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METRICS FOR SINGULAR ANALYTIC SPACES

CAROLINE GRANT AND PIERRE MILMAN

Recent work of Saper, Zucker, and others indicates
that Kahler metrics with appropriate growth rates on the
nonsingular set of a compact Kahler variety are useful in
describing the geometry of such a variety. It has been
conjectured that for every complex algebraic variety X
there exists a Kahler metric on the nonsingular set of
X whose L;-cohomology is isomorphic to the intersection
cohomology of X. Saper proved this conjecture for vari-
eties with isolated singularities, using a complete Kahler
metric. Similar results have been obtained by others us-
ing incomplete metrics. We give natural and explicit con-
structions of three types of Kahler metrics on the nonsin-
gular set X — X, of a subvariety X of a compact Kahler
manifold. No restrictions on the type of singularities of
X are assumed. Similar constructions can be done for
nonembedded compact Kiahler varieties. The first metric
is Hodge if X is algebraic but is not complete on X — X,
if X is singular. The completion of X — X;,, under this
metric is a desingularization of X. The second metric is
complete and generalizes Saper’s metric for varieties with
isolated singularities. Moreover each incomplete metric
of the first type is naturally associated with a complete
metric of the second type. The third metric is a sum
of the first two and has Poincaré-type growth near the
singular locus of X.

§1. Introduction. If X is a smooth algebraic variety over C,
or more generally, a compact Kéhler manifold, then the cohomol-
ogy of X with complex coefficients H*(X) is isomorphic to the de
Rham cohomology Hjr(X) and satisfies a collection of cohomol-
ogy theorems including Poincaré duality, the Lefschetz hyperplane
theorem, and the hard Lefschetz theorem. These cohomology the-
orems do not always hold for H*(X) when X is singular. In this
case the appropriate cohomology is the intersection cohomology of
Goresky-MacPherson. It has been conjectured that the appropriate
replacement for the de Rham cohomology is Ls-cohomology, or more
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precisely, that the intersection cohomology of a singular algebraic
variety X is always isomorphic to the Ly-cohomology of X with re-
spect to a suitable Kahler metric on the nonsingular set X — Xgp,
of X. Saper proved this conjecture for varieties with isolated sin-
gularities, using a complete Kéahler metric [S2]. Recently Ohsawa
[O] announced this conjecture for complex projective varieties us-
ing the induced incomplete metric. Complete Kahler metrics are of
particular interest because they yield Hodge decompositions.

We construct three types of Kahler metrics on the nonsingular
set X — Xing of a subvariety X of a compact Kéahler manifold. Our
constructions are explicit and use in a natural way the geometry
of a sequence of blow-ups used to resolve the singularities of X.
No restrictions on the type of singularities are assumed. These
metrics were introduced in [GrM]. The first metric is induced by a
metric which we construct on a desingularization X of X and has
the property that it is Hodge if X is algebraic. If X is singular, this
metric is not complete on X — X, and the completion of X — X,g
with respect to this metric is the desingularization X.

The second metric is complete on X — X, and generalizes Saper’s
metric for varieties with isolated singularities. We show that each
incomplete metric of the first type is naturally associated with a
complete metric of this type. We also prove one of the conditions
needed to apply Goresky-MacPherson’s theorem [GM] character-
izing intersection cohomology: we show that for this metric, the
associated complex of Lo-bounded sheaves on X is fine. This modi-
fied Saper metric seems to be a good candidate for extending Saper’s
theorem to more general varieties.

The third metric is the sum of our incomplete metric and our
modified Saper metric. It is complete and has Poincaré-type growth
near Xgn,. The Lo-cohomology of a true Poincaré~ metric on the
complement of a divisor with normal crossings on X is isomorphic
to the intersection cohomology of X, not X. We expect the same
to be true for our modified Poincaré metric. This metric is bounded
below by the induced incomplete metric and the modified Saper
metric. Consequently, the associated sheaves of Lo-bounded forms
on both X and X are fine.

Although we have restricted ourselves in this paper to subvarieties
of compact Kéahler manifolds, similar constructions can be done in
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more general settings.

In an appendix, we include, for lack of a suitable reference, some
tubular neighbourhood constructions which are based on a construc-
tion of Clemens [CL].

We will give further guidance to the paper in §2, after a few
preliminaries.

We would like to acknowledge helpful conversations with John
Bland, Michael Hoffman, and Boris Youssin.
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(1.1) Resolution of Singularities. Let X be a reduced singu-
lar compact analytic subspace of a compact Kahler manifold M.
Let Xging be the singular set of X. The singularities of X may be
resolved by a finite sequence of blow-ups m; : M; — M;_; along
smooth centres C; in M;_;, where My = M. We will describe a sys-
tematic way of constructing a complete Kahler metric on X — Xging,
using the geometry of these blow-ups.

Let X; be the strict transform of X in M, i.e. X is the closure
of 77 (X;-1 — C;) in M;. Let D; be the exceptional divisor of the
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composite m; 0 M 0...0 71'] of the first j blow-ups, i.e. Dy =7 (N
and D; = n;D;_, + T 1(C;) for j > 2. Let M be the final blow-up
of M, X the final strict transform of X, D the final exceptional
divisor, and m : M — M = M, the composite of all the blow-ups.
By the notation M — D we will always mean M — supp D.

DEFINITION. We say that an analytic subspace Z of a complex
manifold M has only normal crossings if, at each point p in Z, there
is a local coordinate system (zy, ..., z,) on M in which Z is given by
the vanishing of a collection of monomials 27" 252...22".

Hironaka [H] showed that the centres C; may be chosen so that
(1) Cj is contained in the singular locus (X j—1)sing Of X1 if X;_4

1s singular, or in X;_; N D;_; otherwise,

(2) Cj and D,;_; simultaneously have only normal crossings,

(3) X is smooth, and

(4) X and D have normal crossings.

It follows from properties (1) - (4) that

(5) D =n""(Xsing),

(6) the restriction of 7 to M — D is a biholomorphism onto M —
Xsing (and consequently the restriction to X-(XND)is a
biholomorphism onto X — Xgne), and

(7) 70 (Xsing) D (Xj)sing Where 7 is the composite map ;o =
T omgo...om;: M; — Mj.

Note: A simple proof of canonical resolution of singularities can be

found in [BM2].

We will construct a complete Kéhler metric on each noncompact
manifold M; — D;. The restriction of the final metric on M —D to
X-(Xn D) 1nduces a complete Kahler metric on X — X,.

(1.2) Metrics and their fundamental (1,1)-forms. Let h be a
hermitian metric on a complex manifold M. In local coordinates
(21, 22, -.-, 2) on an open set U in M, the metric h can be written

n
h|U = Z hijdz,- X dfj
1,5=1
where (h;;) is a positive definite hermitian matrix whose entries

are C*® functions on U. Specifying a hermitian metric A on M is
equivalent to specifying a positive hermitian C* (1,1)-form w on
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M, given locally by

V-1

) Z h,-jdzi AN dfj.

1,5=1

wly =

We call w the fundamental form of h. The metric h is called Kahler
and w is called a Kdhler form if w is d-closed, i.e. if dw = 0. A
Kahler metric is called Hodge and its Kahler form w is called a
Hodge form if w is integral, i.e. if the de Rham cohomology class of
w lies in the image of H*(M, Z) under the natural map H*(M,Z) —
H} (M, C). The manifold M is called Kahler (respectively Hodge)
if it admits a Kéhler (respectively Hodge) metric. The following
will be useful in constructing Kahler forms.

LEMMA 1.2.1. If g is a positive real C* function on an open set
U in C™, then the (1,1)-form w = 001log g is hermitian and d-closed
onU.

Proof. 1t is easily checked that 5—;%%% = 6—2%12—; for any two local

coordinates z; and z; in C™ and that d08y = 0 for any C* function

. OJ

(1.3) Quasi-isometry. We say that two metrics h; and hy are
quasi-isometric and write hy ~ hy if there are positive constants
c and C such that ch; < hy < Ch;. Similarly, if w; and w, are
(1,1)-forms or functions, and there exist positive constants ¢ and
C such that cw, < wy < Cw;, we write wy ~ wo. If w; and wy
are positive (1,1)-forms and w; ~ ws, we say that w; and w, are

quasi-isometric. If w; > wy and wy ~ w3 we write w; § w3. When
a function f; is dominated by a constant multiple of a function fo
near the exceptional divisor we will write fi = O(f2).

REMARK (1.3.1). All metrics on a compact manifold are quasi-
isometric. If w; and w, are positive C*® (1,1)-forms on an open
neighbourhood of a point ¢, then w; and w, are quasi-isometric in
a neighbourhood of ¢. In local coordinates (z1, ..., z,) near g, every
positive C*® (1,1)-form is locally quasi-isometric to the Euclidean
form

V=1
(132) WEyel — T Z dZi A dz
1=1



66 CAROLINE GRANT AND PIERRE MILMAN

(1.4) Poincaré metrics. Recall that the fundamental form of the
Poincaré metric on the punctured disc A* = {z € C: 0 <| z |[< 1}
is

v—1 dz NdZ

™ |z [*(log| 2 [*)?

(1.4.1) war =

— _gamog(logl 2 )2

We are interested only in the asymptotic behaviour of wa~ near the
puncture in A*.

More generally, let M be a compact complex manifold and D a
divisor with normal crossings. If ¢ is a point of D at which £ com-
ponents intersect, then ¢ has a neighbourhood whose intersection
with M — D is of the form (A*)*¥ x A", A metric on M — D is said
to be Poincaré if it is quasi-isometric near each such ¢ to a prod-
uct of Poincaré metrics on (A*)* and Euclidean metrics on A™F.
It is always possible to construct a Poincaré metric on M — D by
patching together local forms with C'* partitions of unity. If M is
Kahler, it is easy to construct Kahler Poincaré metrics on M — D
by a global construction (see §5.4).

(1.5) Normal coordinates. Let M and D be as above, let Ey, ..., B},
be the components of D passing through a point ¢, and let (21, ..., z,)
be local coordinates on a neighbourhood U of ¢ such that no other
component of D intersects U. We call the coordinates (21, ..., 25)
normal coordinates for Ej, ..., Ey if E; is given locally near ¢ by the
equation z; =0 for 1 <11 < k.

The fundamental form wpeise 0of a Poincaré metric on M — D may
be described locally in any system of normal coordinates by the
quasi-isometry

vV —1 k dZi A dZL' e o
Wpoinec ™~ T Z > + Z dz; N dZi

=l |2(108| 2 |2) i=k+1

(1.5.1)

— k . = . n
Nvl<z 4z 1 dz +Zdz,-/\dz-).

g =l IZ(IOg’ Z; |2)2 i=1

Note that we are concerned only with the asymptotic behaviour of
these forms near 2;25...2z; = 0. We may assume that U is small
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enough that singularities of the forms on the right at | z; |= 1 may
be ignored.

(1.6) Modified Poincaré metrics. We call a metric on M — D
a modified Poincaré metric if its fundamental form wp may be de-
scribed locally in normal coordinates by the quasi-isometry

m /_1 n
(161) wp ~ Z'ri*wA: + T Zdz, A dz;

=1 =1

where each 7; is a nonconstant monomial map from (A*)* x Ar~*
to A* of the form 7;(2y, ..., zn) = 21" 25™%...zp** and the m x k matrix
A = ();;) has nonnegative integer entries and at least one positive
entry in each row and column. We note that there may be many dif-
ferent non-quasi-isometric modified Poincaré metrics on M — D. We
show in Corollary (5.2.6) that the description (1.6.1) is independent
of the choice of normal coordinates. The matrix ();;) determines
the local quasi-isometry class of the metric, but not vice-versa.

We will say that a modified Poincaré metric is a homogeneous
Poincaré metric if its fundamental form wphom may be described

locally in normal coordinates by the quasi-isometry

(1.6.2)
V= EdzNdz | &
WPhom ~ 1( ! Z ZAZZ +Zdz,~/\d§,~>.

™ (log| z122...2% ]2)2 = i=1

This description is also independent of the choice of normal coordi-
nates (Corollary (5.3.5)).

A little linear algebra shows that a modified Poincaré metric is
homogeneous if the matrix A has rank k£ and all the entries of A
are positive (Lemma (5.3.3)). If the matrix A can be chosen to be
the identity matrix of suitable dimensions, the modified Poincaré
metric is Poincaré. We construct Kahler modified Poincaré metrics
and Kahler homogeneous Poincaré metrics in §5.4.

(1.7) Saper’s distinguished metrics. Saper [S2] calls a metric
on M — D distinguished if its fundamental form ws,, may be de-
scribed locally in normal coordinates by the quasi-isometry
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\/—1 ( 1 k de/\dZL
(

IOgI Z2129...2% 12)2 i=1 l VA |2

1 Z dZi A d_Z_i) .

| log | 2125...2k |2 -

This description is independent of the choice of normal coordinates
(Corollary (5.3.5)). We will usually refer to such a metric simply as
a Saper metric.

If w is the fundamental form of a metric on the compact mani-
fold M, and ws,p and wphom are, respectively, fundamental forms of
Saper and homogeneous Poincaré metrics on the noncompact man-
ifold M — D, then

(172) Wsap +w ~ WP hom-

(1.8) Modified Saper metrics. Let M and M be compact com-
plex manifolds, let D be an effective divisor on M with normal
crossings, and let 7 : M — M be a holomorphic map such that the
restriction of m to M — D is a biholomorphism onto its image. The
divisor D may be expressed as D = 31" A\ Ey, where Ey, By, ..., B,
are smooth, reduced, irreducible divisors on M which simultane-
ously have only normal crossings, and Ay, Az, ..., A, are positive in-
tegers. Let L = [D] be the line bundle on M associated with D
and let h be a hermitian metric on L. Let s : M — L be a global
holomorphic section of L such that (s) = D. Such a section always
exists since D is effective (see §3.4). We denote by || s || the norm
of s under the metric h. Since M is compact, we may also choose
s so that || s ||< 1 everywhere on M. The Chern form of L with
respect to the metric h may be written as

(L, h) = - oBlog] | |

2m
(cf. §3.5). We define on M — D a Poincaré-type (1,1)-form v
associated with the divisor D, the section s, and the metric h by
-1 = 2

(1.8.1) v = —gaa log (log | s |I*) .
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The crucial property of the Poincaré-type form v is that it splits as
v = pu+n where
2

p=———=ci(L, h)

log|| s ||
and the form 7 near D is essentially the pullback of the Poincaré
form wa~ under a monomial map, plus low order terms. More pre-
cisely, suppose that zy,..., 2, are normal coordinates for the com-
ponents of D in a neighbourhood of a point p € D such that D is

given locally by the vanishing of the monomial
7(2) = 2 2% .. k.

We treat 7 as a map from a neighbourhood U of p to the disc
A ={z€ C:| z|< 1}. Let wgya be the local Euclidean (1, 1)-form

1>
WEucl = — Z dz; A\ dz;

1=1
and let 8 = —log|| s ||>. We will show in §5 that

1
*
—WEycl + n ~ —WEucl + T wa+

B g

near p. Note that 8 # 0 on M — D and 8 — oo as we approach D.
Let Dy, ..., D, be divisors of the form

(1.8.2) D; =) b;E;
Jj=1

such that the matrix (b;;) has nonnegative integer entries and at
least one positive entry in each row and column, i.e. the divisors
D; are effective and their sum has the same support as D. We may
choose sections s; and metrics h; for the line bundles [D;] as above,
and use them to construct Poincaré-type forms v;. Let w be the
fundamental form of a hermitian metric on M and let ly, [4, ..., [, be
positive integers.

DEFINITION (1.8.3). We will call any expression of the form

r
wg = lmr*w + Z liI/i

=1



70 CAROLINE GRANT AND PIERRE MILMAN

a modified Saper form which is distinguished with respect to m. We
will call a metric on M — D a modified Saper metric if its funda-
mental form is quasi-isometric to a modified Saper form.

If Y is a smooth submanifold of M which has normal crossings
with D, we also call the induced metric on Y — (Y N D) a modified
Saper metric. We are particularly interested in the case in which
the closure X of 7(Y — (Y N D)) in M is singular, so that Y is an
embedded resolution of a singular analytic subspace X C M.

Every positive modified Saper form wg determines a modified
Saper metric. If in addition w is Kahler, then so is wg. We will
show that the sum of a modified Saper metric on M — D and the
restriction of a metric on M is a modified Poincaré metric on M — D.

As with modified Poincaré metrics, there may be many different
non-quasi-isometric modified Saper metrics on M — D.

Let ws,p be the fundamental form of a distinguished Saper metric
on M — D, as defined in §1.7.

DEFINITION (1.8.4). We will say that a modified Saper metric
and its fundamental form wgnom are homogeneous if wg pom satisfies

*
WS hom ~ T W + Wsap-

The sum of a homogeneous Saper metric on M — D and the
restriction of a metric on M is a homogeneous Poincaré metric on
M - D.

(1.9) Ly-cohomology of Poincaré and Saper metrics. Let X
be a reduced compact analytic subspace of a compact Kahler man-
ifold M. Let 7 : M — M be a composite of blow-ups of the type
described in §1.1 which resolves the singularities of X, let X be the
strict transform of X in M, and let D be the exceptional divisor of
7 in M. Then X is smooth and has normal crossings with D, and
X — (X N D) is biholomorphic to X — - Xsing- A metric on M - D
induces a metric on X — Xjing. Since X has normal crossings with
D, the restriction to X — (X N D) of a distinguished Saper metric
on M — D is a distinguished Saper metric on X — (X N D), and
similarly for Poincaré, modified Poincaré, homogeneous Poincaré,
modified Saper, and homogeneous Saper metrics.

It is always possible to construct distinguished metrics on M — D
using C'™ partitions of unity, but these metrics may not be Kahler.
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Saper [S2] constructed Kahler distinguished metrics in the case that
X is a compact Kéahler variety with isolated singularities, and used
Goresky-MacPherson’s characterization of intersection cohomology
to prove that the Lo-cohomology of X with respect to such a metric
is isomorphic to the intersection cohomology of X.

In contrast, the Lo-cohomology of X with respect to a Poincaré
metric on X — (X N D) is isomorphic to the cohomology of X ([Z1],
[Z2]). It is easy to construct a Kahler Poincaré metric on M — D
and hence on X — (X N D) (see §5.4).

Although we have restricted ourselves in this paper to subvarieties
of compact Kahler manifolds, similar constructions can be done in
more general situations. In particular, if X is any compact Kahler
variety with isolated singularities, we may make use of local embed-
dings of neighbourhoods of the singular points of X into domains
in C", to construct our metrics on X — Xsing- Our modified Saper
metrics on varieties with isolated singularities are exactly Saper dis-
tinguished metrics. 5 ~

Let h be a hermitian metric on X — Xgp, = X — (X N D). We
define associated complexes of L, sheaves S on X and S on X as
follows. Let Sy be the complex of presheaves on X whose sections
over any open set U in X are smooth measurable differential forms
¢ on UN (X — Xgng) such that both ¢ and d¢ are Ly-bounded with
respect to h. Let S be the associated complex of sheaves on X.
Similarly, we define a complex of presheaves S, on X, whose sections
over any open set U in X are smooth measurable differential forms
¢ on U — (U N D) such that both ¢ and d¢ are Lo-bounded with
respect to h, and let S be the associated complex of sheaves on
X. One of the conditions needed to apply Goresky-MacPherson’s
theorem to S is that S must be a complex of fine sheaves. We will
show that if h is a modified Saper or modified Poincaré metric then
S on X is fine, and that if A is a modified Poincaré metric then S on
X is also fine. We prove corresponding statements for L, sheaves
on M and M.

§2. Main results and guidance through the paper.

(2.1) Theorem I. Our first main result concerns the existence of
complete Kéhler modified Saper metrics. We prove parts (i) and
(ii) in §8, part (iii) in §9, and part (iv) in §10.
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THEOREM 1. Let My be a compact Kahler manifold with Kdhler
form wy. Suppose that {m; : M; — M;_,} is a finite sequence
of blow-ups along smooth centres C; C M;_1, chosen so that C}
has normal crossings with the total ezceptional divisor D;_; of the
composite of the first 7 — 1 blow-ups. Then

i. There exist complete Kihler modified Saper metrics with fun-

damental forms ws;, constructed inductively on the manifolds
M; — D;. These metrics are bounded below by the sum of a
Saper distinguished metric and an induced metric from My,
and are quasi-isometric to this lower bound in the case that
for 2 < i < j either C; C D;_; or C; is disjoint from D;_;.
If, in addition, dimC; = 0 and dimC; = 0 for each ¢ such
that C; is disjoint from D;_; (i.e. the image of D; in My con-
sists of isolated points in My), these metrics are exactly Saper
distinguished metrics.

ii. The sum of a modified Saper metric on M; — D; and the re-
striction of a metric on M; is a modified Poincaré metric on
M; — D;, which in turn is bounded above by a true Poincaré

metric.
iii. There also exist complete Kihler homogeneous Saper metrics
on Mj - D]‘.

iv. The complex of Ly sheaves on My associated with any mod-
ified Saper or modified Poincaré metric on M; — D; is fine.
The complez of Ly sheaves on M associated with any modified
Poincaré metric on M; — D; is also fine.

The bounds of (i) and (ii) are written more concisely in terms
of the composite mjo of the first j blow-ups and the fundamental
forms w; of a metric on M;, wg; and wp; of the modified Saper and
modified Poincaré metrics, ws,p of a Saper distinguished metric, and
Wpoinc Of a true Poincaré metric on M; — D;:

* ~ ~
T;oWo + Wsap < Wg,j < Ws,j + Wj = wp;j < Wroinc-

The fundamental form ws of the metric in (iiil) satisfies the quasi-
isometry ws ~ ;o wo + Wsap-

Suppose that X is a reduced compact analytic subspace of M,
and the maps 7; determine a desingularization of X of the type
described in §1. Let # : M — M, be the composite of all the
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blow-ups, let D be the exceptional divisor of 7, and let X be the
(smooth) strict transform of X in M. Since X and D have normal
crossings, the metrics we construct on M — D induce metrics with
the corresponding properties on X - ()~( ND) =2 X — Xging.

(2.2) Theorem II. Our second main theorem states that there is a
natural relationship between incomplete metrics which determine an
embedded resolution of singularities, and complete modified Saper
and modified Poincaré metrics.

DEFINITION (2.2.1). Let X be a reduced compact analytic sub-
space of a compact Kahler manifold M. Let h be an incomplete
hermitian metric on M’ = M — Xg,,. We will say that h determines
an embedded resolution of the singularities of X if the following con-
ditions hold:

i. The completion M of M’ under h is a compact Kihler mani-

fold and the completion X of X in M is also smooth.

ii. Ift: M’ < M is the natural embedding of M’ into its com-
pletion then M — ((M') is the support of an effective divisor
D on M with only normal crossings, and the divisor D has
only normal crossings with X.

iii. The map ™' : M — D — M’ extends to a holomorphic map
T M—>M
which is a biholomorphism from M — D to M’ = M — Xsing-

THEOREM 11. Let X be a reduced compact analytic subspace of
a compact Kdhler manifold M and let w be a Kdhler form on M.
Suppose that f is a positive C* function on M — Xgng such that
f < 1 and such that for all sufficiently large integers [, the (1,1)-
form

O =lw+ —Haglogf

is the Kdhler form of an incomplete metric on M — Xging which
determines an embedded resolution X < M of the singularities
of X. Let D be the associated divisor of the map m : M - M
described above and let s be a section of the line bundle [D] such
that the divisor (s) determined by s is D. Suppose also that the
function 7 f on M — D extends to the norm-squared || s ||* of s on
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M under some hermitian metric on [D]. Then for all sufficiently
large integers 1, the (1,1)-form

wg = lw — —2;185 log(log f)?

on M — Xgng 1s the Kdhler form of a complete modified Saper metric
on M — Xgng & M — D. Moreover the associated complexes of Lo
sheaves on M and X are fine.

We construct Kahler forms @ with the required property in §4.
The proof of Theorem II is given in §9.2 (Theorem (9.2.1)) and §10.

REMARK. In practice, the generating function f for the Poincaré-
type (1, 1)-form —%05 log(log f)? may be very constructive in na-
ture, reflecting the blow-ups used to resolve X. There is a procedure
for constructing such a function f explicitly, locally near p € Xing,
as an expression of the form 7, | w; |2, where w; is a holomorphic
function on a neighbourhood U of p which vanishes on U N Xgin,.
An algorithm for this construction is not included in this paper but
will be given elsewhere.

(2.3) Guidance through the paper. This paper is organized as
follows. In §3 we introduce local coordinates for the blow-up 7 :
M — M of a complex manifold M along a smooth centre C. We use
these coordinates to describe the exceptional divisor E = 7~ !(C)
and the associated line bundle L = [E]. If s : M — L is a nonzero
global holomorphic section of L and h is a hermitian metric on L,
then the Chern form of the metric h on L is the (1, 1)-form
ci(L,h) = —Eaglogii s |7
2m

We may always choose the section s so that its associated divisor (s)
is E. We conclude §3 with some linear algebra lemmas on the ac-
cumulation of exceptional divisors under repeated blow-ups. These
lemmas will be used in §8 in estimating the asymptotic rates of
growth of our metrics near the singular locus of X.

In §4 we use the tubular neighbourhood construction of the ap-
pendix to show that if w is a Kahler form on M, then for a suitable
metric h on L, the (1,1)-form

(2.3.1) O =Ir*w—c(L, h)
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is the fundamental form of a Kéhler metric on M for all sufficiently
large integers | (Theorem (4.2.2)). We construct metrics inductively
on repeated blow-ups in this way.

In 85 we study Poincaré-type (1, 1)-forms on the complement of
an effective divisor D with normal crossings in a compact complex
manifold M. Given a hermitian metric h on the line bundle L = [D]
and a global holomorphic section s of L such that (s) = D and
|| s ||<1on M, we construct a Poincaré-type (1, 1)-form

sy

(2.3.2) v=—~—"08dlog(log|| s ||*)
2
The form v splits into two essential parts v = p + 1 where
2
= QCI(L) h’)
log || s ||

and where, in local normal coordinates near D, the form 7 is the
pullback of the Poincaré form wa+ under a monomial map 7 asso-
ciated with D, plus low order terms. If p is a point in D at which
k components of D intersect, and if 21, ..., z, are local normal coor-
dinates in which the components of D through p are given by the
equations z; = 0 for 1 < 7 < k, then the monomial map 7 is given
by

— A0
T(21, oy 2n) = 271 252...2),

where ); is the multiplicity of the ¢th component of D through p.

This splitting leads to the crucial idea in our construction of mod-
ified Saper metrics: if we choose appropriate divisors D; and corre-
sponding Poincaré-type forms v;, we can use the forms p; to obtain
the positivity we need and the forms 7, to get completeness. Using
this splitting, it is easy to construct Poincaré and modified Poincaré
metrics (Proposition (5.4.1)). We also show that the sum of a mod-
ified Saper metric on M — D and a Kahler metric on M is always a
modified Poincaré metric on M — D (Proposition (5.5.1)).

In §6 we show that whenever a metric on M — D is bounded below,
locally near each point of D, by the pullback of the Poincaré form
wa+ under a monomial map 7 associated with D, then the metric is
complete.

In §7 we introduce our complete metrics for a single blow-up 7 :
M — M of a compact Kihler manifold M along a submanifold



76 CAROLINE GRANT AND PIERRE MILMAN

C C M. We start with a Kahler form w on M and choose a metric
h on the line bundle L associated with =, such that the (1, 1)-form
@ = lrm*w — ¢;(L, h) of (2.3.1) above is the fundamental form of a
Kahler metric on M for sufficiently large . Using an appropriate
section s of L, we construct a Poincaré-type (1,1)-form v, as in
(2.3.2) above, on the complement of the exceptional divisor £ =
7~1(C) in M. The fundamental form of our modified Saper metric
on M — E is

(2.3.3) ws =Irt*w+v
where [ is a sufficiently large positive integer. The (1, 1)-form
wp = wg + w

is the fundamental form of a Poincaré metric on M — E. In Propo-
sition (7.2.1) we use the results of §5 to give the precise asymp-
totic behaviour of our metrics near the exceptional divisor E. If
(21, ..., 2n) are normal coordinates near a point in F, such that E is
given locally by the equation z; = 0, then locally

v-1 1 - dz
wSNT(*w-{— ( 3 2 dZi/\dZi‘*' Cizl/\ 21 2 2)1
T \llog|z | i3 | z1 |"(log ]| 21 )

i.e. our modified Saper metric for one blow-up is locally quasi-
isometric to the sum of the metric induced from M and a Saper
distinguished metric. Suppose that 2z, ..., 2; are fibre coordinates
for the map E — C. Then locally

w \/—1 ( dz1 /\d_Z_l
S ~Y
m \| 2 [*(log] 21 |)?
1 k n
— = Ndz Adz + dz Adz; | .
| log| 21 '2|z=:22 i=§l—1 )

These results are generalized in §8 and §9.

In §8 we introduce our complete metrics wg; inductively for a
sequence of blow-ups and prove parts (i) and (ii) of Theorem I. Let
{mj : M; = M;_,} be a sequence of blow-ups along smooth centres
C; of the type described in §1.1. We take as wg,; the modified Saper
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form wg of §7. If wg;_; is the modified Saper form obtained after
J — 1 blow-ups, we take as wg; the (1,1)-form

*
wsj = l7rj wsj—1+Vj

where [ is a sufficiently large positive integer and v; is a Poincaré-
type (1, 1)-form associated with the total exceptional divisor D; of
the composite of the first j blow-ups. In Theorem (8.4.1), we use the
results of §3, §5, and §7 to obtain the asymptotic behaviour of our
modified Saper metrics near any point p in D;. We may choose local
normal coordinates (21, ...,%,) for M; in which D; is given locally
by the equation z{\‘zg\z...z,i"‘ = 0 for some positive integers Ay, ..., Ag.
We let 7; be the corresponding monomial map to the punctured disc
A*, given by

— A1 A L
Ti(21, -y 2n) = 271 252 . 25"

We may also assume that the map from the exceptional divisor
E; = 7;'(C}) to the jth centre C; has fibre coordinates {z;}ics for
some subset I of {1,...,n}. We let dzy AdZy = > ;c;dz; AdZ;. In
terms of such coordinates, the asymptotic behaviour of wg ; is given
locally by

V-1

™

1
( de/\dEf) +7';wA*.

Wwgj ~ Tiwsj—1 +
37 RS | log| z125...2¢ |* |

The last two terms correspond to the terms p; and 7; in the decom-
position of the Poincaré-type form v;. This asymptotic behaviour is
one of the key points of our results. The monomial map 7, is closely
related to the linear algebra of the accumulation of exceptional di-
visors given in §3. The powers ); occurring in the map 7; are the
multiplicities of the components of the total exceptional divisor D;
passing through p.

We construct homogeneous Saper metrics in §9 and prove The-
orem I (iii) and Theorem II, except for the statement about fine
sheaves. In §10 we complete the proofs of Theorems I and II by
proving the results on fine sheaves.

§3. Background on geometry of blow-ups.

(3.1) Local coordinates for blow-ups. Let M be a compact
complex manifold of dimension n, let C' be a submanifold of codi-
mension k£ > 1, and let
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M- M

be the blow-up of M along the centre C. The blow-up can be
described in local coordinates as follows. Let p be a point in C and
let V' be a coordinate neighbourhood of p in M, centered at p, with
holomorphic coordinates (Z1, Zs, ..., Z) such that

i. CNVisgivenby 71 =2, =..=2; =0 and

ii. Zg41,..., Zy are local coordinates on C.
Let &1,&2,...,&k be homogeneous coordinates on P*~1. The set
7~}(V) in M is biholomorphic to the subset V of V x P*¥~1 given
by

We cover V by open sets U, = {& # 0}, for j = 1,2,..., k, with
coordinates (2j1, ..., Zjn), where

i 2 : . .
zj,-:—f%:—z—;, if 1<i1<k and t#
Zjl:Zl 1fl=]0rk+1§l§n

The restriction of 7 to U; is given by the equations
Z1 =z ifl=jork+1<Il<n.

We will sometimes find it convenient to refer separately to C coor-
dinates and the remaining coordinates in the directions normal to
C, setting

ZN = (Zl,...,Zk) and ZCZ (Zk+1,...,Zn).
Similarly,

ZjN = (Zjla ey Zj/c) and 2c = (Zj,k+17 ---,Zjn)-

If ¢ is any point in 77%(p) and if 1 < j < k, then by a suitable
choice of homogeneous coordinates on 77 1(p) & P*~!, correspond-
ing to a linear change in the coordinates Zi, ..., Z;, we may assume
that ¢ is the origin, given by z;; = ... = z;, = 0, in the open set U;.
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(3.2) The exceptional divisor E. The exceptional divisor of the
blow-up is E = 7~1(C). In the open set U; in M, E is given by
z; = 0. The map 7 is a biholomorphism of M — E onto M — C
and maps F onto C. Let 7 : E — C be the restriction of 7 to E.
In local coordinates on U; and C' we have

T(Zjl, veey zjn) = (zj,k+la veey Zjn)
or
T(2jn, 2c) = zc-

The fibres E, of the map 7 : E — C are isomorphic to P¥~!. Let
Nc/u be the normal bundle of C' in M and let IV be its restriction
toVnNC:

N = NC/M ,VﬂC—D:J (Vﬂ C) X Ck.

There is a natural isomorphism ¢ : E = P(N¢/u), given locally as
amap VNE — P(N) 2 (VNC) x PF! by

»(2n, Zc, [€]) = (Zc, [€])-

In local coordinates on U; and P(NV), the map 9 is given by
Y(zjn, 2¢) = (2c, [C(5)])
where ((j) is defined by
CUli=zi 1<i<k, i#j and ((j);=1

so that [((j)] = [£]. The functions {(j);, for ¢ # j, are nonhomoge-
neous coordinates for an open set in P*¥~! and

(3:21) 25C0) = (Zuy o Z6) = Zn

for all j.

(3.3) The associated line bundle L. Let L = [E] be the line
bundle on M associated with the exceptional divisor E. The re-
striction of L to E is isomorphic to the normal bundle Ny ;; of E
in M. The restriction of L to each fibre E, = P*~! of the map
7 : E — C is isomorphic to the universal bundle Opi-1(—1) on
P*~1. If v is a nonzero point in the fibre Neymp of Nojy over p, [v]
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is the corresponding point in P(N¢/u)p, and 9 : E = P(Ngyu) is
the natural isomorphism, then ¥~!(p, [v]) € E, and the fibre of L
over ¢~'(p, [v]) corresponds, via the isomorphism L |g,= Og, (—1),
to the line in N¢/u,, spanned by v. We have the following commu-
tative diagram relating L |g and N¢yu:

L |g= Ngyy —— 7*Noyy —— Nou

(3.3.1) l 1 l

where ¢ denotes inclusion.

(3.4) Transition functions and sections of L. We may cover
C by coordinate neighbourhoods V, of the form described above
and then enlarge this collection of coordinate neighbourhoods to a
covering V of all of M. In M, the collection of coordinate neigh-
bourhoods U, ; covers E and we enlarge it to a covering U of M.
For each U € U, let fy be a holomorphic defining function for £
on U. For U and U’ € U, let gyy» be the nonvanishing holomorphic
function on U N U’ given by

=T
guu for
The functions {gyy} are transition functions for a line bundle L
on M associated with E. If {Fy} is another collection of defining
functions for F, the functions {Gyy = Fy/Fy'} may be different
from the functions {gyy+}, but the line bundle determined by the
functions {Gyy-} is isomorphic to L.
In particular, z; is a defining function for E on U;, so we may use
the functions
gz
Yoy Z
as transition functions for L = [E] on the set U; N Uj.

A meromorphic section s : M — L of L may be given by a
collection of meromorphic functions sy on U satisfying sy = gyy sy
on UNU'. Each meromorphic section s of L defines a divisor (s)
which is linearly equivalent to E. The functions fy themselves give
a global holomorphic section s of L for which (s) = E. If ¢ is
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another section of L such that (s') = E then s and s’ differ by a
meromorphic function with no zeros or poles, i.e. by a constant. In
particular, if (s) = F then we may assume that s; = az; on U, for
all 7 and for some constant a € C.

(3.5) The Chern form of a metric on L. Let h be a hermitian
metric on L, let s : M — L be a nonzero global holomorphic section
of L, and let || s || be the norm of s under & at any point in M.
The Chern form of the metric A is the (1, 1)-form
ci(L,h) = —Eﬁglogll s 7.
2m
The following local calculation shows that ¢;(L, h) is well-defined
and is independent of the section s used to calculate it. On any set
U € U we have || s |[° = hy| sy |?, for some positive C* function
hy. Then

801log|| s ||* = 8dlog(hy| su %)
= 90 log hy + 00log sy + 00 log 57
= 90 log hy

since dlog sy = 0log3y = 0.

Note also that ¢;(L,h) is hermitian and d-closed, by Lemma
(1.2.1). The Chern class of a line bundle is always integral (see
[GH] or [W]).

(3.6) Pullbacks of divisors with normal crossings. Let D be
a smooth connected analytic hypersurface in M, i.e. D is a smooth,
reduced, irreducible divisor on M. Assume that D has normal cross-
ings with C. Then for every p € C'N D we may choose local coor-
dinates as in §3.1 and such that D is given locally by the equation
Zq = 0 for some a. In the open set U; in M, the pullback divisor
7*D is given by the equation

2jjZja =0 if 1<a<k and a#j
Zja =0 ifa=jork+1<a<n.

The strict transform D of D is the closure of 7='(D — C) in M
and is given locally in the open set U; by the equation z;, = 0 if
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j # a. If j = a then D does not intersect U;. The divisor Dis
smooth, reduced, and irreducible and has normal crossings with the
exceptional divisor . We may express 7*D globally in terms of D
and E as

(3.6.1) ™D =D+ 6E

where 6 = 1if C C D and 6 = 0 otherwise. If Lp = [D] is the
line bundle on M associated with D, then 7*Lp = [D] ® L?, where
L = [E].

Now let D be a divisor on M of the form D = }_7_; a;E;, where
the irreducible components F; of D are smooth and each a; is a
positive integer, and such that D and C simultaneously have only
normal crossings. Then

(362) ™D = Za,;ﬂ'*Ei = ZaiEi + (Z aiéi) E
i=1 1=1 =1

where 6; = 1 if C C E; and é; = 0 otherwise.

(3.7) Pullbacks of divisors under a sequence of blow-ups.
Consider a finite sequence of blow-ups {m; : M; — M;_;} along
smooth centres C; C M;_;. For 0 < k < j, let mjx = Tgq1 0 Mey2 ©
...om; : Mj — M. Let Ej; be the exceptional divisor of 7;, i.e. E; =
75 '(C;). Let D; be the exceptional divisor of the composite ;o of
the first j blow-ups, given inductively by the equations D; = E;
and D; = n;D;_, + Ej for j > 2. Assume that the centres C; have
been chosen so that C; and D;_; simultaneously have only normal
crossings. For 1 < j < m let E, ; be the pullback of E; to My, i.e.
E.; is the total transform E,; = 7;, E;. Let Epm = Ep. We
may write D,, as the sum

Dpn=Y Emj.
j=1

For 1 < k < m, let E‘m,k be the smooth, reduced, irreducible
divisor in M, obtained by taking repeated strict transforms of Ej
under the blow-ups mgy1, ..., Trm. Let Em,m = F,,. The divisors
{Emx}i, have only normal crossings. We may express the total
transforms {E,,;} in terms of the strict transforms {E,, ;} as
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m
Em,j = Z ajkEm,k
k=1
for some nonnegative integers a;x. Let A be the m x m matrix (a;i).
We will sometimes write this transition matrix as A = Tp,(E, E).
Repeated use of formula (3.6.2) shows that A is an upper triangular
matrix of the form

lapp a1z ... A1 m-1 Gim

01 A23 ...02m-1 Q2m
~ 00 1...a3;m1 a
A=Tn(E,BE)=]. . Sml Tem
00 O0... 1 Om—1,m
00 0 o 1 )

Let A = T (E, E’) be the matrix which describes the collection
of total transforms {En_1;}7%;" in terms of the strict transforms

{Em_l,j}?_‘:‘ll on M,,_;. For 1 <k <j —1 define

S = 1 lfC] C Ej—l,k
Y7 0 i Cy ¢ B

Using (3.6.2) we obtain the following relationships between the en-
tries of A and A:

LEMMA 3.7.1.
i ajszljk ZflS],ksm—-l
m—1
ii. Ajm = Y, GjkOkm ifl<ji<m-—1
k=1

— 6jm + Z;n;]l.u ajk(skm Zfl SJ S m—2
(sm—l,m ifj=m-1

Property (i) means that we may omit the superscripts “on the a’s
without any ambiguity: aj; is the multiplicity of Ey,x in En, ; and
is the same for all m > k. Property (ii) implies that if Cp, C Epp_1j
then a;m, > 0.
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Similarly, we define the total transforms D, ; of the divisors D;
by the equations Dy, ; = my,;D; for 1 < ¢ < m —1 and Dy =
Dy = Dyym-1 + Ep. Then

1

Dm,i = Z Em,j,
J=1

and the matrix Tp,(D, E) for the total transforms {D,,;} in terms
of the total transforms {Ey, ;} is the m x m lower triangular matrix

10...0
11...0
T,.(D,E) = :
11...1

The irreducible components of D,, = Dy, ,,, are the strict transforms
{E’m,]— };"zl The irreducible components of Dp,; for 1 <¢<m -1
are also contained in the set {E,,,;}. We may express the divisors
{Dpn;} in terms of the strict transforms {E,, ;} as

m
Dm,i = Z tijEm,j
Jj=1

for some nonnegative integers t;;. The matrix T' = (t;;) = Trn(D, E)
is given by

(3.7.2)
T = T,(D, E)T(E, E)
1 ap a13 .- a1,m-1 a1m \
1 a1 + 1 a13 + Qg3 ... a1,m—1 + Q2m-1 Aim + Qom
_ m—2 m—1
- 1a12+1a13+a23+1...Zak,m_1+1 Zak,m
k=1 k=1
m—2 m—1
lapp+la;z+axn+1... Qkm—1 + 1 Zak,m+1

\ = = )

Let T = Trm-1(D, E) be the matrix for the divisors {Dm-1,} in
terms of the strict transforms {Ep,_1;}.
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LEMMA 3.7.3. The matrices T = (t;;) = Tm(D,E) and T =
(t z]) =T 1(D E) are related by the following equations:
i. tw—t”for1<z]<m—1

ii. m k:l tzk(skm fOT 1 < 1 <m-— 1;
.ty =tpo1; = fm_l,j for1<j<m-1, and
iv. tm = tm——l,m +1= Z;cnz_ll tm—l,kakm +1= Eznz—ll tmkdkm + 1.

H~

Proof. Apply equation (3.6.2) to the pullbacks 7}, Dy,_1; = Dp
for 1 < i < m — 1 to obtain equations (i) and (ii). The exceptional
divisor Dy, r, is just

Dm = W:an—l,m—l + Em = Dm,m—l + Em,m-
Applying (3.6.2) again gives equations (iii) and (iv). O

Using equation (3.7.2) and Lemma (3.7.3) we obtain the following
description of T' = T,,,(D, E) for m > 2.

PROPOSITION 3.7.4. The matriz T = (t;;) given by the equations

m
Z 4] m,]

has the following properties:
i. 1 is a nonnegative integer and t;; > 0 if 1 > j,

.ty >t if 1 >k,

i g = b1y = . = tj41, =155,

iv. detT =1,

v. tj_1; > 0 if and only if C; C Dj_q, and

vi. the entries of T are all positive if and only if C; C D;_; for
2<753<m.

Proof. Properties (i) - (iii) are immediate consequences of equa-

tion (3.7.2). To prove (iv), note that det T,,(D, E) = det T,,(E, F) =
1. For (v), use Lemma (3.7.3ii) to write ¢;_; ; as

j 13 — Zta 1k5ka
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where the coefficients t;_; j are positive for 1 < k£ < j—1 by property
(i). Recall that dx; > 0 if and only if C; C E;_; 4. Then t;_;; > 0
if and only if C; C E] 1,¢ for some k, 1 < k < j — 1. The divisors
{E;_14 Y2} are the irreducible components of D;_;, so ¢;_;; > 0 if
and only if C; C D;_;.

It follows from (v) that if C; ¢ D,;_; for some j then not all

entries of T" are positive. If m = 2 we have

T, = tutiz) _ (1 an
2 t21 t22 1 Q12 + 1
where ty5 is positive if and only if C; C D, by (v). Suppose that

for some j > 3 the matrix T;_; has positive entries and C; C D;_;
for 2 <4 < j. The matrix T} is of the form

tlj

T, = Ty 3
7 t]_11J

tit o0t tjj

where (tjla tj2, ceny tj,j—l) = (tj—l,l, tj_l’g, ceey tj-l,j—-l); by property (lll),
and t;; > ty; for « > k by property (ii). From these properties and
our inductive assumption, it is sufficient to show that ¢;; > 0. By
Lemma (3.7.3ii), t1; = Z,:l t1x0k;- The coefficients ¢,; are positive
for 1 < k < j — 1 by our inductive assumption. If C; C D;_; then
C; C EJ 1, and dg; = 1 for some k, 1 < k < j — 1. Consequently
tu>0 O

When working in local coordinates near a point ¢ in M, we will
consider only the submatrix A of T;, corresponding to those divisors
Ep o which pass through g.

(3.8) Isolated singularities. If X has only isolated singular points,
then we may resolve each singular point in turn and write a sepa-
rate matrix for the exceptional divisor of each, since each blow-up
map 7; will be a biholomorphism on all connected components of D;
except the one containing F;. The exceptional divisors for distinct
points will be mutually disjoint. For our purposes it is enough to
describe the matrix corresponding to a single singular point of X.
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PROPOSITION 3.8.1. Let X be a singular compact analytic sub-
space of My with isolated singularities. Let {mp : My, — M1} be
a sequence of blow-ups of the type described in §1.1 which resolves
one of the singular points of X. Then, for each m, all entries of the
matriz T = T, (D, E) are positive, i.e. the multiplicity of the strict
transform E‘m,,- of E; in the total transform D, ; of D; is positive
forall,j.

Proof. Suppose that the blow-ups have the properties described in
§1.1. Then the image of D; in M, always lies in Xging, 50 C1 C Xiing
and C; C Dj_ for j > 2. Apply Proposition (3.7.4). O

(3.9) Line bundles for repeated pullbacks. We list here, for
further reference, the relationships among certain divisors, line bun-
dles, sections, and metrics.

Let h; be a hermitian metric for the line bundle L; = [E;] on M;
and let s; : M; — L; be a section of L; such that (s;) = E;. Such
a section always exists (§3.4). For m > j let m, ; be the composite
map

Tm,j = Tj41 © Mjp2 O - O My - My, — M.

Recall that the total exceptional divisor of m;o is D; = ¥, E

Let L; = [D;]. The hermitian metrics h; and the sections s; 1nduce
hermitian metrics h and sections §; of the line bundles L,. We use
the notation

—_— * . . — * . . — * . e * .
Lm’j - ﬂ-m,]L]’ Emyj - ﬂ'm,JE]’ hm - 7T h sm’J - 7rm5.78-7

[ = * [ = * . 2 ) e * S .
Lmj =% ;L;, Dimj =13 Dj, hmj =m0 hj, and  $m; =7}, ;5.

R j J A J R
Lj = .@le,ia H JEt) S = H Sjis (8]‘) = Dj,
= =1

= =1

Lini = [Emjl, (5mj) = Emj» Lmj=[Dmj], and (3m;) = D -

For consistency we sometimes write Ly, = Ly, Epm = Ep,
Dy m = Dy, and so on.
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§4. An Incomplete Metric on M — X;,, which determines
an Embedded Resolution of X by Blow-ups. Let M be a
compact complex manifold of dimension n, let C' be a submanifold
of codimension & > 1, and let # : M — M be the blow-up of M
along C. Let E = n7'(C) be the exceptional divisor of the blow-
up and let L = [E] be its associated line bundle on M. We begin
with a hermitian metric hp; on M, or equivalently a C'™ positive
hermitian (1,1)-form w. We will show that if ¢;(L, h) is the Chern
form of L with respect to a suitable hermitian metric h on L and [
is a sufficiently large integer, then the (1,1)-form

@ =Ir*w—ci(L,h)

is positive and determines a hermitian metric hy on M. If hy, is
Kabhler then so is hy;. If M is algebraic and hjs is Hodge, then Ay
is also Hodge.

Applying this construction inductively to a sequence of blow-ups
m; : Mj — M;_,, we obtain C* positive hermitian (1, 1)-forms

wj = ljﬂ';a)j_l - Cl(Lj, h])

which determine hermitian metrics hy;; on M;. Suppose that X
is an analytic subspace of M, and the blow-ups 7; are of the type
described in §1.1. Then the restrictions of the metrics hy; to the
strict transforms X; of X induce hermitian metrics on X — Xgg
which are Kahler if hjy, is K&hler but are incomplete unless X is
nonsingular. Moreover the completion of M; — D; in the metric Ay,
is M; and the completion of X — X, is Xj.

(4.1) A metric for L.Let 7 : E — C be the restriction of the
map 7w : M — M to E. For any subset W C M, let Ly be the
restriction of the line bundle L to W.

PROPOSITION 4.1.1. There ezists a hermitian metric h on L
whose Chern form cy(L,h) is negative along the fibres of the map
7 : E — C, i.e. the restriction of c1(L,h) to the tangent bundle
T(E,) of each fibre E, of T is a negative definite (1,1)-form.

Proof. Let N = Ng¢/p be the normal bundle of C' in M. Any
hermitian metric on N induces a hermitian metric on Lg by first
pulling back to 7*N and then restricting (see diagram (3.3.1)). A
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metric on Lg may be extended in a C° way to a metric on L
over all of M, for example by using the tubular neighbourhood
construction of Proposition (A.3). We will show that any hermitian
metric constructed in this way has the required property.

Let p be any point in C. Choose local coordinates (Z1, ..., Z,) in
a coordinate neighbourhood V in M centered at p and local coordi-
nates (zj1, ..., Zjn) on sets U; in M, as described in §3.1. We will de-
note points in N over VNC by (Z¢, &) where Zg = (Zg41, ..., Zn) €
C and

k
0
£= by

Choose any hermitian metric || || on N. In local coordinates,

k
| (Zc,&) IP= Y hw(Zc)é&

uw=1

for some C'*° functions h,, such that the matrix (h,,) is positive
definite hermitian. We may make a linear change of variables in
Zy, ..., Zx (and hence in &, ...,&) so that at p = (0,0,...,0), the
matrix (h,,(0)) is the k£ x k identity and

k
10,1P=31¢& I
p=1

Next we describe the induced metric on Lg. We denote points
in L over U; by ((zjn,2c),t;) and note that on U; N U; the fibre
coordinate transforms by the rule

ti = gijt;
where g;; = z;;/zj; is the transition function for L on U; N U;. The
natural map L — N is given locally by
((zin, 2¢), t5) = (2¢,t¢(5))

where ((j) is as defined in §3.2, i.e. ((j)i =z;i for 1 <¢ <k, ¢ # j,
and ((j5); = 1. The hermitian metric on Lg induced from N is given
locally by

Il (z3,20),t5) 1P =15 P X B (26)C(5),uC ()

pr=1
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On the fibre E, of the map 7 : E — C, we have zc = 0 and

k
1 (23, 0),89) II° = | 25 Zl HOAE

Let h be any C*° extension of this metric to a metric on L over all
of M, for example by using the tubular neighbourhood construction
of Proposition (A.3). To finish the proof of the proposition, we need
only look at the description of & on E. The restriction of ¢; (L, h) to
the tangent bundle TE of E may be calculated using the formulas
of §3.5:

A [/ — — k P
C1 (L’ h) IT(Ef‘lUj)= ———2—71_—];66 log ( Zl huu(zC)C(J)uC(J)u> .
=

The restriction of ¢;(L, h) to the tangent bundle of the fibre E, is

— _ k
e1(L, ) lrgeyy= — 0B log MONE
”:

which is a negative (1, 1)-form, the negative of the (1, 1)-form asso-
ciated to the Fubini-Study metric on P*¥~!. Since p was any point
of C, the Chern form ¢;(L,h) is negative along every fibre of the
mapT:E—C. O

(4.2) A finite metric for M.

PROPOSITION 4.2.1. If w is a positive (1,1)-form on M, and h is
a hermitian metric on L whose Chern form is negative on the fibres
of the map 7 : E — C, then the (1,1)-form

@ =Ir*w —¢;(L, h)
is positive on M for all sufficiently large integers l.

Proof. Let Y be the subspace of TM | consisting of all vectors
which are tangent to fibres of the map 7 : £ — C, i.e.

Y = |J T(xY(¢)).

ceC
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If wis a positive (1, 1)-form on M, then 7*w is positive semi-definite
on M. If v € TM is a nonzero tangent vector then m*w(v,v) = 0
if and only if v € Y. The Chern form c¢;(L, h) is negative on Y
by construction. These properties can be expressed in terms of
functions on the projectivized tangent bundle P = PTM.

Let h’ be any hermitian metric on TM and for v in TM let || v ||
be the norm of v under h'. For v # 0, let [v] be the image of v in
P. The (1,1)-forms 7*w and —c;(L, h) determine well-defined C*
functions on P given by

f) =T g () = ZABMY)
ol v ]
with the properties f >0 on P—-PY, f =0 on PY, and g > 0 on
PY. Since PY is closed, g > 0 on some neighbourhood U of PY.
Then If + g > 0 on U for all [ > 0. Since P is compact, we may
choose [ > 0 such that [f + g > 0 on all of P, and consequently
Im*w — ¢1(L, h) > 0 on M for all sufficiently large [. (]

Proposition (4.1.1) tells us that there is always a metric A on
L with the properties required in Proposition (4.2.1) and Theorem
(4.2.2).

THEOREM 4.2.2. Let w be the fundamental form of a hermitian
metric on M and let h be a hermitian metric on L whose Chern
form is negative on the fibres of the map 7 : E — C. Then

w=Ir*w—ci(L,h)

is the fundamental form of a hermitian metric on M for all suffi-
ciently large integers [. If w is Kdhler then so is @ and if w is Hodge
then so is @.

Proof. A C* (1,1)-form is the fundamental form of a hermitian
metric if it is positive and hermitian. The positivity of & was proved
above (Proposition (4.2.1)). The Chern form of a line bundle is
always hermitian (§3.5), so @ is also hermitian.

Recall that a positive hermitian C*° (1,1)-form w determines a
Kéahler metric if dw = 0. If w is also integral, then the metric is
Hodge. The identity d(m*w) = m*dw shows that m*w is d-closed if
w is d-closed and 7*w is integral if w is integral. Finally, the Chern
form of a line bundle is always d-closed and integral (§3.5). O
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(4.3) Finite metrics for successive blow-ups. We apply Theo-
rem (4.2.2) to a sequence of blow-ups to obtain the following.

THEOREM 4.3.1. Let {m; : M; — M,_1} be a finite sequence of
blow-ups of a compact complex manifold My along smooth centres
C; C Mj_,. Let E; = w;(C;) be the exceptional divisor of m; and
let L; = [E;] be the associated line bundle. Let wy be the fundamental
form of a hermitian metric on My. There exist hermitian metrics
h; on L; and positive integers l; such that the (1,1)-forms defined
inductively by the equation

CUj = lj?T;w]'_l —C (Lj, h])
are all positive and determine hermitian metrics on the manifolds

M;. Moreover if wgy is Kihler then so are all the forms w;. If My is
algebraic and wy is Hodge then the forms w; are also Hodge.

REMARK. Since a sum of Chern forms equals the Chern form of
a product of line bundles, we may write w; as

w; = lﬂ';yowo —C1 (,C, H)

where ;o : M; — My is the composite of the first j blow-ups, £
is some line bundle on M;, and H is an appropriate metric on L.
Furthermore, L is of the form £ = [D] for some effective divisor D
with the same support as D;.

We may also obtain Kahler metrics inductively using the divisors
D; as follows. Corollary (4.3.2) will be used in §8.6 in the proof of
our first main theorem.

COROLLARY 4.3.2. Let D; be the exceptional divisor of the com-
posite m o my o ... o w; of the first j blow-ups, i.e. D; = E; and
Dj =miD;_y + Ej for j > 2. There exist hermitian metrics h; on
the line bundles [D;] and positive integers l; such that the (1,1)-
forms defined inductively by @y = wy and

@; = w01 — er((Dj), y) forj>1
are all positive and determine hermitian metrics on the manifolds

M;. Moreover if wy is Kdhler (resp. Hodge) then &; is Kdhler (resp.
Hodge) for all j.

Proof. We need only prove positivity. Let f/j = [Dj], let h; be a
hermitian metric on L; = [E;] whose Chern form is negative on the
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fibres of the map E; — C}, and define metrics fr,j on L; inductively
by the equations h; = hy and h, = (W;ﬁj_l)hj. For j = 1 we
have [D,] = [E1] = L and positivity follows from Theorem (4.3.1).
Assume that @;_; > 0 on M;_, for some j > 2. Using the inductive
descriptions of D; and h; we obtain

a([Dj] by) = ei(Ly, hy)
= ((W;Lj—l) ® Ly, (W;hj—l)ih')
7T; (Cl (fjj_l, ilj_l)) +c; (Lj, h,J)

Now lI'@;_; — ¢1(Lj—1,hj—1) > 0 for I' > 0 because &;_; > 0 and
c1(Lj—1, hj—1) is bounded on M;_;. Therefore

71'; (ll(:)j_l —C (f/j—ly ilj_l)) 2 0

Il

on M;. By Proposition (4.2.1), our inductive assumption that &;_; >
0, and our choice of the metric h;, we have

l"w;cbj_l —c1(Lj, hj) >0
for I" > 0. Let [; =1' +1". U
(4.4) More finite metrics. In this section we construct a family of

Kahler forms 1, ..., ¥,, on M,, which will be used in §9 to construct
Kahler homogeneous Saper metrics.

PROPOSITION 4.4.1. There exist diwvisors Dy, ...,D,, on M,, of

the form

m ~

D; = bixEmpk,

k=1
and metrics H; on the line bundles [D;], such that the transition
matriz T(D, E) = (bji) is a nonsingular matriz of positive integers
and such that the forms

P =, 0wo — c1([Djl, Hj)
are Kdhler forms on M, for all sufficiently large integers r.

Proof. First we write the Kahler forms w; of §4.3 in terms of the
pullback to M; of wy and the Chern forms of certain line bundles
on M;. Recall that in §3.9 we defined

Mji = Tit+1 O Ti42 0 ... O Tj ! Mj — M;
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and the corresponding pullbacks
Lj; = nj;L; = [Ejs] = [}, Ei]

for j > 4. Weset L;; = L; and E;; = E;. The induced metric on
Lj; is hj; = w3 ;h; but for simplicity we will omit the metric and
write ¢;(L;;) or ¢([E;;]) for the Chern form ¢ (Lj;, h;;). Using
the integers /; of Theorem (4.3.1) and letting r; = lils..0,. r); =
lizilipe..lj for 1 <4 < j—1, and r;; = 1 we may write w, as

There is a similar formula for @;.
For m > j the pullback of w; to My, is a positive semi-definite
form given by

j
(4.4.2) wj = 1575 0w — D 7ic1(Ls)
=1

J
e . * —— .. ..
= T3 o0 = €1 ( [Z 5By
i=1

J
“:n,jwj = Tj”r*n,owo - Z T jkcl(Lm,k)
k=1

J
*
= T‘jﬂ'm,owo — C ([Z rjkEm’k:I) .

k=1

The form wy, is positive and has a similar formula. Let D} =
Yt=1TikEmi for 1 < j < m and let ¢;([Dj]) be the Chern form
with respect to the induced metric on the line bundle [D’]. Then

W;z,jwj = Tj”:n,owo - Cl([D;‘])

for m > j and
Wm = T oo — €1([Dyy])-
The forms

m—1

i=J

= (i Ti) T 0Wo — i c1 ([D3))

=
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are all positive because wy, is. Let

Rj =Z7‘i and Dj =ZD;

i=j i=j
and let H; be the induced metric on the line bundle [D;]. Then
;= Rymy, owo — c1([Dy), H;)-

The form ; remains positive if we replace R; by » > R; since
TmowWo 2 0.

The matrix T'(D, E) for the divisors D; in terms of the irreducible
divisors Ep, x is

T(D,E) =T(D,D')T(D',E)T(E, E).

The matrix (D, D’) is an upper triangular matrix of 1’s, the matrix
T(D',E) is a lower triangular matrix of r;’s which are defined in
terms of the integers I; of Theorem (4.3.1), and the matrix T'(E, E)
is the matrix A described in §3.7. Writing T(D, E) as the product

111...1 1 0 0 ...0 1(112013...0,1m
011...1 l2 1 0 ...0 01 Qo3 ... Qam
001...1 Ll 13 1 ...01100 1 ...a3p,

000...1) \L.lnlsdplydy. ... 1/ \OO O ... 1

it is easy to see that all entries of T'(D, E) are positive and
detT(D,E) = 1. O

§5. Splitting of a Poincaré-Type (1,1)-Form into a Sum of
its Two Essential Parts. Let M be a compact complex manifold
of dimension n and let D be an effective divisor on M with only
normal crossings. In §5.1 we construct a Poincaré-type (1,1)-form
v on M — D by replacing the expression | z |? in the formula (1.4.1)
for the Poincaré form wa+ by the square of the norm of a section
of the line bundle [D]. In §5.2 we study v in local coordinates near
points of D. We may choose coordinates (z1, z3, ..., z,) in which D
is given locally by the vanishing of a monomial zi\lzé\z...z,’c\". The
growth of v near D may be described in terms of a Chern form
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of [D] and the pullback of wa- under the monomial map 7 given
by 7(21, 22, .., 2n) = 23'23%...z3*. In §5.3 we describe the quasi-
isometry classes of sums of forms of the type 7*wa+. We use these
descriptions in §5.4 to show that Poincaré and modified Poincaré
metrics may be constructed by adding Poincaré-type forms v; to
multiples of the fundamental form w of a hermitian metric on M. If
w is Kahler, the resulting metrics are also Kahler. We conclude §5
by describing the relationship between modified Saper and modified

Poincaré metrics.

(5.1) Definition and decomposition of Poincaré-type (1,1)-
forms. An effective divisor D on M, with only normal crossings,
may be expressed as D = Y, \,E;, where E, E,, ..., E,, are smooth,
reduced, irreducible divisors on M which simultaneously have only
normal crossings, and Ap, Ag, ..., Ay, are positive integers. Let L =
[D] be the line bundle on M associated with D and let h be a her-
mitian metric on L. Let s : M — L be a global holomorphic section
of L such that (s) = D. Such a section always exists since D is ef-
fective. We denote by || s || the norm of s under the metric h. Since
M is compact, we may also choose s so that || s ||< 1 everywhere
on M. We define on M — D a Poincaré-type (1, 1)-form v associated
with the divisor D, the section s, and the metric A by

2

V=1 )
(5.1.1) V= —_27r_88 log (log[[ s || )

Note that log||s||> # 0 on M — D and log]| s ||* = —oo as we
approach D. Let

B=—log|| s |’
on M — D. We may decompose v as v = p + 1 where
V—1000 _V/-108A0B
Recall from §3.5 that ¢;(L, h) = —§6510g|| s ||>. Then
(5.1.3) b= —%CI(L, h).

The Chern form c¢;(L,h) depends on h but is independent of the
choice of section s of L. The properties of  will be explored in
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Sections 5.2 and 5.3.

If s’ is another global holomorphic section of L such that (s') = D
and || ¢’ ||< 1, then s’ = c¢s for some positive constant c. Let
B = —log|| s'|[>. Then f' = B —2logc, 93" = 8B, and §p' = Bp.
From these relationships and our decomposition of v, we see that
although v is not independent of s, the order of growth of v near D
is the same for all sections s of L for which (s) = D and || s ||< 1.

Note that the form u is dominated by any positive C* (1, 1)-form
on M. Hence

LEMMA 5.1.4. Ifw is the fundamental form of a hermitian metric
on M and v is a Poincaré-type (1, 1)-form with the decomposition
v=pu+n of (5.1.2) then

lw+v~Ilw+n

for all sufficiently large integers 1.

(5.2) Poincaré-type (1,1)-forms in local coordinates. We wish
to describe the Poincaré-type (1,1)-form v in local coordinates near
points of D = Y, \;E;. In particular, we wish to examine the
growth of the form 7 in the decomposition v = p+ 71 of (5.1.2) and
compare it to the growth of the Poincaré form wa+ on the punctured
disc.

Let ¢ be a point in M at which k£ of the components F; of D,
say Fi, Es, ..., Ey, intersect. Since the collection {E;} has normal
crossings, there exist local coordinates zi, ..., 2, in a neighbourhood
U of g, such that E; is given locally by the equation z; = 0 for
i =1,...,k and such that E; does not intersect U for i > k. Recall
that we call (21, ..., z,) normal coordinates for Ey, ..., Ex. Locally, D
is given by the equation z{\‘zé\z...z,’c\’“ = 0, where J; is the multiplicity
of E; in D. We will use the notation 2z = (21, 23, ..., 2,) and 2 =
22123?...zp* . The norm of s is given in local coordinates by || s || =
| 22 |2g for some bounded positive C*® function ¢ on U, and the

function § = —log]|| s []2 is given locally by

(5.2.1) B =—log(] 2" |'g).

For the rest of §5.2 we will assume only that 3 is a locally defined
function of the form of (5.2.1) where g is some bounded positive C*
function on U.
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Let 7 be the monomial map 7 : U — A given by 7(z21, ..., 2,) = 2*.

We wish to compare the (1,1)-form n = @Q%‘;,@ to the pullback
of the Poincaré form wa« under the map 7. The pullback is

(5.2.2)
. V=1 d(*) Ad(ED)
T WA* = 3 3
™ | 2% [*(log]| 2* |)?
— k
_ v-1 1 )\)\]d A dz;
i (108|ZA') ij=1 %iZj
~ z A
7T 1,] =1 Zi .7
Using the expansion 8 = —log2® — logz* — log g, we express 7 in

local coordinates as

- TR
_ \/:T< d(z*) A d(Z1) +d(zA)/\?'5g

(5.2.3)

T \|2A[P(log| 24 ’g)? = B’2"g
dgAd(z*) 0OgAdg
B2gzh B2g?
~ TCUA*+_ ZZ( ( 2>dz,/\d_
i=1j=1 116

A; 0g A Og
+o (ﬁ) de A d?,) + W) .

Let w be the Euclidean (1, 1)-form

w = ——-—-—7:1 Zdzi A dz-.

i=1

We now show that, locally, when we add to n any positive multiple of
%w, all terms but 7*wa~ in the expansion of 7 may be ignored. The

following lemma is valid for any expression of the form n = @ %ﬂ%—@
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where 8 = —log(| 2% |2g) and g is a bounded positive C* function
onU.

PROPOSITION 5.2.4. Let a be any positive constant. Then the
(1,1)-form Fw +n 1s positive and

a 1 .
—w+77NEUJ+T WA*

B

for z1, 29, ..., zx close enough (but not equal) to 0.

Proof. Clearly the term ¥/7r:—g{\—‘(’§-‘l in the expression (5.2.3) for 7

is dominated by % Fw for 21, 29, ..., zx close enough to 0, since % — 0 as
(21,22, ..., 2k) = (0,0, ...,0). Next consider terms of type o ( ) dz;\

dz; and o (_ ﬂg) dzj AdZ; in n. If ¢ = j these terms are dominated
by the corresponding terms of 7*wa~«. If ¢ # j, we compare these
terms to the dz; A dz; term of 7*wa- and the dz; A dZ; term of gw
It is convenient to write these terms from the expansion of £ Fw+n
in the form of a chart, showing the matrix of coefficients:

v, dz; dz;
T
A2 A
o e ° (zlﬂ?)
i a
de (0] 2_1—2') ,—8_
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v-1 1

1
RN I R/
~ 1
Ziﬂ
—=dz; 0 a

VB

for zy, 2, ..., 2, close enough to 0. Then %w +n~ %w + T*wa~ for
21, 23, .., 2 close enough to 0. Since w > 0 and 7*wa+ > 0, we may
replace %w by —;;w and preserve quasi-isometry. O

An easy consequence of Proposition (5.2.4) is the following corol-
lary which states that the local quasi-isometry class of a modified
Poincaré metric looks the same in every system of normal coordi-
nates. Recall (Definition (1.6.1)) that a metric on M — D with funda-
mental form wp is called a modified Poincaré metric if wp has the fol-
lowing property: near each point ¢ € M at which £ components of D
intersect, there exist normal coordinates (z, ..., 2,) and nonconstant
monomial maps 71, ..., Ty, of the form 7;(21, ..., 2,) = z{\“zé\”... ,’c\“‘
such that the matrix ();;) has nonnegative integer entries and at
least one positive entry in each row and column, and such that

locally

(525) wp ~ ZT:Q)A« + —:—1 Zdzi A dz;.

i=1 i=1

Given such a matrix ()\;;) and any other system of normal coor-
dinates (y1,...,¥n) in a neighbourhood of g, let T3,...,T;, be the

monomial maps given by T;(yi, ..., yn) = yi\“yé\”...y}c\“‘.

COROLLARY 5.2.6. If wp is the fundamental form of a modified
Poincaré metric on M whose quasi-isometry class is given locally

in normal coordinates (21, ..., z,) by (5.2.5), and if (y1, ..., yn) 1S any
other system of normal coordinates, then

m /7 n
wp ~ Y Tiwa- + _7r_1 > dy; A dy;.

=1 =1
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Proof. The Euclidean form in y is locally quasi-isometric to the
Euclidean form w in z, i.e.

v-1Z V-1
(527) —ﬂ——Zdy,/\d?j, ~ —ﬂ_—ZdZ,/\dZL = Ww,

so to prove the corollary it is sufficient to show that w + 7 was ~
w+T;wa- for all 7. Since y and 2z are normal coordinates, there exist
bounded nonvanishing holomorphic functions f; such that z; = y; f;
for 1 <i<k. Let B = —log| 2% |2. Then
CeA; (2
fi = —log| y™i f |

where the function g; = | fA P = | flaphe fo |2 is bounded,
positive, and C*°. Let

_ V=108 A 0B;

771: P 181'2 )

i.e. 7; = 77wa+. By Proposition (5.2.4) and quasi-isometry (5.2.7),

1 1
ZTWF i~ W+ T was.

) ;Bz

But w > Lw near D, so we have w + Tfwar = w+ 17 ~ w+
1
T;*wA*. D

Similarly, we will show in Corollary (5.3.5) that the local quasi-
isometry class of a Saper distinguished metric (1.7.1) looks the same
in any system of normal coordinates.

(5.3) Pullbacks of Poincaré-type forms under monomial
maps. When constructing modified Saper metrics, we will use
(1,1)-forms of the type %w + 1. Proposition (5.2.4) allows us to
replace by a pullback 7*wa~ of the Poincaré form wa- under a
monomial map 7. In this section we describe the quasi-isometry
classes of sums of such pullbacks. For the purposes of later calcula-
tions, in which we consider a collection of divisors {D;}, it is useful
to consider monomials z)'23?...z* in which some of the powers );

may be 0.
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For 1 < i < mlet A; = (A1, ..., Aix) be a vector of nonnegative
integers with at least one nonzero entry. Let 2z = zf‘“z%‘“...z,)c“"“

and let 7; be the monomial map
7 AF 5 A

A 1? and let ¢; =

given by 7;(z1,...,2¢) = 2. Let §; = —log| 2

2
T wa+. Then

¢i _ \/—_ld (zAi) /\d(‘z‘Ai) _ \/rIZi /\”)\zld /\le

™ | 28 |2 T iD= iRl

The Poincaré form wx- is positive definite on A* so all the pullbacks
T*wa~ and all the forms ¢; are positive semi-definite on (A*)*. The
form

idz,/\dz
=1 lzil

is positive definite on (A*)*.

LEMMA 5.3.1. If k of the vectors A;, say Ay, ..., Ay, are linearly
independent, then

k
> Cipi~ >0
=1

for all positive constants C1,...,Cx and for z,...,zx close enough
(but not equal) to 0.

Proof. The matrix of ¢; with respect to {§; = %i}f:l is A; = ATA,;
which is positive semi-definite. If Ay, ..., A¢ are linearly independent
then the spans of the matrices Ay, ..., Ax are also linearly indepen-
dent and Y% C;A; is positive definite for any positive constants
Ci,...,Cr. This implies that 3%, C;¢; ~ ¢ since the matrix of ¢
with respect to {¢;} is 1. O

It follows easily from Lemma (5.3.1) that

LEMMA 5.3.2.
i. @ >¢; for each 1 <i<m and for 2, ..., 2z close enough (but
not equal) to 0.
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ii. If the matriz ()\;;) has rank k then Y72, Ci¢; ~ ¢ > 0 for
all positive constants C1, ...,Cp, and for zy, ..., zx close enough
(but not equal) to 0.

Next we show that a sum of pullbacks of the Poincaré form
wa~ under monomial maps is bounded below by the homogeneous
Poincaré form

V=1 1 i dz; A dz;
12

T (log| z129...2k |2)2 = | &

Yn =

LEMMA 5.3.3. If k of the vectors A;, say Ay, ..., Ak, are linearly
independent then

(i) Z C,-Ti*wA‘ 2 v, >0

=1

for all positive constants C4,...,Cy, and for 24, ...,z close enough
(but not equal) to 0. If, in addition, the integers \;; are all positive
then

m
(11) Z C,;Ti*wA* ~ ’t/)h.
i=1
Proof. Let 8 = —log| z125...z |*. There exists a positive constant

a such that a8 > B; for 1 < ¢ < m. Then
m . m Cz 1 ™
(5.3.4) Z Citjwar = Z B§¢i 2 25 Z Ci¢i.
=1 =11 =1
By Lemma (5.3.2) and the definitions of 8, ¢, and ¥y,
1 & 1
W;Ci@ ~ ﬁ(b-‘: Vn

for 21, 23, ..., 2, near 0. This proves part (i). If A;; > 0 for all 4 and
J, then B; ~ (B and 7] wa~ ~ [—,lgqﬁi for all 7. In this case the inequality
> in equation (5.3.4) becomes quasi-isometry and we obtain part

(ii). O
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Recall that a metric on M — D is called a Saper distinguished
metric if its fundamental form ws,, may be described locally in
normal coordinates by the quasi-isometry

Wsap ™~ Y+ EwEucl
where wgyq is the Euclidean (1,1)-form
Jixz
WEnel = ——— > dz; A dz;.
=1

A homogeneous Poincaré metric has a fundamental form wp hom
given locally by

WP hom ™~ "/)h + WEucl-
We can now easily show that the local quasi-isometry class of ws,p
(respectively wphom) looks the same in any system of normal coor-
dinates.

COROLLARY 5.3.5. The quasi-isometry class of a Saper distin-
guished metric (respectively a homogeneous Poincaré metric) on
M — D is independent of the choice of normal coordinates.

Proof. Use part (ii) of Lemma (5.3.3) and Proposition (5.2.4).
O

Finally, we show that pullbacks of the Poincaré form wa- under
monomial maps are bounded above by the Poincaré form

v-1 k dz; A\ dZ;
>

T = Plogl z [°)2

Yp =

LEMMA 5.3.6. Let A = (A1, A2, ..., Ak) be a vector of nonnegative
integers with at least one nonzero entry and let T be the correspond-
ing map 7 : A = A given by 7(z1, 29, ..., 2) = 2)1 232...%0%. Then

T*war < Yp
for z1, ..., zx close enough (but not equal) to 0.

Proof. Let | be the number of entries of A which are nonzero.
Reindex the variables z; so that \; > 0for1 <i</land \; =0
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otherwise. Let § = —log| 2" 237...2)" \2. Then g > —log| z |? for
1 <2< Let
V-1 & de A dz;
¢ = Z 2
T =1 ( Zj I
and let ¢o = B?7*wa-. The form ¢, is positive semi-definite and by
Lemma (5.3.2), ¢o < ¢'. Dividing ¢ by 32 and using the indicated
lower bounds for # we obtain
. ~ 1
T wa» < Egcb'
2 \/—1 zl: dZi/\dzi
= '2(108| Zi |2)2

Yp.

IA

O

(5.4) Modified Poincaré metrics. It is easy to construct Poin-
caré and modified Poincaré metrics on M — D using the results of
Sections (5.1) - (5.3). The components Ey, ..., E,, of D are smooth,
reduced, irreducible divisors which simultaneously have only normal
crossings. Let Dy, ..., D, be effective divisors of the form

m
Di = Z )\ijEj

j=1
such that the matrix ();;) has nonnegative integer entries and at
least one positive entry in each row and column, i.e. the divisors
D, are effective and their sum has the same support as D. Let
si : M — [D;] be a global holomorphic section of the line bundle
L; = [D;] such that (s;) = D; and let h; be a hermitian metric on
Li. Let

V=1 _
Vi = —735 log(log || s; ||2)2-
The following proposition is an easy consequence of Lemmas (5.1.4)
and (5.3.3) and Proposition (5.2.4).
PROPOSITION 5.4.1. Ifw is the fundamental form of a hermitian

metric on M and ly,...,l, are positive integers, then the form

wp = lw + lel/,

1=1
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determines a modified Poincaré metric on the noncompact manifold
M — D for all sufficiently large integers l. Moreover
i. If M is Kahler and w is a Kahler form on M then wp is also
Kdhler.
ii. Ifr=m and D; = F; for 1 <1 < m then the metric deter-
mined by wp is a true Poincaré metric.

iii. If the matriz A = (X;;) satisfies the condition
(x) the entries are all positive and the columns are linearly inde-
pendent

then the metric determined by wp is a homogeneous Poincaré met-
ric. More generally, if D has several connected components, the
metric determined by wp is a homogeneous Poincaré metric if the
submatriz of A corresponding to each connected component of D
satisfies condition (x).

(5.5) Modified Saper metrics. Suppose that M, is a compact
complex manifold and 7 : M — M, is a holomorphic map whose
restriction to M — D is a biholomorphism onto its image. Let wy be
the fundamental form of a hermitian metric on My. Let Dq,..., D,
be divisors on M of the type described above in §5.4 and let vy, ..., v,
be Poincaré-type (1,1)-forms for these divisors. Let ly,ly,...,l, be
positive integers. Recall from §1.8 that if the modified Saper form

T
Wg = lmr*wo + Z lil/i
1=1
is positive then we say it determines a modified Saper metric which
is distinguished with respect to . If in addition wy is Kéhler, then
S0 iS wg.
Let w be the fundamental form of a hermitian metric on M, as
above. Note that any positive C* (1, 1)-form on M dominates 7*wy.
The next result follows immediately from Proposition (5.4.1).

PROPOSITION 5.5.1. Ifw is the fundamental form of a hermitian
metric on M and wg is a modified Saper form on M — D, then the
form

wp = ws + lw

determines a modified Poincaré metric on M — D for all sufficiently
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large integers l. Moreover if wg is positive we may use l =1 and we
have
i. Ifws is homogeneous so is wp.
ii. If My and M are Kdahler and if wy and w are Kdhler forms,
then ws and wp are also Kahler.

In §7 we construct Kéhler modified Saper metrics, distinguished
with respect to a single blow-up of a compact Kahler manifold M.
In §8 we construct Kahler modified Saper metrics inductively on
successive blow-ups and exhibit in local coordinates the relation-
ship of each new metric to the pullback of the previous. When
each centre is either contained in the total exceptional divisor of
the previous blow-ups or disjoint from it, these metrics are homo-
geneous. When the image of D in M is of dimension 0, the metrics
are exactly Saper distinguished metrics. In §9 we construct Kahler
homogeneous Saper metrics without the restriction that each centre
lie in the previous total exceptional divisor.

§6. Main ingredient of completeness of our metrics. Let
M be a compact Kéhler manifold and let D be an effective divisor
on M with only normal crossings. In this section we show that if
a metric on M — D is bounded below locally, near D, by pullbacks
of the Poincaré metric on the punctured disc under appropriate
monomial maps, then the metric is complete. In particular, modified
Poincaré metrics are complete. When we construct our modified
Saper metrics in Sections 7, 8, and 9, we will use Proposition (5.2.4)
and the results of this section to show that they are also complete.

We first consider the case in which a single monomial map suffices.

PROPOSITION 6.1.1. Let wy_p be a Kdahler form on M — D.
Suppose that wyr_p satisfies the following condition near each point
g € D: there exist normal coordinates z,...,2z, on a neighbour-
hood U of q such that the components of D are given locally by the
equations z; = 0 for i = 1,...,k, and there exists a monomial map
7:U — A given by

(21, ooy 2n) = 232

2k
for some positive integers Ay, ..., A\x, such that

WM-D 2> T Wwa=



108 CAROLINE GRANT AND PIERRE MILMAN

on U. Then the metric on M — D determined by wp—p ts complete.

Proof. We will use the completeness of the Poincaré metric on the
punctured disc A*. We are only concerned with the behaviour of
this metric near 0 € A.

Let z and y be points in M and let dp(z,y) be the distance
between them in the metric determined by some Kahler form wy,
on all of M. Similarly, for z,y € M — D, let dp_p(z,y) be the
distance between z and y in the metric determined by wy,_p. Let
{z.} be a sequence in M — D which is Cauchy with respect to
dy—p. Since M is compact, there is a subsequence {z,,} of {z,}
which converges with respect to djs to a point ¢ € M.

Suppose that ¢ € M — D. Then there exists a neighbourhood U
of ¢ in M — D containing all but finitely many of the points {z,,}
and such that wys and wys_p are quasi-isometric on U. Then {z,,}
converges to ¢ in the metric determined by wys—p and so {z,} also
converges to ¢ in this metric.

Now suppose that ¢ € D and let U be a coordinate neighbour-
hood of ¢ in M on which there is a monomial map 7 of the form
described above. Let d* be the Poincaré distance function on A*.
After shrinking U if necessary, there is a positive constant ¢ such
that for any z,y € U — U N D we have

dm-p(z,y) > cd*(T(z), 7(y))

Similarly, if d is the usual Euclidean distance function on A then
there is a positive constant C' such that for any z,y € U we have

dm(z,y) 2 Cd(r(z), 7(y)).

Since the sequence {z,,} is Cauchy with respect to dp_p, the se-
quence {7(z,,)} is Cauchy with respect to d*. Therefore {7(z,,;)}
converges to a point p € A*. Similarly, since the sequence {z,,}
converges with respect to dy; to ¢ € D, the sequence {7(z,,;)} con-
verges to 0 € A with respect to the usual distance function d on A.
This is impossible, since in a neighbourhood of p € A* the distance
functions d and d* are quasi-isometric. Therefore ¢ € M — D and
the metric determined by wys_p is complete. O

A similar result applies to a collection of monomial maps:
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PROPOSITION 6.1.2. Let wpy—p be a Kdhler form on M — D.
Suppose that wyr_p satisfies the following condition near each point
g € D: there exist normal coordinates z,...,z, on a neighbour-
hood U of q such that the components of D are given locally by the
equations z; = 0 for ¢ = 1,...,k, and there exist a monomial maps

Tiy ., Tr from U to A of the form

Ai1

7i(21, oy 2n) = 2} ik

2

such that the matriz (\;;) has nonnegative integer entries and at
least one positive entry in each row and column, and such that

,
WpM-—D 2 ZTi*wA*
i=1
on U. Then the metric on M — D determined by wys_p is complete.

Proof. We proceed as before, replacing the map 7 : U — A of the
previous proposition by the map

T = (7’1, ...,7-7-) . U — AT

and replacing the Poincaré form wa+ on A* by a product of Poincaré
forms w(a-y- on (A*)". Note that w(a~)- determines a complete met-
ric on (A*)" and that

T
* *
T w(A*)r = ZTi WA*.
=1

We complete the proof in the same way as above. O

The next corollary follows immediately from the definition of
modified Poincaré metrics.

COROLLARY 6.1.3. Modified Poincaré metrics are complete.

When we construct our modified Saper metrics we will show that
they also have the required lower bound.
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§7. Modified Saper and Poincaré metrics for a single blow-
up.

(7.1) Introduction. Let M be a compact Kahler manifold with
Kihler form w. Let 7 : M — M be the blow-up of M along a
submanifold C C M, with exceptional divisor E = 7~ !(C) and
associated line bundle L = [E] on M. Let h be a hermitian metric
on L with the property that the (1, 1)-form

o =lIr*w—ci(L,h)

on M is positive and consequently Kahler for all sufficiently large
integers [. In §4 we showed that such metrics h exist. The Chern
form ¢, (L, h) may be written as

=

1.~
cr(L, h) = —~—00log | 5 ||”
where s : M — L is a global holomorphic section of L such that
(s) = E and such that the norm || s || of s under the metric h
satisfies || s ||< 1 everywhere on M. The Kéhler form & determines
an incomplete metric on M — E % M — C and the completion of
M — C with respect to this metric is M. )
We now define a Poincaré-type (1,1)-form v on M — E by the
equation
V-1

1, = 2
(7.1.1) v = —=5—09 log (log 1 s 1I%)

2

We will show in this section that the (1, 1)-form
wg =Irt*w+v

on M — E is positive and hence Kihler for all sufficiently large
integers [. The corresponding Kahler metric is a complete modified
Saper metric, distinguished with respect to the blow-up map 7.
When dim C = 0, i.e. when M is the blow-up of an isolated point
in M, our modified Saper metric is precisely a Saper distinguished
metric.

It follows from Proposition (5.5.1) that the (1,1)-form

wp =ws +w
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is the Kahler form of a Poincaré metric on M — E, i.e. the sum of
our modified Saper metric on M — E and the restriction to M — E of
a Kahler metric on M is Poincaré. We may replace & by any other
Kihler form on M since all Kihler metrics on a compact manifold
are quasi-isometric.

We proved in §6 that Poincaré metrics are complete. Complete-
ness of our modified Saper metric follows from the local description
of the quasi-isometry class of wg and Proposition (6.1.1).

The constructions which we will give in §§8 - 9 of modified Saper
and Poincaré metrics for successive blow-ups M; — M;_; are simi-
lar, but the estimates used are more delicate.

(7.2) Main results. Let M and M be as above and let wa. be the
Poincaré form on the punctured disc. For any point ¢ € E, we may
choose local coordinates (z1, ..., 2,) on a neighbourhood U of ¢ and
(Z1, ...y Zy) on a neighbourhood of 7(g) € C such that
i. E is given locally by the equation 2; = 0,
ii. C is given locally by the equations Z; = ... = Z; = 0, and
ili. = is given locally by the equations:

1=z
Z;=zz for 2<i<k
Z,;=Zi for k+1§z_<_n

We will call the coordinates (z1, ..., 2,) normal blow-up coordinates
for m corresponding to (Z,...,Zy). Let 7 : U — A be the monomial
map given by 7(21, ..., 2,) = 21.

PROPOSITION 7.2.1. (Modified Saper metrics for a single blow-
up.) The (1,1)-form

wg =Ilt*w+v

determines a complete Kihler metric on M — E for all sufficiently
large integers . This metric is a modified Saper metric which is
distinguished with respect to the map 7. If ¢ € E and if (21, ..., 2,)
are normal blow-up coordinates on a neighbourhood U of g then ws|y
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18 locally quasi-isometric to all of the following:
(i)

Tw|y +
(i)

T*wly + ‘/'—1( ! Zdz,/\d— b dmnd )

v-1 1

™ |log|a |*| iz

Zdz,/\d‘ + T*wax

m \|log|z |*| | 21 [*(log| 21 [*)?
(iii)
\/——1( dz AN dz; 1 Zdz/\d_
T \|z |*(log| z1 )2 |log| z |”| 2

+ Z dZ,/\dEl)

1=k+1

Note that completeness follows directly from quasi-isometry (i)
by Proposition (6.1.1).

Quasi-isometries (i) and (ii) describe the relationship between our
modified Saper metric on M — E and the metric on M — E induced
from M. Quasi-isometry (i) means that locally, near E, our modified
Saper metric on M — E looks like the metric induced from M plus
a small term in the fibre directions plus a term with Poincaré-type
growth. We will prove a similar statement for successive blow-ups.
Quasi-isometry (ii) means that our modified Saper metric is locally
quasi-isometric to the sum of the incomplete metric induced from
M and a Saper distinguished metric. In (iii) we describe the quasi-
isometry class completely in local coordinates. Descriptions (ii) and
(iii) of wg in local coordinates are more difficult to generalize to
successive blow-ups except in special cases, and will be replaced by
upper and lower bounds for ws.

Let wg,p be the fundamental form of a Saper distinguished met-
ric on M — E, not necessarily Kahler. As a corollary to the local
description (ii) we obtain the following global quasi-isometry.

COROLLARY 7.2.2. The Kdihler modified Saper metric on M —
E associated with wgs is quasi-isometric to the sum of the metric
induced from M and a Saper distinguished metric on M —E. More
concisely:

wg ~ T*W + Wsap-
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We can say even more in the case dim C' = 0. In this case, k = n
and the last term of (iii) disappears, giving us the following:

COROLLARY 7.2.3. (Blow-ups of isolated points.) If dimC = 0
then wgs is the fundamental form of a Kdahler metric which is distin-
guished in the sense of Saper.

Given a Kéahler form w on M, we may construct a Kahler form @
on M, by Theorem (4.2.2). In local coordinates (2, ..., z,) near any
point ¢ € M, every positive C® (1,1)-form on M is locally quasi-
isometric to the Euclidean form @ >, dz; A dz;. Comparison to
description (iii) of our modified Saper metric gives us

COROLLARY 7.2.4. (Kdhler Poincaré metrics for a single blow-
up.) Let
wp =ws +w

where & 1s the Kdahler form of a metric on M. Then wp is a Kihler
Poincaré metric on M — E and wp > ws. If g € E and if (21, ..., 2,)
are normal blow-up coordinates on a neighbourhood U of q then

A/ — dz n
wplU ~ 1 ( le A az + Zdzz A d?,) .

m | 21 |2(log| 21 |2)2 i=2

The corresponding metrics for successive blow-ups are modified
Poincaré metrics.

(7.3) Proof of Proposition 7.2.1. To show that wg is a Kahler
form, we must show that it is positive, hermitian, and d-closed. The
form v is hermitian and d-closed by Lemma (1.2.1), so we need only
show that wg is positive. Since M is compact, it is enough to show
that for each point ¢ € M there is a neighbourhood U of g on which
Im*w + v is positive for [ > 0. This is clear for ¢ € M — E, since in
this case there is a neighbourhood U of ¢ on which 7*w is positive
and v is bounded.

For g € E we will write 7*w and v in normal blow-up coordinates
near ¢ and examine the local quasi-isometry class of 7*w + v. Let
(21, ..., 2n) be normal blow-up coordinates in a neighbourhood U of
g, corresponding to coordinates (Z,..., Z,) in a neighbourhood of
7(q) € C, as in §7.2. We write z; = (2,...,2) (fibre coordinates
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of the map £ — C), Zy = (Zs,...,2Zk), z2¢c = (Zk+1,---,2n), and
Z¢ = (Zx41, -y Zn) (coordinates on C). Then 7 is given locally by
the equations

Z1 = Zzi, Zf = 212§, and ZC = Zc.

We will also use the convention that the repeated index f is summed
over the set {2,...,k} and the repeated index C over the set {k +
1,...,n}. In particular,

k n
dzp Ndzy =Y dz Adzand dec Adze = Y, dz; Adz;.
=2 i=k+1

Consider the local expressions for w and 7*w. Since w is positive
on M, w is locally quasi-isometric to @ r.dZ; N dZ;. Then
locally

(7.3.1)

W~ g (dz1 AN dzy + (zpdz1 + z1dzg) A (ZpdZ) + Z1dZy)
+dzc A dzZc) .

Keeping track only of the dominant terms, we write this information

in the form of a chart:

V1

T dz, dff dzZc
™ o~ dz 1 Z12f 0
de 21Zf | 21 |2 0
dzc 0 0 1

where the 1 in the dz¢c A dZ¢ spot represents the identity matrix I¢
and the | z |° in the dz; A dz; spot represents | z; |*I;.

Next consider the Poincaré-type (1,1)-form v = —%85 log 32
where 8 = —log|| s ||>. The local expression for 3 is

B =—log(| 1 ['g)
where g is a bounded positive C* function on U, giving the metric
h on L locally. We decompose v as v = pu + 7, where

Vv—1008 nzﬂaﬂ/\gﬁ

S At d

T B m B2
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In the following lemma we describe the quasi-isometry class of
m*w + p in local coordinates. Then we will use Proposition (5.2.4)
to describe the quasi-isometry class of 7w + v = 7*w + u + 7.

LEMMA 7.3.2. The restriction to U of the (1,1)-form m*w + u
is positive and quasi-isometric to all of the following for z; close
enough (but not equal) to 0:

i mw+ LY dy A dz,

ii. g (dzl NdzZy + %de A dff +dzc A dEC)) and
ifi. mw+ Y1dzy A dzy.

Proof. Recall from (5.1.3) that u may be expressed in terms of a
Chern form as

p= —%cl(L, h).

By our choice of metric h on L, the Chern form ¢; (L, h) is negative
on the fibres of the map £ — C. The form

AT*w + Bu = It*w — 2¢1(L, h)

is positive for large A\, by Proposition (4.2.1), and is thus locally
quasi-isometric to the Euclidean (1, 1)-form 17}—__1 Yo, dz;AdZ;. Writ-
ing m™*w + pu as

(1 - %) Tw + —;— (At*w + Bp)

and observing that % =— — 0 as z; — 0, we obtain quasi-

1
log(]z1%9)
isometry (i).

To prove (ii), we write 7*w+p in local coordinates in chart format.
Using part (i) and factoring ﬁ out of the second row and column,
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we obtain

V-1 1

_— dz —=dz dz
- A Z1 \/B Zf zZC

1 -
Wt~ dz 1+ 5 z1z4/B 0

1

ﬁde Zl_zf\/B | 21 '2,8+ 1 0 1
dzc 0 0 1+ ,—é

Noting that z; log| z; ]2 — 0 as z; — 0, we see that

v—1 1
_7]'—/\ dTZ_]_ —\/ﬁdE f d?c
W + mo~ le 1 0 0
1
—dz 0 1
VB
ch 0 0 1
le.
V- 1
7r*w+u ~ —7?1 (dzl /\dfl + —IB—de/\de+dZC/\dzc>
for z; close enough (but not equal) to 0. The term in the fibre
direction comes from the form p = —%cl(L, h). Part (iii) follows
directly. O

We now calculate the local quasi-isometry class of m*w + v =
W + p+ 0.

LEMMA 7.3.3. Let 7 : U — A be the map given by 7(z1,...,2n) =
z1 and let wa+ be the Poincaré form on the punctured disc. Then
on U, for z; close enough (but not equal) to 0:

TTw+rv ~ T'wA4p+ Trwas.
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Proof. Let wg be the Euclidean (1, 1)-form -‘Z?Z?ﬂ dz; A dz;.
From part (i) of the previous lemma, 7*w+p E -},—wE. By Proposition
(5.2.4), the (1,1)-form gwp + 7 is positive and quasi-isometric to
5wE + T*wa- for z; close enough (but not equal) to 0. O

This completes the proof that [7*w + v is positive for sufficiently
large I. To obtain quasi-isometry (i) of the Proposition, we use
expression (iii) of Lemma (7.3.2) and note that 8 ~| log| z | |.
Then we write out 7*wa+ as

\/—_1( dz A dzy )

™\l 2 [*(log| 21 [)?

and add it to expressions (i) and (ii) of Lemma (7.3.2) to obtain the
second and third quasi-isometries of the proposition.

'r*wA* =

§8. Modified Saper and Poincaré metrics for successive
blow-ups and proof of Theorem I. This section contains the
proof of parts (i) and (ii) of our first main result, Theorem I of §2.1.
Part (iii) of Theorem I is proved in §9.1 and part (iv) in §10.

(8.1) Introduction. Let M, be a compact Kéhler manifold with
Kahler form wy. Suppose that {r; : M; — M;_;} is a finite sequence
of blow-ups along smooth centres C; C Mj;_;, chosen so that C;
has normal crossings with the total exceptional divisor D;_; of the
composite 770...0m;_1 of the first j—1 blow-ups. Let L; = [E}] be the
line bundle associated with the exceptional divisor E; = m; '(Cj).
In §4 we showed that there are hermitian metrics h; on L; and
positive integers k; such that the (1, 1)-forms defined inductively on
the compact manifolds M; by the equations

wj = kjw;wj_l - Cl(Lj, h,])

are Kahler forms. Metrics h; on the line bundles L; induce metrics
ﬁj on the line bundles lij = [D;], as described in §3.9. In §4 we also
constructed Kahler forms @; on Mj, using Chern forms of the line
bundles L; instead of L;.

Let s; : M; — L; be a global holomorphic section of L; such that
(sj) = E; and such that the norm || s; || of s; under the metric h;
satisfies || s; ||< 1 everywhere on M. Let 3; : M; — L; be the
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induced holomorphic section of .i/j and || §; || the norm of §; under
the metric h;. We define a Poincaré-type (1, 1)-form v; on M; — D;
by the equation

v-1 . 2\2

We will show in §8 that there are positive integers l; such that
the (1,1)-forms defined inductively on the noncompact manifolds
M; — D; by the equations

— . * . .
ws; = ljijs,,_l + v;

are positive and consequently Kahler. The Kéhler metric on M;—D;
corresponding to the form wg ; is a complete modified Saper metric,
distinguished with respect to the map myo...om; : M; — M. If the
image of D; in M, consists of isolated points in M,, this modified
Saper metric is precisely a Saper distinguished metric.

It follows from Proposition (5.5.1) that the (1, 1)-form

Wp; = Ws,j + Wj

is the Kahler form of a modified Poincaré metric on M; — D;. We
may replace the Kéhler form w; by @; or any other Kahler form on
M; since all such forms are quasi-isometric.

The advantage of constructing our metrics inductively is that we
can describe precisely how the metrics change with each successive
blow-up. The disadvantage is that these metrics are difficult to de-
scribe totally in local coordinates, except in special cases. In §9
we will use a non-inductive method to construct Kahler homoge-
neous Saper metrics which can be described more precisely in local
coordinates.

(8.2) Normal coordinates for successive blow-ups. In order
to describe the local quasi-isometry classes of our metrics on M; —
Dj, it is useful to define normal blow-up coordinates on neighbour-
hoods of points in D;.

Let ¢ be a point in M; at which £ components E\, ..., Ey of D;
intersect. Each component E; is the strict transform E‘j,ai of some
exceptional divisor E,,. We order the components so that oy <
ay < ... < ag. Recall that local coordinates (zy,...,2,) are called
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normal for E, ..., Ey, if E; is given locally by the equation z; = 0 for
1<2<k.

If ¢ ¢ E; then 7; is a biholomorphism on a nelghbourhood of
q. Let (Z1, ..., Z,) be normal coordinates for 7;(E}), ..., m;(E). W
will say that local coordinates (21, ..., z,) near q are normal blow-up
coordinates for m; corresponding to (Zl, <y Zy) if m; is given locally
by the equations Z; = z; for 1 <1 < n.

If ¢ € E; then E, = E; and (By) = Cj. The remaining com-
ponents E;, = EJ o; Map to the correspondmg divisors EJ le; 1D
M;_y. Let E;, = E] 1,0; for 1 < ¢ < k — 1. Since C; was chosen
to have normal crossings with D;_;, we may choose normal coordi-
nates (21, ..., z,) for the divisors Fi,...E.ona neighbourhood U of
g, and normal coordinates (Z, ..., Z, ) for the divisors Ei, ..., Ex_;
on a neighbourhood V of 7;(q), such that

i. Cj is given locally by the equations Z, = 0 for v € I, where

I is a subset of {1,2,...,n} containing k¥ and

ii. m; is given locally by the equations

Zy=2zk2z, ifyel —{k}
Zi =2z ifi=korifi¢T.

We will call the coordinates (21, ..., z,) normal blow-up coordinates
for m; corresponding to (Z1, ..., Zy,).

In the case g € Ej, there may be additional divisors Ej_u passing
through the point m;(¢q) whose strict transforms E‘j,l in M; do not
pass through ¢. Such divisors will not be important for our local
calculations near q. Local coordinates W which are normal for the
set of all divisors Ej_u passing through a point p € D;_; do not
necessarily correspond to any normal blow-up coordinates z in a
neighbourhood of a given point ¢ € 7; '(p).

The geometry of the map 7; near ¢ € Ej is easily described in nor-
mal blow-up coordinates. Local coordinates for C; are Z¢ = (Z;)iere
where I'® is the complement of ' in {1, 2, ...,n}. Fiber coordinates of
the map E; — C; are {zy},er—x}. We use the convention that the
repeated index f is summed over the set I' — {k} and the repeated
index C over the set I'°. In particular,

de/\dEf = Z dZ,y/\d?fy anddzc A dzZ¢c = Z dz; \ dz;.
ver—{k} i€re
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(8.3) Exceptional divisors and Poincaré-type forms in nor-
mal coordinates. Before stating our main results, we will describe
the divisor D; and the Poincaré-type form v; in normal blow-up
coordinates, and compare them to the divisors and forms obtained
from previous blow-ups.

For each space M; and for 0 < ¢ < j—1, let m;; be the composite
map

Tji = Mit1 © Mig2 © ... o W; : M — M;.

Let D;; = m;,D; be the total transform of Diin Mjfor1 <i<j-1
and let DM = D;. Let vj; = m;,v; be the pullback of v; to M; for
1<:<5-1, and let v;; = Vj. The form v;; is a Poincaré—type
(1, 1)-form associated with the divisor D;;.

Recall from §3.9 that metrics h; on the line bundles L; = [E;]
and sections s; of L; satisfying (s;) = E; induce metrics h;; on
L;; = [D;;] and sections 3;; of L;; satisfying (3;;) = D;;. We also
write §; = §;; so that (3;) = D;. Let || 5;; || be the norm of 5;;
under ilj,i- By our choice of the sections s;, we have || §;; ||< 1 on
M;. The Poincaré-type (1,1)-form v;; may be written as

V=1 _ X
Vji= ———2;—88 log(log || 3, ||2)2.

We now describe the divisors D;; and the corresponding Poincaré-
type (1, 1)-forms v;; near ¢ € D, using normal blow-up coordinates
for m; as described in §8.2. Recall that we may write D;; in terms
of the irreducible divisors E 1 as

J

=) tqu,z

where t; is the multiplicity of Eﬂ in D;;. The properties of the
matrix T = (ty) = Tj(D, E) were described in §3.7. Let A = (\;)
be the j x k submatrix of T’ corresponding to the irreducible divisors
E\, ..., B passing through ¢. The integer ); is the multiplicity of E,
in D;;. Since T is nonsingular, by Proposition (3.7.4iv), the matrix
A has rank k. Let A; = (M\i1, ..., Aix) be the ith row of A and let

2= g .z,i‘“‘ .



METRICS FOR SINGULAR SANALYTIC SPACES 121

The divisor D;; is given locally by the equation 2% = 0 and the
(1,1)-form v;; by

v—1 , 2
Vi = _788 log (10g(| N |29i))

for some bounded positive C* function g;.

Next we compare the divisors D;; near ¢ to the divisors D;_;;
near mj(q) for1 < i < j—1. If ¢ ¢ Ej; then 7; is a biholomorphism on
a neighbourhood of q. Suppose that ¢ € E; and let A=\ 1) be the
(j—1)x (k- 1) submatrix of the matrix T] (D, E) corresponding
to the divisors Ej, Eg, . Ek 1. The strict transform of E, is E; and
the multiplicity of E, in Dj;_y;is /\,l By Lemma (3.7. 3) A consists
of the first j — 1 rows and k£ — 1 columns of A, i.e. /\zz = )y for
1<i<j—-land1<I<k-1 LetzAz—Z*uZ;z Zptk=t The
(1,1)-form v;_;; is given locally by

=1 _ . 2
115 = =Y o0og (logl] 7% ['Gy))

for some bounded nonnegative Q°° function G;. The function G;
vanishes on those components Ej;_1; of D;_1; whose strict trans-
forms Ej; do not pass through ¢. Locally near g the pullback 7;G;
is of the form | z; |** g; for some nonnegative integer M.

We are particularly interested in the asymptotic behaviour of the
forms v;; =v; and v = 7(;51/]'_1 near D;. We may write v}, v;_1,
and iy, as v; = ~15910g(8?), Vi1 = —¥%10dlog(B?),

* Sy 5 12
and 7y = ——‘gT—laalog(ﬂ’)2 where § = —log|| 5, || and B =
—log|| 3;_1 ||* are given in local coordinates by

A, (2 Aoy 2
B=—log(|z" |'g;) and B=-log(| 2% | Gj-1)
and §' = 7B = m}(—log|| 3;_1 |I) = —log || 8;,-1 ||” by

i 2
B = —log(| 2% |"g;_1).

Using properties of the matrices A and A derived from Lemmas
(3.7.3) and (3.7.4) we obtain the following local descriptions of
and f'.
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LEMMA 8.3.1. If q is a point in D; and (21, ..., zn) are normal co-
ordinates for the irreducible components E, ..., By, of D; which pass
through q, then the rate of growth of the function 8 = —log|| 3; ||°
near q s given by

i. B~ —log|zz...2 |*.

If, in addition, q € Ej, then the rate of growth of

g =} (—logl| 31 I°)

s given by
—log| z123...2k |2 if C; C Dj_;.
ii. '~ ¢ —log| 2129...2k-1 i C; ¢ Dj_y and k > 2.
1 if C; & Dj_1 and k = 1.

Proof. Recall that the entries of A; are all positive, i.e. the mul-
tiplicity \,; of E; in Dj is positive for all 7, by Proposition (3.7.4 i).
This gives us quasi-isometry (i).

Now assume that ¢ € E;. The first k — 1 entries of A;, A,_1, and
Aj_; are identical (Lemma (3.7.3 iii)) since these entries are the
multiplicities of the strict transforms of E,,, Fa,, ..., Eq,_, in the
divisors D;, D;_1, and D; ;1 = 7jD;j_;. The kth entries of A; and
A;j_ are related by the equation Ajx = Aj_1x + 1 (Lemma (3.7.3
iv)) since D; = Dj;_1 + E;. The entry );_1 is positive if and only
if C; C D;_; by Proposition (3.7.4 v). This gives us quasi-isometry
(ii). O

In §5 we compared Poincaré-type forms v to pullbacks of the
Poincaré form wa- by suitable monomial maps. For each 7 such
that A; has at least one positive entry, let 7, : U — A be the
monomial map given by

Ti(Zl, 22y veny Zn) = zAi_

If A; = 0, let 7; be a constant map to a point in A* so that 7;wa- = 0.

(8.4) Main results. We can now generalize the results of §7 to suc-
cessive blow-ups. Our first theorem describes how complete Kahler
modified Saper metrics may be constructed inductively on the non-
compact spaces M; —D; by adding a Poincaré-type form on M;—D;
to a large enough multiple of the pullback of the Kéhler form of the
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previous metric. The proof of the following theorem is to be found
in §§8.5 and 8.6.

THEOREM 8.4.1. (Complete Kdhler modified Saper metrics for
successive blow-ups.) There ezist positive integers l; such that the
(1,1)-forms defined inductively on the manifolds M; — D; by the
equations

Wws,0 = Wo and Wwsj = le;WS,j—l + V; fO’I‘ ] > 1

are Kdahler forms. The Kdhler metric on M; — D; associated with
wg,; 18 a complete modified Saper metric which is distinguished with
respect to the map m;p = m omyo...om;.

The quasi-isometry class of ws; may be described as follows:
If ¢ ¢ Ej, then on a neighbourhood U of q, wgj ~ TjWs,j-1-
If ¢ € Ej, if k is the number of components of D; intersecting
at q, and if (21, ..., 2,) are normal blow-up coordinates for w; on a
neighbourhood U of q, then locally

(i) ws;~ Tjws,j1
V=1 1
2

7 \|log| z129...2 | |

dzy A dzf) + Tjwax, and

~ \/rl'(( 1 idz,-/\dz-

(ii) ws; = T oWo +
7=Ta0 7F log| mze2 )25 | 2 |

1 Zdzﬂ\d?,) .

| log | z122...2 |2 =

Note that completeness follows directly from quasi-isometry (i)
by Proposition (6.1.1), since the monomial map 7; is given by

/\jk

A A

Tj (21, oy 2n) = 29 = 291259
and all the integers Aji, ..., Ajx are positive.
Quasi-isometry (i) means that locally near the exceptional divisor
E; of m;, the jth modified Saper metric looks like the pullback of the
(7 — 1)st metric plus a small term in the fibre directions plus a term

with Poincaré-type growth in the variables 21, ..., 2zx. Inequality (ii)
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means that the modified Saper metric on M; — Dj is locally bounded
below by the sum of the incomplete metric induced from M, and a
Saper distinguished metric on M; — D;.

We noted in Proposition (5.5.1) that the sum of a modified Saper
metric on M; — D; and the restriction to M; of a Kéahler metric
on M; is a modified Poincaré metric. The following theorem also
describes the relationship between our modified Poincaré metrics on
M; — Dj and M;_; — D;_;. The proof is in §8.7.

THEOREM 8.4.2. (Complete Kdihler modified Poincaré metrics
for successive blow-ups.) The Kdhler forms

Wwp;j = Ws,j +wj

determine complete modified Poincaré metrics on the manifolds M;—
D;.

The metric associated with wp; s a true Poincaré metric. For
J > 2 the quasi-isometry class of wp; may be described as follows:
If q ¢ Ej, then on a neighbourhood U of q, wp;j ~ Tjwp;-1-
If ¢ € E; and if (21, ..., 2,) are normal blow-up coordinates for m,
on a neighbourhood U of q, then locally

Ve

(i) wpj ~ W;wp,j—l + de A d'z'f + T;wA*, and

J /—1 .
(ii) wpj ~ Z Ti*wA* + _71'_ Z dz; N\ dz;.

=1 i=1

Notice that the modified Saper and Poincaré metrics differ only
in the order of growth of the fiber terms dz; A dz;. These terms
correspond to multiples of a Chern form of the line bundle L; = [D;].
Quasi-isometry (ii) simply states that wp; is a modified Poincaré
metric in the sense of (1.6.1).

Let wsap and wpeinc be the fundamental forms, respectively, of any
Saper distinguished metric and any Poincaré metric on M; — D;,
neither necessarily Kéahler. Using the local descriptions of wg ; and
wp,j, we obtain

THEOREM 8.4.3. (Global bounds for modified Saper and Poincaré
metrics.) The modified Saper metric on M; — D; associated with
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wg,j s bounded below by the sum of the metric induced from M, and
a Saper distinguished metric, and is bounded above by the modified
Poincaré metric associated with wp ;. This modified Poincaré metric
s bounded above by a true Poincaré metric. More concisely:

* ~ ~
T oWo + Wsap < Ws,j < Wpj < Weoinc-

Proof. The first inequality follows directly from part (ii) of The-
orem (8.4.1) and the second from the definition of wp;. The local
quasi-isometry class of the form wpg;y,c is given by

\/ — k . . n
WPoinc ™ ! (Z dzi \ 4z 2 + Z dz; N de) )

m = |2(10g| 2 |2) i=1

which dominates wp, by Lemma (5.3.6). O

When more is known about the relationships between the centres
C; and the exceptional divisors D;_;, we can be more precise in our
descriptions of the metrics. Let wphom be the fundamental form of
a modified Poincaré metric on M; — D, which is homogeneous in the
sense of (1.6.2). The following theorem is proved in §8.8. We allow
for the possibility that D; may have several connected components,
but we need only prove the theorem for the case of a single connected
component, since each blow-up map ; is a biholomorphism away
from its own exceptional divisor F;.

THEOREM 8.4.4. (Metrics for the case C; C D;_y.) Suppose that
for 2 < i < j, the centre C; for the ith blow-up is either contained
in the total exceptional divisor D;_y of the first 1 — 1 blow-ups or is
disjoint from D;_,. Then the Kdhler metric associated with ws; s
a homogeneous Saper metric in the sense of (1.8.4) and the Kdhler
metric associated with wp; is a homogeneous Poincaré metric. More
concisely:

*
Ws,j ~ T; oWo + Wsap and wp,; ™~ WP hom-

If, in addition, dimC, = 0 and dimC; = 0 for each ¢ such that
C; 1is disjoint from D;_; (i.e. the image of D, in My consists of
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isolated points in My), then the modified Saper metric is exactly a
Saper distinguished metric, i.e. wg; ~ Wsap.

Outline of proofs. We proved Theorems (8.4.1) - (8.4.4) for a single
blow-up in §7. In that case, ws; ~ Tjwy + wsap and wp,1 ~ Wpeinc ~
WpP,hom-

Now fix m > 2 and assume that Theorems (8.4.1) - (8.4.4) are
true for 1 < 7 < m — 1. For the rest of §8 we will let 7 = 7.
Consider the forms

Wsm = ;T Wgm-1+Vm and wp, = Wsm + Wn.

The form vy, is hermitian and d-closed so to show that wg ,, and wpm,
are Kéhler, we need only show that wg,, is positive on M, — Dp,.

The (1,1)-form v = vy, may be written as v = —¥=-199log(3?)
where 8 = —log|| 4m ||> and || 4, || is the norm of the section
8m : My, — L,, described in §8.1. As in §5.1 we decompose v as
v = u+ 1 where

(8.4.5)
_ﬂ@ — _ch([pm],,;m) and 7= QM
T p ™ P

By Lemma (8.3.1), the rate of growth of § near ¢ € D,, is given
locally in normal coordinates by 8 ~ —log| z122...2¢ ]2.

Application of our inductive assumption of Theorem (8.4.1) for
j = m — 1 is complicated by having to deal with two sets of local
coordinates near m(q) in M,,_;: coordinates W which are normal
for the collection of all irreducible components El, e Ex of Dppy
passing through 7(gq), and coordinates Z, as described in §8.2, which
are normal for C,, and those irreducible components E; of D,,_;
whose strict transforms in M,,, pass through q. Our local coordinates
z on M, are normal blow-up coordinates corresponding to Z. To
use our inductive assumption, written in W coordinates, we first
convert to Z or z coordinates.

To simplify notation we will let

(8.4.6)
¢ =

-1 k dZi/\d_Z—i -1 K dVVl/\d—W_Z
Vol do=Y_"% .

an =
[t |z,~|2 T 33 {Wi|2
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Throughout §8 we will use freely the quasi-isometries

(8.4.7)
S s _
W ~ —-—7r—12dz,- Adz; and wp_y ~ —— Y dW; AdW;,,

=1 =1

where w,, and wy,_; may be replaced by the positive (1,1)-forms
corresponding to any hermitian metrics on M,, and M,,_, respec-
tively.

It is convenient to write our inductive assumption in terms of the
function B = —log|| 5m_; ||*>. By Lemma (8.3.1) with j = m — 1,
we have

B~ —log| WiW,..Wx |?

near 7(g). Our inductive assumption of (8.4.1ii) for j = m — 1 may
be written as
1 1

(848) Wsm—1 > ™ _1’0(.4)0 + EQ-@ + —B-wm_l

from which it follows that wgm—1 > FWm—1 and
(849) 7r*w5m_1 Z —’TF*wm_l

where 3’ = n*B. Lemma (8.3.1) gives us a description in z coordi-
nates of the rate of growth of £’ near q.

The proof of positivity and the calculations of the quasi-isometry
classes of Theorem (8.4.1) are done for ¢ ¢ F,, in §8.5 and for
q € E,, in §8.6 . We finish the proof of Theorem (8.4.2) in §8.7 and
Theorem (8.4.4) in §8.8. (|

(8.5) Quasi-isometry class of wg,, near g ¢ E,.

Proof of Theorem (8.4.1) for q ¢ E,,. If g is not in the exceptional
divisor E,, = 771(C,,) it is easy to show that the form ws,, =
Im*wgm—1 + v is locally quasi-isometric to m*wgm,—1 for [ > 0. We
need only show that {m*wg,—1 dominates v = pu + 7 locally. If ¢ ¢
D,,, then m*wg m-1 is positive and v is bounded on a neighbourhood
of ¢ and we are done.
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Suppose that ¢ € D,, but ¢ ¢ E,,. The map = is a biholomor-
phism near ¢ so T*wg,—1 has the same description in local coordi-
nates as wgm,—1. By our inductive assumption that wg.,_; satisfies
quasi-isometry (ii) of Theorem (8.4.1), we have

where ¢ is as in equation (8.4.6). Recall that u = —%cl([Dm], Bom).
Then p is locally dominated by /iw,, and hence by Im*wg m—q forl
large enough. To see that 7 is also dominated by I7*wg,,_;, we use

Proposition (5.2.4), which tells us that locally %,-wm + 1~ %wm +
TXwa where Tp,(21,...,2,) = 2. The form ¢, = (T wa- is

positive semi-definite, and by Lemma (5.3.2), ¢ § ®m . Then f%qb §

Trwax and T*wgm—1 > Thwa» + %wm ~n+ %wm > . O

(8.6) Quasi-isometry class of wg,, near q € E,,.
Proof of Theorem (8.4.1) for q € E,,,. Recall that

*
Wsm = IT*"wsm—1 + v,

where v = —%85 log(?) has the decomposition v = u + n de-
scribed in (8.4.5) and 8 ~ —log| z12;...2 |° near ¢. Our inductive
assumption gives us estimate (8.4.9): T*wgm-1 > gﬁ*wm_l. By

Lemma (8.3.1), § _2_ 3. Hence

(8.6.1) T*Wem—1 § — T Wyp—1-

B

We will first show that l%w*wm_l +u and l%n*wm_l +v are positive
on M,, — D,, for [ > 0. We will then calculate the quasi-isometry
class of l%ﬂ*wm_l + p in local coordinates to obtain part (i) of
Theorem (8.4.1). To prove part (ii), we estimate the size of the
terms in wg,, which have Poincaré-type growth, using properties of
the multiplicity matrix T}, (D, E) from §3 and results on Poincaré-
type forms from §5.
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LEMMA 8.6.2. For [ > 0 the (1,1)-form l%w*wm_l + p 18 positive
on M,, — D,, and
1. 1
=T wm_1 + p ~ =W

g g

Proof. From (8.4.5) we have pu = —%cl([Dm],iLm). Recall from
Corollary (4.3.2) that there is a Kéhler form &,,—1 on M,,_; such
that

A

lﬂ*d)m_l - Cl([Dm], hm) >0

on M, for [ > 0. Then In*&,,_1 + Bu > 0 for [ > 0. Since all
metrics on a compact manifold are quasi-isometric, we have

l—ﬂ-*wm—l Rl UEa i

B B
for the positive (1,1)-forms w,,—; and w,, of any hermitian metrics
on M,,_; and M,, respectively. O

Since g’ % G we have

COROLLARY 8.6.3. Forl> 0

1
=T W1+~ =T W1 + =W

g g Y
The next lemma is a consequence of Proposition (5.2.4).

LEMMA 8.6.4. For zy, ..., 2, close enough (but not equal) to 0, the
(1,1)-form %wm + 1 is positive and

1
W + N~ =W+ Ty WA

g g

Combining Lemmas (8.6.2) and (8.6.4) we obtain the following
quasi-isometry which, together with inequality (8.6.1), implies that
ws,m 1s positive.

COROLLARY 8.6.5. For 2y, ..., 2z close enough (but not equal) to
0andl>0

=T Wp—1 +V ~ =Wy + T WA=

B B
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Using the inequality 3’ % [ again gives us a variation of Corollary
(8.6.5) which is used in the conclusion of the proof of Theorem
(8.4.1i) below.

COROLLARY 8.6.6. For z, ..., 2 close enough (but not equal) to
0andl>0

=T Wy +V ~ =T W1 + =W, + TWas-

1
I8 g Y

Next we describe the (1, 1)-form of Corollary (8.6.3) in local coor-
dinates. We show that +7*w,,_; dominates all terms in %wm except
possibly those in the direction of fibres of the map E,, — C,,.

LEMMA 8.6.7. For z, ..., zx close enough (but not equal) to 0

L1, 1 V=11 _ _
1
+—=dzs NdZ )
3 f f
1 v—11
y ~ o A YT A dEy
(i) ,B’W W1 + = 3 zy NdZs

Proof. We write out 7*w,,—1 in local coordinates, using the nota-
tion of §8.2:

(8.6.8)
T Wy ~ 7 (—_—1 Z dz; A dZ)
T

=1
v-1

= (dzx N\ dZg + dze A dZc
s

+ (zfdzk + deZf) AN (Efd?k + Zrcd?f))
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where the repeated index f indicates summation over the set I'—{k}.
Adding jwy, and writing the forms in chart format we have:

m™*w + lw
il L+ =
y m 3 m

B
—V;I/\ dzx dz; dzc
1 1 _ 1
~ dzk _,6—' +P ZkaB; 0
dz 2Zf— |z l2i + 1 0
f k fﬂ’ k V]
1 1
dzc 0 0 E + I—B'
V-1 1 1 1
A dz —dz dz,
™ N/ A/ AR/ A

1 - |8 B
ﬁdzf Zka\/; | 2k 1257 +1 0
1 oa
—=dz 0 0 1+ =
N/ 8
From Lemma (8.3.1), 8 ~ 3" if C;, C Dpp—y and 1 < [% < - log| z |
for 21, ..., zx near 0 if C,;, ¢ D,,_1. In both cases, zkdg—, — 0 and %' is

bounded as zx — 0. This proves quasi-isometry (i). Quasi-isometry
(ii) follows because we have showed that the form %w*wm_l domi-

nates all terms in Jw,, except @%dzf A dz;. O

Conclusion of the proof of Theorem (8.4.1 i). From Corollary
(8.6.6) and Lemma (8.6.7) we obtain the quasi-isometry

v—11
=T W1 +V ~ =T Wy, + ——=
T B

B o4
for I >> 0 and z, ..., 2; close enough (but not equal) to 0. Applying

dzf A dEf + T;,wA*

inequality (8.4.9), which says that m*wgm,_1 > #ﬂ*wm_l, we obtain
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quasi-isometry (i) of Theorem (8.4.1):

vV—-11

Wsm = lﬂ‘*ws,m_1 +v~ 7r*w5,m_1 + —ﬂ_—‘IB-de A d_Zf + T,’;wA*.
O

Conclusion of the proof of Theorem (8.4.1 ii). We start with the
pullback of the forms of our inductive assumption (8.4.8):

. 3+ (1 1
T Ws,m—1 > Wm’owo + (ﬁ@ + §wm_1)

where @ is as in (8.4.6). Notice that if wgapm-1 is the fundamental
form of a distinguished Saper metric on M,,_; — D,,_; then

1 1
Wsap,m-1 "~ ﬁq) + 'Ewm—l

near 7(q). Applying Corollary (8.6.5) and the inequality 7*B =
B < B gives

* Z * * *
IT*wsm—1 +v > T, 0Wo + T Wsapm—1 + ZWm + TpWas.

5
Part (ii) of Theorem (8.4.1) can be written as
. ~o, 1 1
IT*wsm_1 +v > 7y, qwo + ﬁd) + ﬁwm

with ¢ as in (8.4.6), and follows from the next lemma.

LEMMA 8.6.9. For 2, ..., 2 close enough (but not equal to) 0,

. - 1
71‘ wSap,m—l + —Wwm + TrmWAa* ¢ + —Wm-

3 =B

Proof. The quasi-isometry class of wsapm—1 near m(q) was de-
scribed in terms of local coordinates W which are normal for all
irreducible components E, ...,EK of D,,—; passing through m(q).
We will first rewrite some of the terms of wsapm—1 in the Z co-
ordinates of §8.2, which are normal for C,, and those components
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El, vy FEy_j of D, whose strict transforms in M, pass through q.
We will then use our §3 description of the relationship between the
multiplicities of the components of D,,_; and D,, and our §5 results
on Poincaré-type forms.

Recall (Corollary (5.3.5)) that the quasi-isometry class of a distin-
guished Saper metric looks the same in any system of normal coor-
dinates W for Ej, ..., Ex. We may choose W; = Z; for 1 <i < k—1
and then augment the collection Wi, ..., Wi_; to a collection of nor-
mal coordinates W1, ..., W, for El, E’K. Then

1 1 \/llkle/\dZ 1
Wsap,m-1 ™~ B2 <I)—|— 'Ewm 1 et 32 Z |Z l Ewm—b

n -1

Let

b = 7T(\/_dZ/\dZ)

T | Z[

Using 7*B = (' % 3, we obtain
~ 1 k-1
W*wSap,m 1= ﬁ2 Z (bz + ,871- Wm—1-

The forms ¢; have a simple description in 2z coordinates, since for
1 <14 <k —1 the pullback of Z; under 7 is
™ *Zi = ziz,‘i"

where 8§; = 1 if C,, C E; and §; = 0 otherwise.

Recall that 7,(z1,...,2,) = 2Am = zf""l zé\mz...zi‘"‘k where
A1y - Ami are all positive integers. Let B, = —log| 2% I* and
ér = PE1wa+. Then B, ~ § and

15! 1 k 1
> i+ —wm + Trwas Eqﬁi-l——wm.
’62 i=1 'B 2 =1 /B

By Lemma (5.3.1), %, ¢; ~ ¢, provided that the matrix of multi-
plicities

1 0 ... 0 o1

0 1 ... 0 0o
AN = : I : :

0 0 ... 1 41

)\m,l /\m,2 e )\m,k—l /\m,k
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corresponding to the forms ¢, ..., @ has nonzero determinant. It is
easily shown that

k-1
det A’ = )‘m,k - Z /\m,iéi-

i=1

We now use our careful calculations of the properties of the matrix
T =Tn(D, E) in §3. Recall from §8.3 and §8.2 that A\, ; = ¢,,; and
Amk = tmj, = tmm, and note that é; = §j, ,,. By Lemma (3.7.3),

m—1
tmm =1+ Z tmjéjma
Jj=1

where the integers t,,; and §;,, are all nonnegative. Then
k-1
det AI = tmm - Z tmyji(sjiym
=1

m—1
_>_ tmm - Z tmjajm
j=1
= 1.
O

(8.7) Modified Poincaré metrics.

Proof of (8.4.2). Part (ii) of this theorem follows from Proposition
(5.5.1). We now prove part (i). Recall from (8.6.8) that

w*wm_l ~ T—l (dzk A dfk + ch A dfc
+(zfdzk + deZf) A (_Z'fd?fk + 7kd7f))

where the repeated index f indicates summation over I'—{k}. Then
T W1 + @dz 7 A dZzy is positive and hence locally quasi-isometric
to wp,. Substituting, we obtain

Wpm = Wsm + Wm
V-1 1
| log| z122...2k I |
V-1
s

de A dff + T;lwA*

~ 7r*"‘)S,m--l +

+ T wm_1 + de/\d_Z'f
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s

~7r*(wg,m_1 +wm_1) + de/\dEf-l-T;zwA*
v-1

T

=T'Wpm—1 + dzf ANdZs + Twa-.

O
(8.8) Metrics in the case C; C D;_;.

Proof of (8.4.4). The statement of Theorem (8.4.4) allowed for
the possibility that D; might have several connected components,
but it is sufficient to prove the theorem in the case that D; is con-
nected, since each blow-up 7; is a biholomorphism away from its
exceptional divisor F;. This simplification allows us to avoid having
to work with submatrices of multiplicity matrices corresponding to
individual connected components of D;. For the rest of this proof
we will assume that C; C D;_; for 2 <7 < m.

We continue to use the notation of §8.3. We may write wg,, as

m

*
Wsym = ToT oo + I TiVm,i
=1

for some integers 79,71, ..., "m. The forms

=1 _ X
Ui = W:n,iyi = —.——271'_66 lOg(lOg ” Sm,i “2)2

are Poincaré-type (1, 1)-forms corresponding to the divisors Dy, ; =
7y, :Di and have the usual decompositions vy, ; = p;+mn; as in (5.1.2).
In local coordinates, the function 8; = —log|| 3m, ||* is given by

.2
B; = —log(] 2% | g;)

for some bounded positive C* function g;. If C; C D;_; for 2 <i <
m, the calculation of the quasi-isometry class of wg, is greatly sim-
plified, because in this case all entries of the matrix A are positive,
by Proposition (3.7.4), and consequently §; ~ 8 ~ —log| z12...2¢ |
for all 1.

Applying Lemma (8.6.2) inductively in this case, it is easy to show
that there are positive integers r; (r; a sufficiently large multiple of
Ti+1), such that

il 1
* *
T0Tm,0%0 + Z Tilki ™~ Ty 0Wo + ZWm.

=1 :8
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By Proposition (5.2.4),

1
W + N ~ 2w + T WA

p g
locally, for any positive constant a. Then locally

m

1 m
* * *
T0Tm,0Wo + E TiVmi ~ Ty oWo + -ﬁ—wm + E T; WA
i=1 i=1

1 .
T oWo + wm Zﬂf T, wa~ since B; ~ B.

Recall from §8.3 that the m x k matrix A has rank k. We may apply
Lemma (5.3.1) to the sum of the forms ¢; = 527} wa~ to obtain

m
Z,BizTi*wN ~ .
=1

This shows that wg,, is homogeneous in the sense of (1.8.4).

Recall that wg; ~ mfwy+wsap (Corollary (7.2.2)) and if dim C) =
0 then wg; ~ wsasp (Corollary (7.2.3)). If wg; ~ wsap, then we may
neglect the term 7y, qwp in all successive blow-ups, and we obtain
the local quasi-isometry

1

which describes a Saper metric.
To obtain the quasi-isometry wp, ~ wphom, use Proposition

(5.5.1). O

§9. Homogeneous Saper metrics and proof of Theorem II.
Let M be a compact complex Kahler manifold and let X be a re-
duced compact analytic subspace of M. In §9.1 we will show how
to construct a homogeneous Saper metric on the nonsingular set of
X. This metric has the advantage that it is more easily described
in local coordinates than the metrics of Theorem (8.4.1), but the
disadvantage that there is not a natural decomposition into terms
corresponding to each of the blow-up maps used to resolve X.

In §9.2 we will show that an incomplete metric on M — X, which
determines an embedded resolution of singularities of X is associ-
ated in a very simple way with a certain complete Kahler modified
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Saper metric on M — Xgpn,. This result, together with Corollary
(10.2.4) on fine sheaves, constitutes our second main result, Theo-
rem IT of §2.2.

(9.1) Complete Kiahler homogeneous Saper metrics. Let M =
My be a compact complex Kéahler manifold with Kahler form w and
let X be a reduced compact analytic subspace of M. Suppose that
{mj - M; — M;_,} is a finite sequence of blow-ups along smooth
centres C; C M;_, which resolves the singularities of X and such
that C; has normal crossings with the total exceptional divisor D;_;
of the composite map m;o : M; — M,. Let M = M,, be the final
blow-up, let 7 = m,0 be the composite map from M to M, and
let D = D,, be the total exceptional divisor of . The strict trans-
form X of X in M is smooth and has normal crossings with D, and
X — (X N D) is isomorphic to X — Xging. A metric on M — D induces
a metric on X — Xging.

In §8 we constructed complete Kahler modified Saper metrics for a
sequence of blow-ups of this type. We showed that if for 2 < 7 <m
the centre C; is either contained in the total exceptiona} divisor
D;_; or is disjoint from D;_;, our Kahler form wg, on M — D is
homogeneous, i.e.

Wem ~ MW + Wsap
where ws,;, is the fundamental form of a distinguished Saper metric
on M — D. Now we will show that we may obtain such a metric
even when we remove this requirement.

Recall that the irreducible components E‘m,l, ...,E‘m,m of D are
the strict transforms of the exceptional divisors E; = 7 (e}

THEOREM 9.1.1. Let Dy, ..., D, be effective divisors on M with
the same support as D, i.e. such that

m
D; =) bijEn;
j=1
for some positive integers b;;. For each divisor D;, let H; be a her-
mitian metric on the line bundle L; = [D;] and let S; be a section
of L; such that (S;) = D; and || S; ||> < 1 on M. Let v; be the
associated Poincaré-type (1,1)-form

/=1
v, = —738 log(log || Sz ||2)2
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Suppose that
i. the matriz of multiplicities (b;;) is nonsingular, and
ii. the forms
¥ =lr"w — ai([Ds], H;)

are positive for all sufficiently large integers [.
Then the form
m
ws = Im*w + Z v;
=1
is the fundamental form of a complete Kdihler homogeneous Saper
metric on M — D.

Proof. The construction is similar to that of §8. The form wg is d-
closed so we need only show that it is positive and has the required
local quasi-isometry class.

We decompose v; as vj = p; + 7; as usual and note that

2
pj = —Ecl([Dj],Hj)

where §; = —log|| S; ||*.

Consider any point ¢ € M. If ¢ ¢ D then 7*w is positive and v;
is bounded in a neighbourhood of ¢ so In*w dominates v; for large
l. Suppose that ¢ € D and let Ei, ... , By be the components of D
passing through ¢. Each E; is one of the strict transforms Ema
The divisors D and D; have the same irreducible components so
El, Ek are also the components of D; passing through ¢. Let
Aji be the multiplicity of E; in D;. The matrix A = ();) is the
m X k submatrix of the matrix (bij) corresponding to the divisors
El, E‘k The rank of A is k.

Let (2, ..., z,) be normal coordinates for the dlvisors FE; in a neigh-
bourhood U of ¢ and let 8§ = —log| z129...2% | Near ¢ we have

L2
B ~ —log| 25" .57 | ~ B.

By assumption (ii), the forms

. 1
Y =lr*w + ‘iﬂjllfj
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are positive for all sufficiently large integers [. Then
1v/-1&
w4+ pj ~ 1w+ ——— Zdz,— A dz;
'B [t
for 21, ..., z close enough (but not equal) to 0. Let 7; : U — A be
the monomial map given by

Aj1 _Aj2
2 .

7 (21, oy 2n) = 21712 Nk

2,
It follows from Proposition (5.2.4) that

1vV/-1&
Ir*w + pj +mj ~ m*w + E—ﬂ—Zdzi A dZ; + T wa-
i=1

and from Lemma (5.3.3) that

v -1 1 zk: dzi A d?i
|2

™ (log| z1z2..2 ©)2 5 | z

m
S rjun ~
j=1

because the matrix A has positive entries and rank k. Then

m

wg = Irm*w + Zz/j

Jj=1
V-1 ( 1 i dz; A dz;
s (log| z122...2k |2)2 = |z |2

1 Z dzi A dzl)

| log | z122...2 |2 | i

~ Tr*w +

for 2y, ..., zx close enough (but not equal) to 0. This shows that wg is
positive for { > 0 and that wg ~ T*w+ws,p, i.e. wg is homogeneous.
Completeness follows from Proposition (6.1.1). 0

COROLLARY 9.1.2. There ezists a complete Kahler homogeneous
Saper metric on M — D and hence on X — Xgng =2 X — (X N D).

Proof. Let Dy, ..., Dy, and Hy, ..., H,, be the divisors and metrics
of Proposition (4.4.1). These divisors and metrics satisfy conditions
(1) and (ii) of the previous theorem. For each i we may choose a
section S; of the line bundle £; = [D;] such that (S;) = D; and such



140 CAROLINE GRANT AND PIERRE MILMAN

that || S; ||> < 1 on M. Let v, ..., v be the associated Poincaré-
type (1,1)-forms. Then the form

ws = Ir*w + Z V;
=1
is the fundamental form of a complete Kéhler homogeneous Saper
metric on M — D. ([l

(9.2) Incomplete and complete Kihler metrics. We will now
describe a simple relationship between certain incomplete and com-
plete metrics on X — Xgpg.

First note that in Theorem (9.1.1) we needed only a single Poincaré-
type (1,1)-form v; to obtain completeness because each divisor D =
D; has the same support as D. Furthermore, we assumed that the
Chern form ¢, ([D], H) corresponding to the metric H = H; had the

property that
Y = lr*w — ¢;([D], H)

was positive on M for all sufficiently large integers [. We may write
this assumption in terms of a section S of [D] such that (S) = D
and || S || < 1as

P =Ilr*w — %85(— log|| S ||*) >0

on M. The form 9 is a Kahler form on M which determines an
incomplete metric on M — D & M — Xgsing- The completion of
M — Xging under this metric is M. Recall (definition (2.2.1)) that
we say that this incomplete metric on M — X, determines an
embedded resolution of the singularities of X. We will now show
that each such metric corresponds to a complete Kahler modified
Saper metric on M — Xgipg & M - D.

THEOREM 9.2.1. Let D be an effective divisor on M with the
same support as D, let S be a section of the line bundle L = [D]
such that (S) =D and || S ||° < 1, and let H be a metric on L such
that for all sufficiently large integers [

@ = tr'w - Y00~ log]| S ")
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determines a Kdhler metric on M. Then the (1,1)-form
Qg = In*w — ——-"2;16510g(- log || S |I?)?

determines a complete Kihler modified Saper metric on M — D such

that N N
T'w < Qg < 7w + wsap

and
1

—_—Q
~log| S |I”

IN?

Qs.

Proof. Since Qg is positive away from D for [ > 0, we need only
prove the given quasi-isometries on neighbourhoods of points of D.
We write Qg as In*w + v = Ir*w + p + 1 where

Y= _—‘;aélog(—log 1S |12

__1V-las 52,
b=~ =00(~log]| S |I") = ~5e: (D], ).

n= gaﬂ;aﬁ, and
B=—log|l S|I".
Then ) ]
Q=Ir"w+ -2-ﬂu
and

1~
l7r*w+,u~l7r*w+BQ>O.

Next we calculate the local quasi-isometry class of
Qs =lr'w+v=Ir"w+pu+n.

Choose normal coordinates (zy, ..., 2,) near ¢ € supp D = supp D.
Locally the divisor D is given by the equation z;* z{,\?...z,’c\" = 0 for
some positive integers Ay, ..., \r. Let 7 be the local monomial map
given by

— 0
T(21y oy 2n) = 27 252235
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Using Proposition (5.2.4) we get locally

* * 1=~ *
I w+u+n~7rw+’§Q+T WA+

which is always positive. This shows that g determines a Kéahler
modified Saper metric on M — D and that Qg > (1/8)Q. Moreover
s is bounded above by the Kahler form wgs of a homogeneous
Saper metric, i.e. a Kahler form wg such that wg ~ 7*w 4 wgap. To
construct such an wg, we proceed as in the proof of Corollary (9.1.2)
but note that for some 7 we may replace D; by D and preserve the
properties needed to apply Theorem (9.1.1).
We use Proposition (6.1.1) to get completeness.

O

COROLLARY 9.2.2. There ezist a diwisor D on M with the same
support as D, a section S of the line bundle £ = [D}], and a metric
H on L such that for all sufficiently large integers [

i. the (1,1)-form

Q= In*w — —-—V;a'a‘(— log|] S |12

determines a Kahler metric on M and
ii. the (1,1)-form

Qg = In*w — ———"2;135101;(— log || S ||)2

determines a complete Kahler modified Saper metric on M —D
such that N -
T w S QS S ™ w +w5ap

and
1

—log|| S |I”

Proof. We have many choices for D, since all the Kahler forms

we constructed on M by the methods of §4 may be written in the

form (i). For example, let D be any of the divisors D; of Corollary
(9.1.2) and Proposition (4.4.1). Then
Q =1,

is positive on M by Proposition (4.4.1) so it determines a Kahler

metric on M. Now apply Theorem (9.2.1). O

AR

Q< Q.
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§10. Fine sheaves. Let M be a compact complex manifold and
let X be a reduced compact analytic subspace of M. Let 7 : M —
M be the composite of a finite sequence of blow-ups of the type
described in §1 which resolve the singularities of X. Let D be the
exceptional divisor of w. The strict transform X of X in M is
smooth and has normal crossings with D and the restriction of 7 to
X - (X' N D) is a biholomorphism onto X — XSlng

Let h be a hermitian metric on X — Xging = X — (X ND). Let Sy be
the complex of presheaves on X whose sections over any open set U
in X are smooth measurable differential forms ¢ on U N (X — Xging)
such that both ¢ and d¢ are L,-bounded with respect to h. Let S
be the associated complex of sheaves on X. Similarly, let Sy be the
complex of presheaves on X whose sections over any open set U in
X are smooth measurable differential forms ¢ on U — (U N D) such
that both ¢ and d¢ are Ly-bounded with respect to h, and let S be
the associated complex of sheaves on X.

We will show that if h is bounded below by the restriction to
X — Xiing of a hermitian metric on M, then § is a complex of fine
sheaves. In particular, if 4 is a modified Saper or modified Poincaré
metric then the complex of sheaves S on X is fine. Similarly, if A
is bounded below by the restriction to X - (X N D) of a hermitian
metric on X, then S is also fine. In particular, if h is a modified
Poincaré metric then the complex of sheaves S on X is fine.

We first review some technical material concerning L,-norms of
forms.

(10.1) Comparison of Ly,-bounded forms in two metrics. Let
ha and hg be two hermitian metrics on an m-dimensional complex
manifold Y. Let W be a coordinate neighbourhood of a point y in Y.
After shrinking W if necessary, we may choose C'™ sections t1, ..., t;,
of the tangent bundle TW which are linearly independent at each
point of W and orthonormal with respect to hy. We call t,,...,t,
an orthonormal frame for hy. Let 71, ..., 7, be dual sections of the
cotangent space T*W. We call 11, ..., T, an orthonormal coframe for
ha. Let G = (G;;) be the C* matrix for hp with respect to the
frame ty,...,tm, i.e. (ti,t;)B = Gij, where G;; is some C* function
on W. Then (15, 7j)8 = (G™');i. The matrix G is hermitian positive
definite at every point, so there is a (constant) unitary matrix U
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such that
UG(y)U* =D,

where U* =U' and D is a (constant) diagonal matrix with positive
diagonal entries d;.

REMARK 10.1.1. At each point y in Y, we have hg > h,4 if and
only if d; > 1 for all 2.

Next we construct an orthonormal frame and coframe for h4 with
respect to which the matrix for hp at the point y is diagonal. Let

m
ei =) Uit
i=1

and

&= (U
j=1

Then ey, ..., e, is another orthonormal frame for A4 and &, ...,&n,
is another orthonormal coframe for hy. The matrix for hg with
respect to the frame {e;} is

D =UGU*

where <6¢,6J‘>B = Dij and <§i,£j>B = (b_l)ﬁ. Note that f)(y) =D.
At the point y we have

(ei(), ei(y))a = dij, (ei(y), e;(y)) B = dibyj,
(&), &W)a =105, and (&(v),&)s= 31;5@-,

where 6;; = 1if i = j and 6;; = 0 if ¢ # j. We may extend the
collection of tangent vectors {\/l—d—ie,-(y)} to an orthonormal frame
{e'} for hp on W and the collection of cotangent vectors {\/d:&:(y)}
to an orthonormal coframe {¢!} for hp. Let C be the matrix for the
change of frame

eli = ZCUeJ and é.-: = Z{’)(C—I)J"
j J

Then A
CDC*=1 and C(y)=vD
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i.e. C(y) is the diagonal matrix whose diagonal elements are \/—17—.

Volume forms for h4 and hp are

e

FONE N NERNE,

dVy =

2m!
and
dVp = %m%’m N AE,
—detCldetC " dV4
= det D dV,.

Recall that D(y) = D, so that det D(y) = dyds...dp.
We now compare Lo-norms with respect to hy and hg. Let 9 be
a p-form which is locally of the form

b= Z Aiy,onip)&is N oo Ny = Z arfr = Zﬂ[§}~
7 1

11 <...<ip

Similar calculations can be done for (p, ¢)-forms. We have

(Wp)a=3_lor|” and (¥,9)p =30 "
I 1
Integrating over Y gives the Ly-norms

(W¥)a= [ (W ¥)adVa and (W,¥)s= [ (¥ ¥)sdVa

where dV = det D dV, locally.

To compare Ly-norms with respect to h4 and hg we will compare
the local expressions for (1, 1) 4 and (1, 1) det D.

For example, if p = 0 and ¥ = «, then

W, )4 =W, Y)p=|al

and v is locally B-L,-bounded if and only if \/det Dy is locally
A-Lo-bounded.
Ifp=mand ¥ =aé A ... N&,, then

laf’

<¢,¢>BdetD: d—e?BdetD = <’(b,’l/)>A
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and v is B-L,-bounded if and only if ¥ is A-L,-bounded.
Ifp=1and ¥ =Y ;& = Y Bi&} then at the point y,

ﬂi:ﬁ—i—

If hg > hy then d; > 1 for all 7 so

1
YIslP=YFlalP <Y ol
: d; :

i.e.
(10.1.2) (U, ) < (Y, P) a-

Similarly,

- d.
<¢’¢)B det D(y) = ZH_Zi_J_I a; |2

1

2> <wa ,¢')A

at each point y so

(10.1.3) (¥, ¥)B > (¥, 9)a
if hg > ha.

(10.2) Fine sheaves. Let Y be a reduced compact analytic sub-
space of an n-dimensional compact Kahler manifold M and let Z
be a complex analytic subspace of Y containing the singular set of
Y. Let hyp be a hermitian metric on Y — Z induced from a her-
mitian metric on M. Let h be another hermitian metricon Y — Z
and let Sy be the complex of presheaves on Y whose sections over
any open set U in Y are smooth measurable differential forms ¢ on
UN (Y — Z) such that both ¢ and d¢ are L,-bounded with respect
to h. Let S be the associated complex of sheaves on Y. We will
show that if h > hps on Y — Z then S is a complex of fine sheaves.

The main technical result we need is the following proposition.
Recall that by a C* function on Y we mean the restriction to Y of
a C* function on M.

PROPOSITION 10.2.1. Let U be an open set in Y and let ¢ be
a smooth measurable differential form on U N (Y — Z) such that
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¢ is Lo-bounded with respect to h. Let f be a C* function on Y.
Suppose that h > hyr on'Y — Z. Then df N ¢ is Lo-bounded with
respect to h.

We will work in terms of frames and coframes of the type de-
scribed in §10.1 above, letting hy = hjs and hg = h. More specifi-
cally, for each y € Y —Z we may choose a coordinate neighbourhood
W on which we have an orthonormal frame {e;} and coframe {;}
for hy, and an orthonormal frame {e;} and coframe {&!} for hp
such that {e;,e;)p = D;; and D(y) = D is a diagonal matrix with
positive diagonal entries d;. The statement that hg > hs means
that every eigenvalue d; of D satisfies d; > 1. Then for every 1-form
¥, we have (¥, ¥)p < (¥,¥)a. In particular, (df,df)s < (df,df)a.
But (df, df) 4 is bounded because f is a C*™ function on Y and hg4
comes from a metric on M. Choose K > 0 such that (df,df)4s < K
everywhere on Y.

Suppose that ¢ is a p-form.

LEMMA 10.2.2. (df A ¢,df A d)p < K(,?,)(4, ) 5.

Proof. In terms of the coframe {¢/}, let

df =) fi§; and =) ¢l
J I

Then
dfrg= Y ( > fj¢1(—1)sg“<f’”) &
|J|=p+1 \{5,I}=J
and
2

>, figr(=1)®0D

{5.1}=J

2> <Zlfjl2)<2|¢zl2)

[J|l=p+1 \jeJ icJ

< Y (df,df)B (¢, d)B

|J|=p+1

_ <p " 1) (df, df)5 (6, 8)5

(df Ngdf APy =3

|J|=p+1
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< ™ Vdf.df)a (b, 8)
>~ D + 1 3 A ) B

SKQszﬁb- ]

We now conclude the proof of Proposition (10.2.1). The h-Lo-
normof df AgonU' =UN(Y - Z) is

(& A 6,df A)s = [ (df AJ,df A9 dVa

n
SKQ+JLM¢mwh

<0

since the form ¢ on U’ is Ls-bounded with respect to
h = hp. O

We use Proposition (10.2.1) to prove our main result about fine
sheaves.

PROPOSITION 10.2.3. If h > hyy on'Y — Z, then S is a complex
of fine sheaves.

Proof. 1t is sufficient to prove that multiplication by a C* func-
tion determines a morphism of presheaves Sy — &p. Let ¢ be a
section of Sy over an open set U in Y, i.e. ¢ is a smooth mea-
surable differential form on U N (Y — Z) such that ¢ and d¢ are
Ly-bounded with respect to h. We will show that for any C* func-
tion f on Y, the forms f¢ and d(f¢) are also h-Ly-bounded. Now
d(fo) =df Nd+ fdg, and f¢ and f d¢ are h-Ly-bounded because
f is bounded. By Proposition (10.2.1), df A ¢ is also h-L,-bounded.

Thus multiplication by a function which is C* on Y determines a
presheaf morphism from &y to Sy. The induced map from S to S is
a sheaf morphism, so S admits partitions of unity and is a complex
of fine sheaves. O

Now we return to the situation of the introduction to §10, namely
that X is a reduced compact analytic subspace of M, 7 : M — M is
a composite of blow-ups which resolves the singularities of X, D is
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the exceptional divisor of 7, and X is the (smooth) strict transform

of X in M.

COROLLARY 10.2.4. Let h be a modified Saper metric on M — D.
Then the associated complexes of Lo sheaves on X and M are fine.

1%

Proof. Recall that every modified Saper metric on M — D
M — Xging is bounded below by a metric induced from M and the
use Proposition (10.2.3).

=}

O

_ COROLLARY 10.2.5. Let hp be a modified Poincaré metric on
M — D. Then the associated complezes of Ly sheaves on X, M, X,
and M are all fine.

Proof. Recall that every modified Poincaré metric on M — D =
M — Xing is bounded below by a metric on M — Xsing induced from
M and also by a metric on M — D induced from M. O

Appendix: Tubular neighbourhood construction. The fol-
lowing tubular neighbourhood constructions are based on Clemens
[CL, §5] and are used in the proof of Proposition (4.1.1).

Let X be a complex manifold and let Y be a compact complex
submanifold. Let N = Ny,x be the normal bundle of Y in X. Let
F be a vector bundle over X and, for any subset Z of X, let F;z be
the restriction of F' to Z.

PROPOSITION A.1. There exist an open neighbourhood U of Y
wn X and a C™ projection 7 : U — Y such that

(*) 7 is surjective and the fibres of T are holomorphic submani-
folds of U, transverse to Y.

ProrPoOsITION A.2. There exist an open neighbourhood U of Y
in X and C*® maps7:U — Y and : U — N such that T satisfies
(*) of Proposition 1 and such that

i. the restriction of 1 to Y s the natural identification of Y with

the zero section of N,

ii. 1 is a diffeomorphism onto its image, and
iii. the restriction of ¥ to any fibre of T : U — Y 1is a biholomor-

phism onto an open set in the corresponding fibre of N over
Y.
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PROPOSITION A.3. There exist an open neighbourhood U of Y
and C® maps 7 : U =Y and p: Fy — 7*Fy such that T satisfies
(*) of Proposition 1 and such that

i. the restriction of p to Fy 1is the identity map,

ii. p is a C* vector bundle isomorphism, and
iii. the following diagram commutes.

FU -L) T*FY ——T'—) Fy

Lol

All these propositions are proved in a similar manner, by piec-
ing together local maps using a partition of unity on Y and the
appropriate transition functions.

Proof of Proposition A.1. Let {U,} be a finite open cover of Y in
X with the followin_g properties:
i. The closure U, of U, in X is compact.

ii. On U, there are holomorphic coordinates 2,1, ..., 2a,n Such

that the set Y, = Y NU, is given by 2,1 = ... = 24, = 0
and such that 24441, ..., Zo,n are holomorphic coordinates on
Y,.

Define a map v, : U, X Y, — C"* by

vo(z,y) = (Za,i(iﬂ) - Za,i(y))i=k+1,...,n

where z € U,, y € Ya,, and z,,(p) represents the value of the holo-
morphic coordinate 2, ; at the point p.

For each y in Y,, the restriction of v, to Y, x {y} C U, x Y,
is holomorphic in z and gives a system of holomorphic coordinates
on Y,, centered at y. For y in Y, N Y3, let J, g(y) be the Jacobian
matrix relating v,-coordinates to vg-coordinates at y.

Let {0} be a C* partition of unity on Y, subordinate to the
cover {Y,} of Y. Pick any Riemannian metric on X and let

d= min dist(supp(0q), US).

Since supp(o,) is closed and contained in U,, and {U,} is a finite
cover of Y with U, compact in X, we have 0 < d < co. Let W, be
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the neighbourhood of Y, x Y, in U, x Y, defined by
) d
W, = {(x,y) € Uy X Yy, : dist(z,y) < 5}

In order for products of the form o,v,J,, to be defined on all of
W,, we make the convention that v, is 0 outside U, x Y, and J, 4
is 0 outside Y, NY,.
Define maps
Ay : W,y — C™F

by
o(T,y) = Za'r Y)0(2,Y) Jya(y)-

Notice that if (z,y) € W, and 04(y) # 0, then

dist(z, supp(oy)) < 3
so x € U,. Then A, is a C* function and the restriction of A, to
(Ua x {y}) N W, is holomorphic.

On W, N Wg we have

Ap(z,y)Jpaly) = E 0y (¥)v1(2,9) J1,8(y) Jp,a(y)
—2‘77 Y)vy(z,9)Jy,a(y)

= Aa(x, y)

so As(z,y) = 0 if and only if Ag(z,y) =0.

For each yy € Y,, the restriction of A, to {yo} x Y, gives a
holomorphic coordinate system on a neighbourhood of 3, in Y,. By
the implicit function theorem, there exist C'*° functions ugy, ..., u,
on a neighbourhood of yy in X, such that in a neighbourhood of
(Yo, Yo) in Wy, Aa(z,y) = 0if and only if 2, ;(y) = ui(z) for k+1 <
1 < n. Locally, define a map 7 by

7(x) = (ui(x))lc+1_<_z'§n

so that A,(z,y) = 0 if and only if y = 7(z). Since on W, N Wy,
Ay(z,y) = 0 if and only if Ag(z,y) = 0, the map 7 may be ex-
tended to a C'™ function on a neighbourhood W of Y in X, with
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the property: for each 7, A,(z,y) = 0 if and only if y = 7(z).
Since the restriction of A, to (U, X {y}) N W, is holomorphic and
the restriction to Y, % {yo} is nondegenerate in a neighbourhood of
(Y0, Yo), there is a neighbourhood U (yy) of yo in W such that for y in
Y NU(yo), the fibre 771 (y) N U(yo) of 7 is a holomorphic manifold
of dimension k, transverse to Y. Cover Y by a finite number of
such neighbourhoods, let U be their union, and restrict 7 to be the
projection 7: U = Y. 0

Proof of Proposition A.2. Let 7 : U — Y be as in Proposition 1.
Let {U,} be a finite open covering of Y in X with properties (i) and
(ii) of the proof of Proposition 1 and such that:

iii. There are local trivializations of the normal bundle

$o: N |y,— Y, x C*

¢a(§) = (y7 ga)

with transition functions g, g on Y,NY}p, such that g s(v)€s = &a-
Note that g, is a k x k matrix so & and £z should be regarded
as column vectors. In terms of holomorphic coordinate systems z,
and z3 on U, and Upg, the matrix g, g is given by

(Bza,i)
908 =\ 3 .
02p,i ) 1<ij<k

Let Y, = Y NU,. Shrinking the sets U, and U if necessary, we may
assume that the union of the sets U, is U and that 771(Y,) = U,.
To give a map ¥ : U — N, it is enough to give maps

VYo : Uy = Y, x Ck
of the form
Ya(T) = (7(2), €a(2))

such that g, g(7(z))és(z) = & (z) for x € Uy N Up.

Let {0,} be a partition of unity on Y, subordinate to the cover
{Ya}. Let Z, = (24,)i=1,..x- We use the convention that g,,(y) =0
ify ¢ YoNY, and z,(z) =0 if z ¢ U,. Define maps

£y Uy — CF
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by
£a(z) = Y 04(7(2)) gany (T(2)) 24 ().

Notice that £, is C* since supp(o,) C Y,. On U, N Us we have
90,8(7(2))€p(7) = 207 (7))90,5(7(2)) 95+ (7(2)) Z(z)
= Z 0y(7(2)) g (7(z)) 2y ()

—fa( )

so that the maps 1, (z) = (7(z), {a(z)) do indeed define a C* map
¥:U— N.

Next we check that v has the desired properties. If y € Y then
7(y) = y and Z,(y) = 0 for all y, so the restriction of ¢ to Y is the
natural map of Y onto the zero section of N. The restriction of ¥
to the fibre U, = 77!(y) of 7 is given by

¥(z) = (v, €a(2))

where

£a(2) =Y 04(1)9an(¥) 2y (),

so % |y, is a holomorphic map to the fibre N, of N. To see that
(after shrinking U if necessary) v is a diffeomorphism onto its image
and the restriction of 9 to any fibre of 7 is a local biholomorphism,
note that in a neighbourhood of y on the fibre U, of 7, £, is a
nondegenerate map to C*. O

Proof of Proposition A.3. Let 7 : U — Y be as in Proposition 1
and let r = rank(F’). Let {U,} be a finite open covering of ¥ in X
with properties (i) and (ii) of the proof of Proposition 1 and such
that:

iii. There are local trivializations of F’

bo: F ly,— Uy x C”

$a(§) = (2, &)

with transition functions g, on Uy NUpg such that g, g(z)és = &,.
Let Y, = Y NU,. Shrinking the sets U, and U if necessary, we may
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assume that the union of the sets U, is U and that 771(Y,) = U,
Transition functions for 7*F on U, NUp are g, 50 7. To give a map
p: Fy — 7 Fy, it is enough to give maps

Po: Uy xCT = U, xC’

of the form

pa(xa ga) = (11?, fa(x’ Ea))

such that g, 4(7(z)) fs(z,&p) = fa(z, &) for . € Uy N Us.
Let {04} be a partition of unity on Y, subordinate to the covering

{Ya}. We use the convention that g,,(z) = 0if z ¢ UyNU,. Define
maps
fa:UyxCr = C"

by
fa(z, &) = Z Oy (7(2)) 9oy (7'(5’3))97,0 (z)&a.

Since gy o(z)és = &, we have
fo(z,&a) Zav (%)) 9oy (7(2)) -
On the restriction of F' to U, N Us we have
90,8(7(2)) fo(, &p) = Z 01(7(2))90,8(7(2)) 98, (7(2))&,
= me (2))9air(7(2))&y

= fa(x,ga)'

Notice that f, is C* since supp(o,) C Y.
Finally, we check that the map p defined by the functions f, has
the required properties. If y € Y, then 7(y) = y and

fa (y’ fa) = Z Oy (y)ga,'y (y)f'y
= Z 03(¥) 901 (Y) 9,0 (¥)éa

= (; 2 (y)> £a
=¢,
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so p is the identity map on Fy. After shrinking U if necessary, the
map p : Fyy = 7*Fy will be a C*® vector bundle isomorphism. By

construction, p commutes with projection to U. O
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