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MAPS ON INFRA-NILMANIFOLDS
—Rigidity and applications to Fixed-point Theory

KyunG BAIl LEE

We show that Bieberbach’s rigidity theorem for flat
manifolds still holds true for any continuous maps on
infra-nilmanifolds. Namely, every endomorphism of an al-
most crystallographic group is semi-conjugate to an affine
endomorphism. Applying this result to Fixed-point the-
ory, we obtain a criterion for the Lefschetz number and
Nielsen number for a map on infra-nilmanifolds to be
equal.

0. Infra-nilmanifolds. Let G be a connected Lie group. Con-
sider the semi-group Endo(G), the set of all endomorphisms of G,
under the composition as operation. We form the semi-direct prod-
uct G x Endo(G) and call it aff(G). With the binary operation

(a,A)(b, B) = (a - Ab, AB),

the set aff(G) forms a semi-group with identity (e, 1), where e € G
and 1 € Endo(G) are the identity elements. The semi-group aff(G)
“acts” on G by
(a,A) -z =a- Az.

Note that (a, A) is not a homeomorphism unless A € Aut(G).
Clearly, aff(G) is a subsemi-group of the semi-group of all contin-
uous maps of G into itself, for ((a, A)(b, B))x = (a, A)((b, B)z) for
all z € G. We call elements of aff(G) affine endomorphisms.

Suppose G is a connected, simply connected, nilpotent Lie group;
Aff(G) = G x Aut(Q) is called the group of affine automorphisms of
G. Let m C Afi(G) be a discrete subgroup such that I' = 7 N G has
finite index in m. Then 7\G is compact if and only if I is a lattice
of G. In this case, 7 is called an almost crystallographic group. If
moreover, 7 is torsion-free, m is an almost Bieberbach group. Such
a group is the fundamental group of an infra-nilmanifold. Accord-
ing to Gromov and Farrell-Hsiang, the class of infra-nilmanifolds
coincides with the class of almost flat manifolds.
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1. Generalization of Bieberbach’s Theorem. In 1911,
Bieberbach proved that any automorphism of a crystallographic
group is conjugation by an element of Aff(R*) = R™ x GL(n,R).
Recently this was generalized to almost crystallographic groups, see
[1], [3] and [4].

We shall generalize this result to all homomorphisms (not neces-
sarily isomorphisms). Topologically, this implies that every contin-
uous map on an infra-nilmanifold is homotopic to a map induced by
an affine endomorphism on the Lie group level. It can be stated as:
every endomorphism of an almost crystallographic group is semi-
conjugate to an affine endomorphism.

THEOREM 1.1. Letw,n' C Aff(G) be two almost crystallographic
groups. Then for any homomorphism 6 : m — ©', there exists g =
(d, D) € aff(G) such that 6(a)-g=g-a for alla € 7.

COROLLARY 1.2. Let M = 7\G be an infra-nilmanifold, and
h: M — M be any map. Then h is homotopic to a map induced
from an affine endomorphism G — G.

COROLLARY 1.3 [3, 4]. Homotopy equivalent infra-nilmanifolds
are affinely diffeomorphic.

Now we consider the uniqueness problem: How many g¢’s are
there? Let ® = n/(GN7) C Aut(G) and ' = 7' /(GN7') C Aut(G)
be the holonomy groups of 7 and 7’. Let ¥’ be the image of 6(r)
in . So & C Aut(G). Let G¥ denote the fixed point set of
the action. For ¢ € G, p(c) denotes conjugation by c¢. Therefore,
p(c)(z) = czc for all z € G. The group of all inner automorphisms
is denoted by Inn(G).

PROPOSITION 1.4 (Uniqueness). With the same notation as
above, suppose 6(c)-g = g-a for alla € m. Then 6(a)-v=v-a for
all @ € 7 if and only if y = £ - g, where & = (c, u(c™Y)), forc € GY'.
Therefore, D is unique up to Inn(G). If 0 is an isomorphism, then
c € G¥. In particular, if m is a Bieberbach group with H* (m;R) =0
and 0 is an isomorphism, then such a g is unique.

ExXAMPLE 1.5. The subgroup I' = 7 N G of of an almost crys-
tallographic group = is characteristic, but not fully invariant. The
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homomorphism # in the Theorem 1.1 may not map the maximal
normal nilpotent subgroup I' of 7 into that of #’. This causes a
lot of trouble. Let m be an orientable 4-dimensional Bieberbach
group with holonomy group Z,. More precisely, 7 C R* x O(4) =
E(4) Cc Aff(R*) is generated by (e, I), (€2, I), (es,I), (eq,I) and
(a, A), where a = (1/2,0,0,0)%, and A is diagonal matrix with di-
agonal entries 1,—1,—1 and 1. Note that (a, A)? = (e;,I). The
subgroup generated by (e;, I), (e2, ), (es,I), and (a, A) forms a 3-
dimensional Bieberbach group G,, and m = G, X Z. Consider the
endomorphism € : 7 — 7 which is the composite 7 — Z — m,
where the first map is the projection onto Z = ((e4,I)) and the
second map sends (eq4, I) to (a, A). Thus the homomorphism 6 does
not map the maximal normal abelian subgroup Z* (generated by
the 4 translations) into itself. Such a Z* is characteristic but not
fully invariant in 7. Let

z 0001/2
0 000 O
d= 0]’ b= 000 0
y 000 0

and let g = (d, D). Then it is easy to see 8(a) - g = g - « for all
aET.

According to the Proposition 1.4, the element g = (d, D) is the
most general form. The matrix D is uniquely determined and the
translation part d can vary only in two dimensions.

Proof of Theorem 1.1. Let ' = n NG, I' = 7' N G. As the
example shows, the characteristic subgroup I' may not go into I
by the homomorphism §. Let A = T'N§~(I"). Then A is a normal
subgroup of 7 and has a finite index. Let Q = 7/A.

Consider the homomorphism A — IV < G, where the first map
is the restriction of #. Since A is a lattice of G, by Maléev’s work,
any such a homomorphism extends uniquely to a continuous ho-
momorphism C : G — G, cf. [5, 2.11]. Thus, |y = C|s, where
C € Endo(G); and hence, 0(z,1) = (Cz,1) for all z € A (more
precisely, (z,1) € A).

Let us denote the composite homomorphism 7 — #' — G x
Aut(G) — Aut(G) by 6; and define a map f : 7 — G by

(1) f(w,K) = (Cw - f(w, K),(w, K)).
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For any (2,1) € A and (w,K) € w, apply 6 to both sides of
(w,K)(2,1)(w,K)™ = (w- Kz-wl,1) to get Cw - f(w, K)-
O(w,K)(Cz) - f(w,K)™ - (Cw)™ = 8(w - Kz - w™!). However,
w-Kz-w™ € A since A is normal in 7, and the latter term equals
to C(w-Kz-w™)=Cw-CKz-(Cw)!since C:G — Gisa
homomorphism. From this we have

(2) p(’w,K)(CZ) :f(waK)_l°CKZ°f(waK)'

This is true for all z € A. Note that §(w, K) and K are automor-
phisms of the Lie group G; and C : G — G is an endomorphism.
By the uniqueness of extension of a homomorphism A — G to an
endomorphism G — G, as mentioned above, the equality (2) holds
true for all z € G. It is also easy to see that f(zw, K) = f(w, K) for
all z € A so that f : m — G does not depend on A. Thus, f factors
through Q = m/A. Moreover, 6 : 7 — Aut(G) also factors through
Q since A maps trivially into Aut(G). We still use the notation
(w, K) to denote elements of @ and @ to denote the induced map
Q — Aut(G).

CLAIM. With the Q-structure on G via 6 : Q@ — Aut(Q), f €
ZY(Q; G); that is f : Q = G 1is a crossed homomorphism.

Proof. We shall show
f((w, K) - (w', K")) = f(w, K) - 8(w, K) f(v', K")

for all (w,K), (w',K’) € w. (Note that we are using the ele-
ments of 7 to denote the elements of Q).) Apply 6 to both sides of
(w, K)(w', K') = (w- Kw', KK') to get Cw - f(w, K)-0(w, K)[Cw'-
fw',K")] = Clw- Ku') - f((w, K)(w',K")). From this it follows
that

f((w, K)(w', K")) = (CKw')™" - f(w, K)
B(w, K)(Cw') - 8(w, K) f(w', K').

From (2) we have 6(w, K)Cw' = f(w, K)™'-CKw'- f(w, K) so that
f((w,K) - (w',K") = f(w,K) - 0(w, K) f (v, K"). 0

In [4], it was proved that H'(Q; G) = 0 whenever Q is a finite
group and G is a connected and simply connected nilpotent Lie
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group. The proof uses induction on the nilpotency of G together
with the fact that H'(Q;G) = 0 for a finite group @ and a real
vector group G. This means that any crossed homomorphism is
“principal”. In other words, there exists d € G such that

(3) flw,K)=d-0(w,K)(d™").

Let D = pu(d™') o C and g = (d,D) € aff(G), and we check
that 0 is “conjugation” by g. Using (1), (2) and (3), one can show
O(w,K)opu(d)oC = p(d™') o C o K. Thus, for any (w,K) € m,

f(w, K) - (d, D)

-(d, w(d™) o C)

d), O(w, K)o pu(d™*) o C)

(d™) - 0(w, K)(d), 8(w, K) o u(d™") o C)

This finishes the proof of theorem. [

Proof of Corollary 1.2. We start with the homomorphism hy :
m (M) — m (M), induced from h, as our € in the Theorem 1.1 and
obtain g = (d, D) satisfying

hyg(a)og=goa.

Let g : M — M be the induced map. Then hy = g4. Since any two
continuous maps on a closed aspherical manifold inducing the same
homomorphism on the fundamental group (up to conjugation by an
element of the fundamental group) are homotopic to each other, & is
homotopic to g. This completes the proof of the corollary. 0

Proof of Proposition 1.4. Let ¢ = (d,D), v = (¢,C). Since
f(a) - g = g -« holds when a = (z,1) € A, we have Dz =
d~'z'd, where 6(z,1) = (2/,1). Similarly, Cz = ¢ '2’c. Thus
Cz = p(c7'd)Dz for all z € A. Since A is a lattice, this equal-
ity holds on G. Consequently, C = u(c"*d)D. Now v = (¢,C) =
(e, wle'd)D) = (d'c, plc'd))(d, D) = (h, u(h™))(d, D), if we
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let h = d 'c. Set & = (h,u(h™*)). Then v = £ - g. Now we shall
observe that h € G¥'. Let 8(c) = (b, B). Then 0(a)ég = 0(a)y =
vyo = €ga = &0(a)g yields Bh = h for all (b, B) = 6(a). Clearly
then B € ¥’ by definition. For a Bieberbach group =, note that
rank H'(m;Z) = dim G®. O

2. Application to Fixed-point theory. Let M be a closed
manifold and let f : M — M be a continuous map. The Lefschetz
number L(f) of f is defined by

L(f) =3 trace{(fo)r : Hx(M;Q) — Hy(M;Q)}.

k

To define the Nielsen number N(f) of f, we define an equivalence
relation on Fix(f) as follows: For zy,z, € Fix(f), o ~ z; if and
only if there exists a path ¢ from zy to x; such that ¢ is homotopic
to f o c relative to the end points. An equivalence class of this
relation is called a fized point class (=FPC) of f. To each FPC F,
one can assign an integer ind(f, ). A FPC F is called essential if
ind(f, F) # 0. Now,

N(f) := the number of essential fixed point classes.

These two numbers give information on the existence of fixed
point sets. If L(f) # 0, every self-map g of M homotopic to f has
a non-empty fixed point set. The Nielsen number is a lower bound
for the number of components of the fixed point set of all maps
homotopic to f. Even though N(f) gives more information than
L(f) does, it is harder to calculate. If M is an infra-nilmanifold,
and f is homotopically periodic, then it is known that L(f) = N(f).

LEMMA 2.1. Let B € GL(n,R) with a finite order. Then det(I—
B) > 0.

Proof. Since B has finite order, it can be conjugated into the
orthogonal group O(n). Since all eigenvalues are roots of unity,
there exists P € GL(n,R) such that PBP~! is a block diagonal
matrix, with each block being a 1 x 1, or, a 2 x 2-matrix. All 1 x 1
blocks must be D = [£1], and hence det(/ — D) = 0 or 2. For a
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2 x 2 block, it is of the form [ CO.St S t} . Consequently, each 2 x 2-
—sint cost
block D has the property that det(I — D) = (1 — cost)? + sin’t =

2(1 = cost) > 0. ]

THEOREM 2.2. Let f : M — M be a continuous map on an
infra-nilmanifold M = n\G. Let g = (d,D) € aff(G) be a homo-
topy lift of f by Corollary 1.2. Then L(f) = N(f) (resp., L(f) =
—N(f)) if and only if det(I — D, A,) > 0 (resp., det(I — D, A,) < 0)
for all A € ®, the holonomy group of M.

Proof. Since L(f) and N(f) are homotopy invariants, we may as-
sume that f = g. Let ' = 7NG, and let A = TN f;' fo (TN £ (T)).
Then T' is a normal subgroup of =, of finite index. Moreover,
fu# ™ — m maps A into itself. Therefore, f induces a map on
the finite-sheeted regular covering space A\G of m\G.

Let f be a lift of f to I‘\G Then

L(f) = mz ind(f, p, Fix(af))

N(f) = ! 7 lind(7,p, Fix(af)

where the sum ranges over all o € 7/A. See, [2, III 2.12]. However,
each af is a map on the nilmanifold A\G, and hence
ind(f,p, Fix(af)) is determined by det(/ — (.f).). It is not hard to
see that, for any o € Inn(G), o, has eigenvalue only 1. Therefore,
it is enough to look at elements with non-trivial holonomy. Now the
hypothesis guarantees that det(/ — (af).) = det(I — D,A.) > 0 or
< 0 always. Consequently, L(f) = N(f) or L(f) = —N(f).
Conversely, suppose L(f) = N(f) (resp. L(f) = —N(f)). Let
a = (a,A) € 7. If Fix(g o @) = @, then clearly det(I — D, A,) =0
Otherwise, Fix(goa) is isolated, and the indices at these fixed points
are det(/ — D, A.). By the formula above relating L(f), N(f) with
the ones on covering spaces, all det(/ — D, A,) must have the same
sign. This proves the theorem. ]

COROLLARY 2.3 [3]. Let f : M — M be a homotopically periodic
map on an infra-nilmanifold. Then N(f) = L(f).

Proof. Here is an argument which is completely different from the
onein [3]. Let ' = 7N G, and ® = 7/T, the holonomy group.
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Let g = (d,D) € G x Aut(G) be a homotopy lift of f to G. Let
E be the lifting group of the action of (g) to G. That is, E is
generated by 7 and g. Then E/T is a finite group generated by @
and D. For every A € ®, DA lies in E/I', and has a finite order.
By Lemma 2.1, det(I — DA) > 0 for all A € ®. By Theorem 2.2,

L(f) = N(f). O
Let S be a connected, simply connected solvable Lie group and

H be a closed subgroup of S. The coset space H\S is called a
solvmanifold.

COROLLARY 2.4 [7]. Let f : M — M be a homotopically periodic
map on an infra-solvmanifold. Then N(f) = L(f).

Proof. In [5], the statement for solvmanifolds was proved. We
needed a subgroup invariant under fx. To achieve this, a new model
space M' which is homotopy equivalent to M, together with a map
f': M' — M’ corresponding to f was constructed. The new space
M’ is a fiber bundle over a torus with fiber a nilmanifold; and f' is
fiber-preserving. Moreover, we found a fully invariant subgroup A
of 7 of finite index (so, is invariant under f,). Now we can apply
the same argument as in the proof of Theorem 2.2. O

EXAMPLE 2.5. Let 7 be an orientable 3-dimensional Bieberbach
group with holonomy group Z,. More precisely, * C R3 x O(3) =
E(3) is generated by (e;,I),(eq, I), (es,I) and (a, A), where a =
(1/2,0,0)%, A is a diagonal matrix with diagonal entries 1,—1 and
—1. Note that (a, A)? = (e;, I). Let M = R /7 be the flat manifold.
Consider the endomorphism 6 : 7 — 7 which is defined by the

conjugation by g = (d, D), where
300
001].

0
0f, D=
0 020

Let f : M — M be the map induced from g. There are only two
conjugacy classes of g; namely, g and ag. Fix(g) = (0,0,0)* and
Fix(ag) = (1/4,0,0)!. Since det(I — D) = det(I — AD) = +2,
L(f) = N(f) =2.

The Lefschetz number can be calculated from homology groups

also.
(1) Ho(M;R) =R; f. is the identity map.

d =
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(2) Hi(M;R) = R, which is generated by the element (ey, I).
[+ is multiplication by 3 (the (1,1)-entry of D).

2(M;R) = R; f, is multiplication et —9.
(3) Hy(M;R) =R f Itiplication by d [01}

20
(4) H3(M;R) =R; f. is multiplication by det(D) = —6.
Therefore, L(f) = Z(—1)'tracef, = 1 — 3 + (=2) — (-6) = 2.
Note that f has infinite period, and this example is not covered by
Corollary 2.3.

EXAMPLE 2.6. Let 7w be same as in Example 2.5. This time
g = (d, D), is given by

0 300
d=1{0], D=]011
0 012

Let f : M — M be the map induced from g. There are six conjugacy
classes of g; namely, g and ag, atig, at?g, atlg, and atlg. Each
class has exactly one fixed point. Clearly, det(I — D) = +2 and
det(I — AD) = —10. Therefore, the first fixed point has index
+1 and the rest have index —1. Consequently, L(f) = —4, while
N(f) =6.
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