ G z(gQ), then we may identify λ with an element

a e (A/Q)* by

λ{qxZx + + qkZk) = χ(aιgι + + akqk),

where a = (a\, . . . , ak) and χ is the standard character on A/Q.
This gives an isomorphism of z(gQ) with (A/Q)*. We define, for
α€(A/Q) f c and qeQk,

a.q = a1qι + '- + akqk G A/Q.

For an element qeQk,wε define the linear map

7>: (A/Q)*-A/Q,

a H-• a q.

The set of λ with nontrivial kernel corresponds to the union of the
kernels of Tξ9 q^O. Since Q* is countable, we need only show that
each kernel is of Haar measure 0 in (A/Q)* .

Suppose now that a G ker T$. Then we have a q = Q in A/Q,
and therefore we may take representatives αf for each coordinate of
a in the adeles, so that

= 0.

This means that in the Q^th coordinate,

(αitfi + - - + akqk)p = 0.

This condition is satisfied by elements a G (A/Q)* such that each
(a)p = {(a\)p, . . . , (<*fc)p) lies in the hyperplane
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where (x\, . . . , xk) e (Qp)
k . Therefore, if qφO, the set of choices

in each QjJ has Haar measure zero, and so the preimage of ker Tξ in
the adeles has measure zero. Therefore the Haar measure of ker T$
is zero. This completes the proof of Lemma 8.

Now the Plancherel formula is nearly trivial. If F e Q ( g Q ) , then
f = FologeCc(GQ). Let {Zx, . . . , Zk, Xk+ι, . . . , Xn} be an ex-
tension of the basis given above to a basis of gQ. We then have an
inclusion z(gQ) -* §Q as follows; λ \-+ λ if

λ{qxZx + -" + qkZk + qk+ιXk+ι + + qnZn) = λ{qxZx + + qkZk)

for all qeQk. Then

/(0) = F(0) = / F-(ξ) dξ= I I F-(λ + χ) dχ dλ,

where all Haar measures are normalized so that their (compact) sup-
ports have measure 1. We let dχ{χ) be the lift of normalized Haar
measure on z(gQ)1 to A + z(gg)-L if λ is generic, this is ffχ. For a.e.
λ e z(gQ), dχ(χ) is the orbital measure on <9χ in the trace formula,
so the above integral becomes

φλ(f)dλ.

Thus we see that Plancherel measure for GQ is normalized Haar mea-

sure on z(gq). We have proved

THEOREM 4 (Plancherel Formula). Suppose f e Q ( g Q ) , and that

for generic λ e z(gQ), φλ is the trace associated with the factor repre-

sentation τλ induced from the character λ e z(gQ). Then λ*-+φλ(f)

is defined for a.a. λ, and is integrable on z(gQ), and we have

f(O) = fφχ(f)dμ(λ),

where μ is Haar measure on z(gQ), normalized so that μ(z(gQ)) = 1.

Editor's note. The mathematical community was deeply saddened
by the death of Larry Corwin on March 19, 1992. Larry had made
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fundamental contributions to the harmonic analysis of p-adic reduc-
tive groups, nilpotent Lie groups and, as this paper illustrates, discrete
groups. His friends also recall him as an effective administrator and
innovative teacher, and remember his incredible wit, his playful and
spontaneous sense of humor, and his remarkable energy and zest for
life.
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