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T H E IP THEORY OF STANDARD HOMOMORPHISMS

F. GHAHRAMANI AND S. GRABINER

Suppose that φ : Lx(ωι) -> L1(u>2) is a continuous nonzero
homomorphism between weighted convolution algebras
on iϊ+, and let φ also designate the extension of this map
to the corresponding measure algebras M{ω\) and M(ω2)>
For 1 < p < oo, we prove: (a) the semigroup μt = φ(δt)
acts as a strongly continuous semigroup on Lp(ω2)'1 (b)
Whenever I/1(α;i) * / is dense in Lx(ωι)^ then Lp(ω2) * φ(f)
is dense in Lp(ω2); (c) Each h in LP(LU2) can be factored as
h — φ(f) * p; (d) φ is continuous from the strong operator
topology of M{ω\) acting on L1(α;i) to the strong operator
topology of M(u)2) acting on

1. Introduct ion. In this paper we show that the IP analogue of
a number of questions we have studied ([10], [8], [11], [7]) involving
homomorphisms and semigroups on weighted L1 spaces on R+ =
[0, oo) all have positive answers when 1 < p < oo. If ω(t) > 0 is a
Borel function on R+ which is locally bounded and locally bounded
away from 0 and if 1 < p < oo, we let IP(ω) be the Banach space
of (equivalence classes of) measurable functions on R+ with fω in

with the inherited norm

ii/ii = II/IUP = \\fω\\P = ( j Γ ι/(tMt)r dt)) ι l P

We are particularly interested in the case that Lι(ω) is a Banach
algebra and all IP(ώ) are L1 (α )-modules under the usual convolu-
tion multiplication / * g(x) = /o

x f(x — t)g(t) dt. Therefore we will
usually assume that ω(t) is an algebra weight, that is ω(t) satisfies:

(1) ω(x + y) <ω(x)ω(y);
(2) ω(x) is right continuous;

(3) α (O) - 1.
(1), (2), and (3) are just normalizations and are essentially equiva-
lent to Lι(ω) being an algebra in which case IP(ω) is an Lι(ω)-
module [9], where the module action is convolution. The most
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important cases are the classical case ω{t) = 1, so that Lι(ω) =
Lι(R+), and the case limt->ooω(t)t = 0, so that Lι(ώ) is a radical
Banach algebra.

When ω(t) is an algebra weight, the space M{ώ) of locally finite
Borel measures satisfying ||μ|| = | |μ | |ω = /Λ+ω(ί) d\μ\(t) < oo
is also a Banach algebra under convolution and each LP(ω) is an
M(ω) Banach module. We will usually identify the measure μ in
M(ω) with the linear operator of convolution by μ on LP(ω), so
that M(ω) has a strong operator topology for its action on each
LP{ω). Particularly important is the fact that convolution by the
point mass δa is right translation by α, so that the set of all δt for
t > 0 is identified with the strongly continuous right translation
semigroup on I/*(ω) for 1 < p < oo.

Suppose now that φ : Lι(ωχ) —ϊ L1(ω2) is a continuous algebra
homomorphism, with u)\{t) and ω2(t) algebra weights. This ho-
momorphism has a unique extension to a homomorphism, which we
also call φ, from M(ω\) to M(ω2) [10, Theorem 3.4, p. 596], so that
μt = φ(δt) is a semigroup in M(ω2). The following definition lists
the properties we would like to prove for φ.

DEFINITION (1.1). We say the above homomorphism φ is stan-
dard for p, where 1 < p < oo is fixed, if the following properties all
hold.

(a) The semigroup μt = φ(δt) is strongly continuous on Lp(ω2)]
that is lim^o μt* 9 = 9 for all g in Lp(ω2)

(b) Whenever Lι(ω{) * / is dense in Lι(ωι), then Lp{ω2) * φ(f) is
dense in LP(u)2).

(c) For each h in Lp(ω2), we can write h = φ(f) * g for some
/ e Lι(ωι) a n d ^ e D>{ω2).

(d) Whenever {λn} is a net in M{ωχ) for which limn^oo K * / =
λ * / for all / in Lι(ωι) then limn_^oo ςzi>(λn) * g = 0(λ) * <j for all p in
I^iω^)] that is, 0 is continuous from the strong operator topology on
M{ωχ) acting on Lι{ωχ) to the strong operator topology of M(ω2)
acting on ^(ω^.

The main result of this paper, Theorem (3.1), is that φ is always
standard for p when 1 < p < oo. When p = 1, we have previously
shown , in joint work with Peter McClure [7, Theorem (2.2), p. 280],
that conditions (a), (b), (c) and (d) are equivalent, but when p = 1,
we have so far only been able to prove that these conditions hold for
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a special class of weights [8, Theorem (3.4), p. 284], the regulated
weights of Bade and Dales [1].

In §2, we will compare various types of convergence in LP(ω) and
show that a class of semigroups, which will include all μt = φ(δt),
are strongly continuous when p > 1. §3 will be devoted to proving
that all φ are standard for all p > 1. In §4, we observe that, for
sequences which do not come from semigroups μt = φ(δt), the best
convergence results require that the weights be regulated, just as
when p = 1 [7].

2. Types of convergence. Many of the parts of the definition
of standard homomorphisms involve comparing various convergence
properties for a bounded sequence or net {λn} in M(α ), just as in
the case p = 1 (see [10], [7]). For 1 < p < oo, the dual space of
i/(α;) is Lq{l/ω), where q is the conjugate exponent to p, under
the usual duality (/, h) = SQ° f(t)h(t) dt. Also, when ω(t) is an
algebra weight, M(ω) is the dual space of CQ(1/U) under the anal-
ogous duality [10, Theorem 2.2, p. 592]. Here Co(l/ω) is the sub-
space of L°°(l/ω) composed of continuous functions h(t) for which

h(t)/ω(t) — 0. The following is our basic convergence result.

LEMMA (2.1). Suppose that ω(t) is an algebra weight and that
{λn} is a bounded net in M{ω). If either

(i) There is a v φ 0 in M(ω) for which λn * v —> λ * z/weak* in
M{ω) = C0(l/ω)*
or

(ii) There is a g φ 0 in some ^(ω) with 1 < p < oo; for which
weak — lim(λn * g) — λ * g in LP(ώ), then \ n * v —> λ * v weak* for
all v in M(ω) and λn * g -> λ * g weakly in LP(ω) for all g in all

) with 1 < p < oo.

The most important v in M{ω) is the point mass 50? which is the
identity for convolution, so that the assertion of convergence for this
v just says λn -> λ weak* in M(ω). We could have considered only
sequences instead of bounded nets in the above lemma, since, when
restricted to bounded sets, the weak*- topology on M(ω) and the
weak topologies on ί^(α ) for finite p are metrizable.

Proof of Lemma (2.1). The key to passing between weak* and
weak convergence for bounded nets or sequences is the observation



52 F. GHAHRAMANI AND S. GRABINER

that if / belongs to Lι(ω) Π 2/(α;) C M(ω) Π LP(ω) for some 1 <
p < oo, then

(2.2)
λn * / -> λ * / weak* in M(ω) ^ λ n * / - ^ λ * / weakly in Lp(ω).

Formula (2.2) holds because both weak* and weak convergence are
equivalent to lim(λn * /, h) = (λ * /, h) for all continuous h with
compact support in R+ = [0, oo), since the continuous functions
with compact support are dense in C^{l/ω) and in all Lq(l/ω) for
1 < q < oo.

Now suppose hypothesis (i) holds; then λn * v —>• λ * v weak* in
M(ω) for all v in M(ω) by [10, Lemma 3.2, p. 595]. Thus formula
(2.2) shows that λn * / -> λ * / weakly for all / in Lι(ω) Γ) LP(ω).
Since L1(ω)Γ\Lp(ω) is dense in I^(α ) when p < oo, this proves that
the weak limit of λn * / is λ * / for all / in all i^(ω) with 1 < p < oo.

Now we suppose that hypothesis (ii) holds and verify that λn ->
λweak* in M(α ), which is hypothesis (i) for v = δ0. Since {λn} is a
bounded net, it follows from weak* compactness that there is a sub-
met {λ^} which converges weak* to some λ' in M(ω). To complete
the proof we show that we must have λ; = λ. The subsequence
{λ^J satisfies hypothesis (i), so λ^ * g -» λ' * g weakly in ^(ω).
But {λ^ * g} is a subnet of the weakly convergent net {λn * #}, so
that λ * g = λ' * g and g φ 0. Since it follows from the Titchmarsh
convolution theorem [3] that the collection of locally finite measures
on i?+ is an integral domain under convolution, we have λ = λ' as
required. This completes the proof. D

We can now prove that the convolution semigroups we need to
consider are strongly continuous on U{ω).

THEOREM (2.3). Suppose that {μt} is a convolution semigroup
in M(ω) with \\μt\\ bounded as t —> 0+. Then {μt} is a strongly
continuous semigroup on ^(ω) for all p with 1 < p < oo if any of
the following conditions hold.

(i) weak* - l im ί _^ 0 + μ>t = <̂o
(ii) There is some v φ 0 in M(ω) for which μt*v is weak*-

continuous from the right at some t > 0.

(iii) There is some g φ 0 in some ^(ω) with 1 < p < oo for
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which μt * g is weakly continuous from the right in L?(ώ) at some
t>0.

Proof. It follows from Lemma (2.4) that any of conditions (i),
(ii) and (iii) implies that μt acts as a weakly continuous semi-
group on all Ifiμj) with 1 < p < oo. But it is a standard result
[12, Theorem 10.6.5, p. 324] that a weakly continuous semigroup is
strongly continuous. D

For p — 1, the conditions in the above theorem imply that μt

is strongly continuous on Lι{ώ) for t > 0 and that all μt * v are
weak*-continuous for t > 0 [11, Theorem (2.1), p. 160]. For all such
semigroups in M(ω) to be strongly continuous on Lι(ώ) at t — 0 is
completely equivalent to all continuous homomorphisms from some
Lι{ωι) to Lι(ω) being standard for p = 1 [11, Theorem 2.9, p. 164].

3. Standard homomorphisms. We are now ready for our ma-
jor result, verifying that all homomorphisms satisfy the conditions
of Definition (1.1) when p > 1.

THEOREM (3.1). If φ : Lι(ωι) —> Lι(ω2) is a continuous nonzero
homomorphism, then φ is standard for 1 < p < oo.

Proof Recall that we always extend the homomorphism to a ho-
momorphism φ : M(ωι) -> M(ω2), and that φ has the same norm
on Lι(ωx) and Af(α i) [10, Theorem 3.4, p. 596]. We let μt = φ(δt)
and note that since Ĥ H = ω\(t) we have

(3-2) Hftll < IMMO,

where the norm \\μt\\ is taken in M{u)2).
We first prove (a) of Definition (1.1). Choose some / in Lι{ω\)

with φ(f) φ 0. Then μt * φ(f) = φ(δt * /) is norm continuous, and
hence weak*-continuous in Lι(ω2) C M(ω2). Formula (3.2) shows
that | |μ t | | is bounded as t —>• 0+, so it follows from Theorem (2.3)
that {μt} acts as a strong continuous semigroup on all LP(ω2) with
1 < p < oo.

Now use (a) to prove (b) in Definition (1.1). For simplicity we
normalize to the case that limί_)>ooα;i(ί)1/ί < 1. This normalization
is accomplished by replacing cji(ί) by some e~rtωι(t) and recalling
that the map f(t) -> f(t)e~rt is an isometric isomorphism from
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By our normalization, u(t) = 1 belongs to Lι{ωι) and, using
formula (3.2), we see that lim^oo HμtH1/* < 1. Thus if we let -A
be the generator of the semigroup {μt} on Lp(ω2), we have that A
is a one-one closed operator from a dense subspace of Lp(ω2) onto
If fa) with

i ί°°
(3.3) A-\g)= / μt*gdt

Jo

as a Bochner integral in Lp(ω2) whenever g G Lp(ω2) [5, pp. 620-622].
(Actually, since μt * g is continuous, the integral is just a vector-
valued improper Rieman integral.) The main part of the proof of
(b) is proving that if we let v = φ(u) then

roo

(3.4) υ * g = / μ$ * # dί for all g in Lp(ω2).
Jo

Formula (3.4) will imply that Lp{ω2) * v = Range(A~1) = Dom(A),
which is dense in Lp(ω2).

The first step in verifying (3.4) for p > 1 is to prove it when
p = 1. In Lι{ω2) we have μ̂  * # strongly measurable, in fact contin-
uous for t > 0 [10, Theorem 3.6, p. 599], and \\μt*g\\ < \\Φ\\\\g\\ωi(t)
which is integrable by our normalization. Thus the integral in for-
mula (3.4) defines a bounded linear operator on Lι(ω2). Since each
μt is a multiplier of Lι(ω2), so is this bounded operator. Hence
[10, Theorem (2.2) (E), p. 592] there is a measure λ in M(ω2) for
which λ * g = f£°μt * g dt for g in Lι(ω2). Now choose some
g — φ(f) φ 0 in the range of φ. The standard convolution formula
says u * / = f£°u(t)δt * / dt = /0°° δt * / dt. Applying φ to this
formula gives

roo roo
g — φ(u * /) = / 0(5$ * /) dt = / μt*gdt = λ*g.

Jo Jo

Since locally finite measures on i?+ form an integral domain, it
follows that v = λ, so that formula (3.4) holds for p = 1.

Now fix p > 1. Since Lι(ω2) Π Lp(ω2) is dense in If fa) and
both the integral and convolution by υ are continuous linear oper-
ators on g in Lp(ω2), it will be enough to verify formula (3.4) for g
in Lι(ω2) Π Lp(ω2). Suppose that h is a continuous function with
compact support, so that h belongs to (Lp(ω2))* — Lq{l/ω2) and to
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L1(ω2)* = L°°(l/ω2). It then follows from formula (3.4) for p = 1
that

(υ *g,h) =

when the integral is considered as an integral in L 1 ^ ) . But the
scalar integral f£°(μt * 9, h) dt equals (/0°° μt * g dt, h) whether the
vector integral is considered in Lι(ω2) or Lp{ω2). Thus (υ * g,h) =
(/o°° \H * 9 dt, Λ), when the integral is an Lp(ω2) integral, for all h in
a dense subspace of the dual space (Lp(ω2))* This proves formula
(3.4), and hence that Lp(ω2) * v is dense in /^(α^). Thus we have
proved part (b) of Definition (1.1) for the special case where / = u.

Now let / be an arbitrary function in Lι{ω{) for which Lι(ωι)*f is
dense. Then there is a sequence {hn} in Ll(u>i) for which f*hn—ϊu
inLx(α;i), so φ(f)*φ(hn) -^ vmL1(ω2). Thus if g belongs to LP(ω2),
then g * υ = limn_^oo(5 * Φ(hn)) * ^(/) so that the dense subspace
D*^) * ^ is contained in the closure of LP{u)2) * <?K/). This proves
that Lp(ω2) * φ(f) is dense in U^), as required.

We now use (b) to prove (c) of Definition (1.1). Notice that LP(ω2)
is a Banach module over Lι{ω\) under the multiplication / g =
Φ(f)*9- Let {en} be a bounded approximate identity for the Banach
algebra Lι(ωι) (for instance en = nχ[0}i/n)). Then (c) will follow
from the factorization theorem for modules [2, Theorem 10, p. 61]
if we show that {en} is a module approximate identity.

Choose some / in Lι{ω\) for which Lp(ω2)*φ(f) is dense in
Since {en} is bounded it will be enough to show that li
(Φ(f) * g) = <K/) * g for ^ in i/(α;2). But en (^(/) * g) = ^(en) *
(̂ >(/) * ^ = ^(e n * /) * g —t φ(f) * 5, since {en} is an approximate
identity for Lι(ω\). This proves (c).

Finally we use (c) to prove (d) in Definition (1.1). Suppose {λn}
is a net which converges in the strong operator topology of M(ω\)
on Lι{(jύι) to λ. Let h = φ(f) *g be an arbitrary element of lP{ω2J.
Then φ(λn) *h = φ(λn*/) *g -> ζ^(λ*/) *g = 0(λ) */&, as required.
This completes the proof of the theorem. •

In the same way that we proved formula (3.4) above, we could
prove the analogous formula for any f(t) in Lι{ω\) in place of u{t) =
1. Thus we have:

COROLLARY (3.5). For all f in Lι(ωι) and all g in L9^) where
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1 < p < oo, we have φ(f) * g = /0°° f(t)μt * g dt, where the integral
is a Bochner integral in Lp(ω2).

In part (c) of Definition (1.1) if a(h) = inf (support /ι), we can
require that a(g) = a(h) so that a(φ(f)) = 0. We just consider the
functions in LP(u)2} with support in [α(/ι), oo) as the Lι(ωι) Banach
Module.

The proof that (a) =» (b) =» (c) =• (d) in Theorem (3.1) also
carries through if p = 1. We didn't even need the tricky arguments
comparing Bochner integrals in Lι{ω2) and Lp(ω2) It is also easy
to see that (d) => (a) since δt is a strongly continuous semigroup,
so, when (d) holds, μt — φ(δt) must also be strongly continuous.
Thus our proof of Theorem (3.1) for p > 1 also shows that when
p = 1, the four conditions of Definition (1.1) are equivalent. This
gives a slightly simpler proof of the essential parts of our earlier
[7, Theorem 2.2, p. 280]. But for p = 1, we only know that these
conditions hold for a restricted class of weights.

4. Compactness and norm convergence. In our previous
studies of the standard homomorphism problem [8] and [7], for
p = 1, we were able to prove that the weak*-continuous semigroup
{μt} was strongly continuous by coming up with a condition on the
weight ω(t) which guaranteed that whenever a sequence {λn} con-
verged weak* to λ in M(α ), then λn * / —> λ * / in norm in Lι{ω)
for appropriate /. It also turned out [7, Theorem (4.1)] that weak
convergence of λn * / in Lι(ω) implied norm convergence. Since we
have shown that when p > 1, the semigroup μt is always strongly
continuous on //(ω), and since I^(α ) is reflexive, so that weak*
and weak convergence are the same, one would expect that weak
convergence would imply norm convergence of λn * / in 2/(ω) for
a more general class of weights. Surprisingly, for general sequences
or bounded nets {λn}, the norm convergence results are essentially
the same for I^iω) for all 1 < p < oo.

The appropriate class of weights are the regulated weights of Bade
and Dales [1, Definition 1.3, p. 81]. We say that the algebra weight
ω(t) is regulated at a > 0, if lim^ooO^ί + b)/ω{t) = 0 for all b > a.
The following two results say that regularity, convergence improve-
ment, and compactness are all equivalent for all 1 < p < oo. Recall,
from Lemma (2.1) above, that the assumption that {λn} converges
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weak* to λ is the same as assuming that λn * / -> λ * / weakly in
some (all) L?(ω) with 1 < p < oo for some (all) / φ 0 in LP{ω).
Recall also that, for / G Lloc(R+), we let a(f) = inf (support / ) .

THEOREM (4.1). If the weight ω(t) is regulated at a, then for all
1 < p < oo and all f in !?{&) with Oί{f) > a we have:

(a) Convolution by f is a compact operator from M{ω) to ^(ω).
(b) // the sequence or bounded net {λn} converges weak* to λ in

M(ω), then λn * / —> λ * / in norm in I^(α ).

THEOREM (4.2). If the algebra weight ω(t) is not regulated at a,
then there is a sequence {λn} in M(ω) with weak*-limit 0 for which,
for all 1 < p < oo and all f in U'iω) with a(f) < α; we have:

(a) The sequence λn * / diverges in norm in ^(ω).
(b) Convolution by f is not a compact operator from either M(ω)

orLι{ω) to

We will give relatively simple proofs which reduce the results for
p > 1 to our previous results [8, Theorem (2.3)] [7, pp. 283-284]
when p = 1, instead of giving a proof for all 1 < p < oo. For a
detailed study of compactness of convolution operators from LP{ώ)
to itself, without the assumption that ω is an algebra weight, see
Detre's thesis [4].

Proof of Theorem (4.1). Part (b) is a standard characterization
of compactness (cf. [7, Theorem (3.2), p. 284]), so we just need
to prove (a). Since δa * Lp(ω) is dense in Lp{ω)a = {/ e LP(ω) '
a(f) > °>}, it is enough to prove (a) for functions / = ία * g with
g in !?((*)). Since Lι{ω) has a bounded approximate identity which
is also a module approximate identity, it follows from the Cohen
factorization theorem that we can write g = h*k with h in Lι(ω) and
k in LP{ω). The case p = 1 of the theorem [7, Lemma (3.1), p. 283]
shows that (δa * h) acts compactly from M(ω) to Lι{ω). Also,
convolution by A; is a bounded operator from Lι{ω) to ^(ω). Hence
convolution by / = (δι */ι) * k is compact, since it is the composition
of a compact operator and a bounded operator. This completes the
proof of Theorem (4.1). D

Proof of Theorem (4.2). First notice that for h in C$(l/ω) we
have (δs/ω(s),h) = h(s)/ω(s), which approaches 0 as s —> oo by
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the definition of C^{\/ώ) . Thus δs/ω(s), and hence any of its
subsequences, approach 0 weak* in M{ω). Since ω(t) is not reg-
ulated at α, there is a to > a for which ω(s + to)/ω(s) does not
approach 0 as s —» oo. Hence we can find a sequence sn —> oo
with α;(sn + to)/ω(sn) bounded below. We claim that the sequence
λn — δsnlω(sn), which approaches 0 weak* in M(ω), satisfies the
assertion in Theorem (4.2) (a).

Pick some / in some LP{u)) with a(f) < a. Then

(||λn * f\\p,ωγ = Γ \f(t)\p(ω(sn + t)/ω(sn)γ dt.
JO

Now the weight (ω{t))p is also not regulated and \f\p belongs to
Lι{ω(t)p). Also (ω(sn + t)/ω(sn))p is bounded away from zero so
that, as we showed in our proof of [8, Theorem (2.3)],
\\(δ(sn)/ω(sn)

p) * \f\%,ωP = /0°° \f(t)\p\ω(sn + t)/ω{sn)\p dt cannot
approach 0 as n —> oo. That is, the p — 1 result , for the algebra
Lι{ωp\ which we proved previously, gives the result in Theorem
(4.2) (a) for Lp(ω) for all 1 < p < oo.

Part (a) shows that convolution by / cannot be a compact oper-
ator from M{ω) to Lp(ω). We complete the proof by showing that,
if convolution by g is compact from Lι(ω) to Lp(ω), then it is also
compact from M(ω) to Lp(ω). The proof we gave for the case p = 1,
in [7, Lemma (3.1), p. 283] carries through without change for all
1 < p < oo, since a bounded approximate identity {en} for Lι(ω) is
also a module approximate identity for LP^ω). This completes the
proof. D

The above two theorems show that for arbitrary sequences or nets,
as distinct from semigroups, norm convergence in Lp[ω) for p > 1 is
no easier to obtain than for Lι(ω). In contrast, the following small
result does give one sense in which ^(ω) convergence is easier.

PROPOSITION (4.3). Suppose that {λn} is a net in M(ω). If
l im(λ n*/) = \*f in norm in Lι{ω) for all f in Lι(ω)y then {λn*g}
converges in norm to λ * g for all g in Lp(ω) and all 1 < p < oo.

Proposition (4.3) can be viewed as a special case of Theorem (3.1)
where the homomorphism is the identity on Lι(ω). Alternately, and
more simply, one can use essentially the same proof of (c) =Φ> (d)
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in Theorem (3.1) by considering LP(ω) as an Lι(ω) module and
applying the Cohen factorization theorem.
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