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MAPS ON INFRA-NILMANIFOLDS

—Rigidity and applications to Fixed-point Theory

KYUNG BAI L E E

We show that Bieberbach's rigidity theorem for flat
manifolds still holds true for any continuous maps on
infra-nilmanifolds. Namely, every endomorphism of an al-
most crystallographic group is semi-conjugate to an affine
endomorphism. Applying this result to Fixed-point the-
ory, we obtain a criterion for the Lefschetz number and
Nielsen number for a map on infra-nilmanifolds to be
equal.

0. Infra-nilmanifolds. Let G be a connected Lie group. Con-
sider the semi-group Endo(G), the set of all endomorphisms of G,
under the composition as operation. We form the semi-direct prod-
uct G x Endo(G) and call it aff(G). With the binary operation

the set aff(G) forms a semi-group with identity (e, 1), where e G G
and 1 G Endo(G) are the identity elements. The semi-group aff(G)
"acts" on G by

(α, A) x = a - Ax.

Note that (a, A) is not a homeomorphism unless A G Aut(G).
Clearly, aff (G) is a subsemi-group of the semi-group of all contin-
uous maps of G into itself, for ((α, A)(6, B))x = (a,A)((b,B)x) for
all x G G. We call elements of aff (G) affine endomorphisms.

Suppose G is a connected, simply connected, nilpotent Lie group;
Aff (G) = G x Aut(G) is called the group of affine automorphisms of
G. Let π C Aff (G) be a discrete subgroup such that Γ = TΓ Π G has
finite index in TΓ. Then π\G is compact if and only if Γ is a lattice
of G. In this case, π is called an almost crystallographic group. If
moreover, TΓ is torsion-free, TΓ is an almost Bieberbach group. Such
a group is the fundamental group of an infra-nilmanifold. Accord-
ing to Gromov and Farrell-Hsiang, the class of infra-nilmanifolds
coincides with the class of almost flat manifolds.
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1. Generalization of Bieberbach's Theorem. In 1911,
Bieberbach proved that any automorphism of a crystallographic
group is conjugation by an element of Aff(Mn) = Rn xi GL(n, R).
Recently this was generalized to almost crystallographic groups, see
[1], [3] and [4].

We shall generalize this result to all homomorphisms (not neces-
sarily isomorphisms). Topologically, this implies that every contin-
uous map on an infra-nilmanifold is homotopic to a map induced by
an affine endomorphism on the Lie group level. It can be stated as:
every endomorphism of an almost crystallographic group is semi-
conjugate to an affine endomorphism.

THEOREM 1.1. Let TΓ, TΓ' C Aff(G) be two almost crystallographic
groups. Then for any homomorphism θ : TΓ —>• TΓ', there exists g =
(d, D) G aff(G) such that θ(a) g = g a for all a G TΓ.

COROLLARY 1.2. Let M = π\G be an infra-nilmanifold, and
h : M —ϊ M be any map. Then h is homotopic to a map induced
from an affine endomorphism G —» G.

COROLLARY 1.3 [3, 4]. Homotopy equivalent infra-nilmanifolds
are affinely diffeomorphic.

Now we consider the uniqueness problem: How many g's are
there? Let Φ = π/(GΓ)π) C Aut(G) and Φ' = τr7(GΠτr') C Aut(G)
be the holonomy groups of π and TΓ'. Let Φ' be the image of θ(π)
in Φ'. So Φ' C Aut(G). Let Gψ' denote the fixed point set of
the action. For c e G , μ(c) denotes conjugation by c. Therefore,
μ(c)(x) = cxc~ι for all x G G. The group of all inner automorphisms
is denoted by Inn(G).

PROPOSITION 1.4 (Uniqueness). With the same notation as
above, suppose θ(a) g = g a for all a G TΓ. Then θ(a) 7 = 7 a for
alia G TΓ if and only ifΎ^ξ-g, where ξ = (c, μ(c~1)), for c G Gψ.
Therefore, D is unique up to Inn(G). If θ is an isomorphism, then
c G G φ / . In particular, ifπ is a Bieberbach group with ΐ ί 1 ( π ; R) = 0
and θ is an isomorphism, then such a g is unique.

EXAMPLE 1.5. The subgroup Γ = TΓ Π G of of an almost crys-
tallographic group TΓ is characteristic, but not fully invariant. The
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homomorphism θ in the Theorem 1.1 may not map the maximal
normal nilpotent subgroup Γ of π into that of TΓ'. This causes a
lot of trouble. Let TΓ be an orientable 4-dimensional Bieberbach
group with holonomy group Z 2 . More precisely, TΓ C R4 x 0(4) =
E{4) C Aff(R4) is generated by (ex, J), (e2, J), (e 3 ,J), (e 4,/) and
(β, A), where a = (1/2,0,0,0)*, and A is diagonal matrix with di-
agonal entries 1,-1,-1 and 1. Note that (α,A) 2 = (ei,J). The
subgroup generated by (ei,/), (e 2 ,/), (β3,/), and (a, A) forms a 3-
dimensional Bieberbach group G2, and TΓ = Q2 x Z. Consider the
endomorphism 0 : TΓ -> TΓ which is the composite TΓ -> Z —> TΓ,
where the first map is the projection onto Z = ((e 4,/)) and the
second map sends (e^ I) to (α, A). Thus the homomorphism θ does
not map the maximal normal abelian subgroup Z 4 (generated by
the 4 translations) into itself. Such a Z 4 is characteristic but not
fully invariant in TΓ. Let

~x~
0
0

.y.

ΌOO
OOO
0 0 0
0 0 0

1/2
0
0
0

g for alland let g = (d, JD). Then it is easy to see θ(a)
α € π.

According to the Proposition 1.4, the element g = (d,D) is the
most general form. The matrix D is uniquely determined and the
translation part d can vary only in two dimensions.

Proof of Theorem 1.1. Let Γ = TΓ Π G, Γ = TΓ' Π G. AS the
example shows, the characteristic subgroup Γ may not go into Γ'
by the homomorphism θ. Let Λ = Γ Π ̂ ~1(Γ/). Then Λ is a normal
subgroup of TΓ and has a finite index. Let Q = τr/Λ.

Consider the homomorphism Λ —>• Γ' c-> G, where the first map
is the restriction of θ. Since Λ is a lattice of G, by Malcev's work,
any such a homomorphism extends uniquely to a continuous ho-
momorphism C : G -> G, cf. [5, 2.11]. Thus, Θ\A = C | Λ , where
C € Endo(G); and hence, θ(z,l) = (Cz,l) for all z 6 Λ (more
precisely, (z, 1) G Λ).

Let us denote the composite homomorphism TΓ -> TΓ' —> G x
Aut(G) -> Aut(G) by #; and define a map / : π -> G by

(1) β(w, AT) = ( C r / ( « ; , i f ) , ί ( ! i
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For any (z, 1) G Λ and (w, if) G π, apply θ to both sides of
{yϋ,K){z,ΐ)(w,K)-1 = (w - Kz w-\l) to get Cw f(w,K)
θ(w,K)(Cz) f(w,K)-1 • (Cw)-1 = 0(w ifz w" 1 ). However,
w if z - ί ϋ ^ G A since Λ is normal in π, and the latter term equals
to C(w Kz - w-1) = Cw Cifz (Cw)- 1 since C : G -> G is a
homomorphism. From this we have

(2) 0(w, K){Cz) = f(w, K)-1 CϋΓz • /(w, ϋf).

This is true for all z G Λ. Note that θ(w,K) and if are automor-
phisms of the Lie group G; and C : G -* G is an endomorphism.
By the uniqueness of extension of a homomorphism Λ -> G to an
endomorphism G -> G, as mentioned above, the equality (2) holds
true for all z G G. It is also easy to see that f(zw, K) = f(w, K) for
all z G Λ so that / : π —>> G does not depend on Λ. Thus, / factors
through Q = τr/Λ. Moreover, 0 : π —>• Aut(G) also factors through
Q since Λ maps trivially into Aut(G). We still use the notation
(w,K) to denote elements of Q and θ to denote the induced map
Q->Aut(G).

C L A I M . With the Q-structure on Gviαθ:Q-+ Aut(G), / G
Z1(Q] G); that is f : Q —ϊ G is a crossed homomorphism.

Proof. We shall show

f((w, K) - K, K1)) = f(w, K) - £(w, if)/K, if')

for all (w,if), (wf,Kf) G TΓ. (Note that we are using the ele-
ments of π to denote the elements of Q.) Apply θ to both sides of
(w, K)« if') = (w Kw\ KK') to get Cw /(w, if) 0(w, K)[Cw' -
/(w',if')] - C(w Kw1) /((w,if)(w',if')). From this it follows
that

/((w, if)(w', if')) = (Cifw'Γ1 f(w, if)

• θ(w, K)(Cw') 0(w, if)/(w', if').

From (2) we have θ(w, K)Cw' =_/(w, i f)" 1 CKw' /(w, if) so that
/((w, i f ) . (w', if')) = f{w, if) ^(w, if)/(w', if'). D

In [4], it was proved that Hι(Q,G) = 0 whenever Q is a finite
group and G is a connected and simply connected nilpotent Lie



MAPS ON INFRA-NILMANIFOLDS 161

group. The proof uses induction on the nilpotency of G together
with the fact that Hι(Q;G) = 0 for a finite group Q and a real
vector group G. This means that any crossed homomorphism is
"principal". In other words, there exists d G G such that

(3) f(w,K) = d-θ(w,K)(d'1).

Let D = μid"1) o C and g = (d,D) € afF(G), and we check
that θ is "conjugation" by g. Using (1), (2) and (3), one can show
θ(w, K) o μ{d~ι) oC = μ[d~ι) oCoK. Thus, for any (w, K) e π,

= (Ciϋ f(w, K), θ(w, K)) • (d, μ{d~ι) o C)

= (Cw • /(w, ϋf) θ(w, K)(d), θ(w, K) o μ(d~ι) o C)

= (Cwd θ(w, K)(d~ι) • θ(w, K)(d), θ(w, K) o μ(d~ι) o C)

= (Cw • d, μ{d~ι) oCoK)

= (d,D) (w,K).

This finishes the proof of theorem. D

Proof of Corollary 1.2. We start with the homomorphism h# :
7Γi(M) —> τri(M), induced from /z, as our θ in the Theorem 1.1 and
obtain g = (d, Z?) satisfying

Let 5 : M -> M be the induced map. Then h# = g#. Since any two
continuous maps on a closed aspherical manifold inducing the same
homomorphism on the fundamental group (up to conjugation by an
element of the fundamental group) are homotopic to each other, h is
homotopic to g. This completes the proof of the corollary. D

Proof of Proposition 1.4. Let g = (d,D), 7 = (c,C). Since
θ(a) - g — g a holds when a — (2,1) G Λ, we have Dz —
d~ιz'd, where θ(z,l) = {zf,l). Similarly, Cz = c~ιz'c. Thus

Cz = μ(c~1d)Dz for all 2 G Λ. Since Λ is a lattice, this equal-
ity holds on G. Consequently, C — μ(cΓιd)D. Now 7 = (c, C) =
(c, μ(c~1d)D) = (d~ιc, μ{c-ιd)){d,D) = (h, μ(h-ι))(d,D), if we
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let h = d~ιc. Set ξ = {h,μ(h'1)). Then 7 = ξ • g. Now we shall
observe that h G <?*''. Let 0(α) = (6,5). Then 0(α)& = 0(α)7 =
7a = ^ α = ξθ(a)g yields Bh = h for all (δ,B) = 0(α). Clearly
then B 6 Φ' by definition. For a Bieberbach group TΓ, note that
rank H\π\Z) = dim Cφ. D

2. Application to Fixed-point theory. Let M be a closed
manifold and let / : M —Y M be a continuous map. The Lefschetz
number L(f) of / is defined by

L(f) := £ trace{(Λ)fc : #*(M;Q) -> Hk(M;Q)}.

To define the Nielsen number N(f) of /, we define an equivalence
relation on Fix(/) as follows: For xo,x\ G Fix(/), xo ~ X\ if and
only if there exists a path c from XQ to a?! such that c is homotopic
to / o c relative to the end points. An equivalence class of this
relation is called a fixed point class (=FPC) of /. To each FPC F,
one can assign an integer ind(/, F). A FPC F is called essential if
ind(/, F) φ 0. Now,

N(f) := the number of essential fixed point classes.

These two numbers give information on the existence of fixed
point sets. If L(f) Φ 0, every self-map g of M homotopic to / has
a non-empty fixed point set. The Nielsen number is a lower bound
for the number of components of the fixed point set of all maps
homotopic to /. Even though N(f) gives more information than
!/(/) does, it is harder to calculate. If M is an infra-nilmanifold,
and / is homotopically periodic, then it is known that L(f) = N(f).

LEMMA 2.1. Let B e GL(n, R) with a finite order. Then det(7-
B) > 0 .

Proof. Since B has finite order, it can be conjugated into the
orthogonal group O(n). Since all eigenvalues are roots of unity,
there exists P G GL(n,R) such that PBP~ι is a block diagonal
matrix, with each block being a 1 x 1, or, a 2 x 2-matrix. All 1 x 1
blocks must be D = [±1], and hence det(7 - D) = 0 or 2. For a
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Λ Π I I i , Γ ϋ r I c o s t s i n 11 ~ . . _ Λ

2x2 block, it is oi the form . , , . Consequently, each 2x2-
[-sinίcosίj M J '

block D has the property that det(/ — J9) = (1 — cosί)2 + sin2 ί =
2 ( 1 - cos t) >0 . D

THEOREM 2.2. Let f : M -+ M be a continuous map on an
infra-nilmanifold M = π\G. Let g — (cί, D) G aff (G) be a homo-
topy lift of f by Corollary 1.2. Then L(f) = N(f) (resp., L(f) =
-N(f)) if and only if det(I-D*A*) > 0 {resp., det(I-D*A*) < 0)
for all A e Φ, the holonomy group of M.

Proof. Since L(f) and N(f) are homotopy invariants, we may as-
sume that / = g. Let Γ = TΓΠG, and let Λ = ΓΠ/#1/#(Γn/^1(Γ)).
Then Γ is a normal subgroup of π, of finite index. Moreover,
/# : 7Γ —> π maps Λ into itself. Therefore, / induces a map on
the finite-sheeted regular covering space Λ\G of π\G.

Let / be a lift of / to Γ\G. Then

where the sum ranges over all a 6 π/Λ. See, [2, III 2.12]. However,
each af is a map on the nilmanifold Λ\G, and hence
ind(/,pΛ Fix(o;/)) is determined by det(/-~ (α/)*). It is not hard to
see that, for any a € Inn(G), a* has eigenvalue only 1. Therefore,
it is enough to look at elements with non-trivial holonomy. Now the
hypothesis guarantees that det(/ — (o /̂)*) = det(/ — D*A*) > 0 or
< 0 always. Consequently, L(f) = N(f) or L(f) = -N(f).

Conversely, suppose L(f) = N(f) (resp. L(f) = -N(f)). Let
a = (α, A) € 7Γ. If Fix(^ o α ) = 0 , then clearly det(7 — D*A*) — 0.
Otherwise, Fix(^oα) is isolated, and the indices at these fixed points
are det(/ — D*A*). By the formula above relating £(/), N(f) with
the ones on covering spaces, all det(7 — D*A*) must have the same
sign. This proves the theorem. D

COROLLARY 2.3 [3]. Let f : M -» M be a homotopically periodic
map on an infra-nilmanifold. Then N(f) = L(f).

Proof. Here is an argument which is completely different from the
one in [3]. Let Γ = TΓ Π G, and Φ = π/Γ, the holonomy group.
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Let g = (d,D) e G x Aut(G) be a homotopy lift of / to G. Let
E be the lifting group of the action of (g) to G. That is, E is
generated by π and #. Then 2£/Γ is a finite group generated by Φ
and D. For every i e Φ , DA lies in JE/Γ, and has a finite order.
By Lemma 2.1, det(J - DA) > 0 for all A <E Φ. By Theorem 2.2,

= N(f). D

Let 5 be a connected, simply connected solvable Lie group and
H be a closed subgroup of S. The coset space H\S is called a
solvmanifold.

COROLLARY 2.4 [7]. Let f : M —> M be a homotopically periodic
map on an infra-solυmanifold. Then N(f) = L(f).

Proof. In [5], the statement for solvmanifolds was proved. We
needed a subgroup invariant under / # . To achieve this, a new model
space M1 which is homotopy equivalent to M, together with a map
/ ' : M1 —> M1 corresponding to / was constructed. The new space
M1 is a fiber bundle over a torus with fiber a nilmanifold; and / ' is
fiber-preserving. Moreover, we found a fully invariant subgroup Λ
of 7Γ of finite index (so, is invariant under /#) . Now we can apply
the same argument as in the proof of Theorem 2.2. D

EXAMPLE 2.5. Let π be an orientable 3-dimensional Bieberbach
group with holonomy group Z 2 . More precisely, π C E 3 x 0(3) =
E(3) is generated by (ei,/), (e 2,/), (β3,/) and (α,^4), where a =
(1/2,0,0)*, A is a diagonal matrix with diagonal entries 1, —1 and
- 1 . Note that (α, A)2 = (eul). Let M = R3/π be the flat manifold.
Consider the endomorphism θ : π —> π which is defined by the
conjugation by g = (d, D), where

d = D =
3 0 0
0 0 1
0 2 0

Let / : M -» M be the map induced from #. There are only two

conjugacy classes of g; namely, g and ag. Fix(#) = (0,0,0)* and

Fix(α#) = (1/4,0,0)*. Since det(7 - D) = det(J - AZ?) - +2,

£(/) = ΛT(/) = 2.
The Lefschetz number can be calculated from homology groups

also.
(1) H0(M; R) = R; /* is the identity map.
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(2) Hι(M R) = R, which is generated by the element (eul).
/* is multiplication by 3 (the (l,l)-entry of D).

(3) H2(M) R) = R; /* is multiplication by det L? J = - 2 .

0
0
0

^
3 0 0
O i l
0 1 2

(4) # 3 ( M ; R) = K; /* is multiplication by det(D) = - 6 .
Therefore, L(f) = Σ(-l)*trace/* = 1 - 3 + (-2) - (-6) - 2.
Note that / has infinite period, and this example is not covered by
Corollary 2.3.

EXAMPLE 2.6. Let π be same as in Example 2.5. This time
g = (d,D), is given by

d =

Let / : M -> M be the map induced from #. There are six conjugacy
classes of g\ namely, g and α#, αίi<7, Qίίi^, o>t\g, and αΐf^. Each
class has exactly one fixed point. Clearly, det(/ — D) — +2 and
det(/ — AD) = —10. Therefore, the first fixed point has index
+1 and the rest have index —1. Consequently, L(f) = —4, while
N(f) = 6.
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